File: TasmanianParticleSwarm.py

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (318 lines) | stat: -rw-r--r-- 17,715 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright (c) 2022, Miroslav Stoyanov & Weiwei Kong
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
#    and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
#    or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND
# IMPLIED. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF
# THE SOFTWARE WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL
# ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE. THE USER ASSUMES
# RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING
# FROM OR ARISING OUT OF, IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.

from ctypes import c_char_p, c_int, c_double, c_void_p, POINTER, cdll, cast, CFUNCTYPE
from numpy.ctypeslib import as_ctypes
import numpy as np
import sys

from TasmanianConfig import __path_libdream__
from TasmanianConfig import TasmanianInputError as InputError

import TasmanianDREAM as DREAM

type_optim_obj_fn = CFUNCTYPE(None, c_int, c_int, POINTER(c_double), POINTER(c_double), POINTER(c_int))
type_optim_dom_fn = CFUNCTYPE(c_int, c_int, POINTER(c_double), POINTER(c_int))
type_dream_random = CFUNCTYPE(c_double)

pLibDTSG = cdll.LoadLibrary(__path_libdream__)

pLibDTSG.tsgParticleSwarmState_Construct.restype = c_void_p
pLibDTSG.tsgParticleSwarmState_Construct.argtypes = [c_int, c_int]

pLibDTSG.tsgParticleSwarmState_Destruct.argtypes = [c_void_p]

pLibDTSG.tsgParticleSwarmState_GetNumDimensions.restype = c_int
pLibDTSG.tsgParticleSwarmState_GetNumDimensions.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_GetNumParticles.restype = c_int
pLibDTSG.tsgParticleSwarmState_GetNumParticles.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_GetParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_GetParticleVelocities.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_GetBestParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_GetBestPosition.argtypes = [c_void_p, POINTER(c_double)]

pLibDTSG.tsgParticleSwarmState_IsPositionInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsPositionInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_IsVelocityInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsVelocityInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_IsBestPositionInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsBestPositionInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_IsCacheInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsCacheInitialized.argtype = [c_void_p]

pLibDTSG.tsgParticleSwarmState_SetParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_SetParticleVelocities.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_SetBestParticlePositions.argtypes = [c_void_p, POINTER(c_double)]

pLibDTSG.tsgParticleSwarmState_ClearBestParticles.argtypes = [c_void_p]
pLibDTSG.tsgParticleSwarmState_ClearCache.argtypes = [c_void_p]
pLibDTSG.tsgParticleSwarmState_InitializeParticlesInsideBox.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double), c_char_p, c_int, type_dream_random]
pLibDTSG.tsgParticleSwarm.argtypes = [type_optim_obj_fn, type_optim_dom_fn, c_double, c_double, c_double, c_int, c_void_p,
                                      c_char_p, c_int, type_dream_random, POINTER(c_int)]

class ParticleSwarmState:
    '''
    Wrapper to class TasOptimization::ParticleSwarmState
    '''
    def __init__(self, iNumDimensions, iNumParticles):
        '''
        Constructs a new state with a given number of dimensions and particles.

        iNumDimensions : positive integer indicating the number of dimensions.
        iNumParticles  : positive integer indicating the number of particles.
        '''
        self.TasmanianParticleSwarmState = True
        self.pStatePntr = c_void_p(pLibDTSG.tsgParticleSwarmState_Construct(iNumDimensions, iNumParticles))

    def __del__(self):
        '''
        Deletes an instance of the particle swarm state.
        '''
        pLibDTSG.tsgParticleSwarmState_Destruct(self.pStatePntr)

    def getNumDimensions(self):
        '''
        Return the number of dimensions.
        '''
        return pLibDTSG.tsgParticleSwarmState_GetNumDimensions(self.pStatePntr)

    def getNumParticles(self):
        '''
        Return the number of particles.
        '''
        return pLibDTSG.tsgParticleSwarmState_GetNumParticles(self.pStatePntr)

    def getParticlePositions(self):
        '''
        Return the particle positions as a 2D NumPy array. The shape of this array is (self.getNumParticles(), self.getNumDimensions())
        and the i-th row if this array corresponds to the position of the i-th particle.
        '''
        iNumDims = self.getNumDimensions()
        iNumPart = self.getNumParticles()
        aResult = np.zeros((iNumDims * iNumPart,), np.float64)
        pLibDTSG.tsgParticleSwarmState_GetParticlePositions(self.pStatePntr, as_ctypes(aResult))
        return aResult.reshape((iNumPart, iNumDims))

    def getParticleVelocities(self):
        '''
        Return the particle velocities as a 2D NumPy array. The shape of this array is (self.getNumParticles(), self.getNumDimensions())
        and the i-th row if this array corresponds to the velocity of the i-th particle.
        '''
        iNumDims = self.getNumDimensions()
        iNumPart = self.getNumParticles()
        aResult = np.zeros((iNumDims * iNumPart,), np.float64)
        pLibDTSG.tsgParticleSwarmState_GetParticleVelocities(self.pStatePntr, as_ctypes(aResult))
        return aResult.reshape((iNumPart, iNumDims))

    def getBestParticlePositions(self):
        '''
        Return the best particle positions as a 2D NumPy array.  The shape of this array is (self.getNumParticles()+1 , self.getNumDimensions())
        and the i-th row if this array corresponds to the best position of the i-th particle for the first .getNumParticles()
        particles. The last row corresponds to the best particle position of the swarm.
        '''
        iNumDims = self.getNumDimensions()
        iNumPart = self.getNumParticles()
        aResult = np.zeros((iNumDims * (iNumPart + 1),), np.float64)
        pLibDTSG.tsgParticleSwarmState_GetBestParticlePositions(self.pStatePntr, as_ctypes(aResult))
        return aResult.reshape((iNumPart + 1, iNumDims))

    def getBestPosition(self):
        '''
        Return the best particle position of the swarm as a 1D NumPy array. The size of the array is self.getNumDimensions().
        '''
        iNumDims = self.getNumDimensions()
        aResult = np.zeros((iNumDims,), np.float64)
        pLibDTSG.tsgParticleSwarmState_GetBestPosition(self.pStatePntr, as_ctypes(aResult))
        return aResult

    def isPositionInitialized(self):
        '''
        Returns True if the particle positions have been initialized and False otherwise.
        '''
        return bool(pLibDTSG.tsgParticleSwarmState_IsPositionInitialized(self.pStatePntr))

    def isVelocityInitialized(self):
        '''
        Returns True if the particle velocities have been initialized and False otherwise.
        '''
        return bool(pLibDTSG.tsgParticleSwarmState_IsVelocityInitialized(self.pStatePntr))

    def isBestPositionInitialized(self):
        '''
        Returns True if the best particle positions have been initialized and False otherwise.
        '''
        return bool(pLibDTSG.tsgParticleSwarmState_IsBestPositionInitialized(self.pStatePntr))

    def isCacheInitialized(self):
        '''
        Returns True if the cache has been initialized and False otherwise.
        '''
        return bool(pLibDTSG.tsgParticleSwarmState_IsCacheInitialized(self.pStatePntr))

    def setParticlePositions(self, llfNewPPosns):
        '''
        Set new particle positions from a NumPy array.

        llfNewPPosns : a two-dimensional numpy.ndarray with
            llfNewPPosns.shape[0] = self.getNumParticles()
            llfNewPPosns.shape[1] = self.getNumDimensions()
        '''
        iNumPart = self.getNumParticles()
        iNumDims = self.getNumDimensions()
        if (llfNewPPosns.shape[0] != iNumPart):
            raise InputError("llfNewPPosns", "llfNewPPosns.shape[0] should match the number of particles")
        if (llfNewPPosns.shape[1] != iNumDims):
            raise InputError("llfNewPPosns", "llfNewPPosns.shape[1] should match the number of dimensions")
        llfNewPPosns.resize((iNumDims * iNumPart,))
        pLibDTSG.tsgParticleSwarmState_SetParticlePositions(self.pStatePntr, as_ctypes(llfNewPPosns))
        llfNewPPosns.resize((iNumPart, iNumDims))

    def setParticleVelocities(self, llfNewPVelcs):
        '''
        Set new particle velocities from a NumPy array.

        llfNewPVelcs : a two-dimensional numpy.ndarray with
            llfNewPVelcs.shape[0] = self.getNumParticles()
            llfNewPVelcs.shape[1] = self.getNumDimensions()
        '''
        iNumPart = self.getNumParticles()
        iNumDims = self.getNumDimensions()
        if (llfNewPVelcs.shape[0] != iNumPart):
            raise InputError("llfNewPVelcs", "llfNewPVelcs.shape[0] should match the number of particles")
        if (llfNewPVelcs.shape[1] != iNumDims):
            raise InputError("llfNewPVelcs", "llfNewPVelcs.shape[1] should match the number of dimensions")
        llfNewPVelcs.resize((iNumDims * iNumPart,))
        pLibDTSG.tsgParticleSwarmState_SetParticleVelocities(self.pStatePntr, as_ctypes(llfNewPVelcs))
        llfNewPVelcs.resize((iNumPart, iNumDims))

    def setBestParticlePositions(self, llfNewBPPosns):
        '''
        Set new best particle positions from a NumPy array.

        llfNewBPPosns : a two-dimensional numpy.ndarray with
            llfNewPVelcs.shape[0] = self.getNumParticles() + 1
            llfNewPVelcs.shape[1] = self.getNumDimensions()
        '''
        iNumPart = self.getNumParticles()
        iNumDims = self.getNumDimensions()
        if (llfNewBPPosns.shape[0] != iNumPart + 1):
            raise InputError("llfNewBPPosns", "llfNewBPPosns.shape[0] should match the number of particles + 1")
        if (llfNewBPPosns.shape[1] != iNumDims):
            raise InputError("llfNewBPPosns", "llfNewBPPosns.shape[1] should match the number of dimensions")
        llfNewBPPosns.resize(((iNumPart + 1) * iNumDims,))
        pLibDTSG.tsgParticleSwarmState_SetBestParticlePositions(self.pStatePntr, as_ctypes(llfNewBPPosns))
        llfNewBPPosns.resize((iNumPart + 1, iNumDims))

    def clearBestParticles(self):
        '''
        Clears the vector of best particles.
        '''
        pLibDTSG.tsgParticleSwarmState_ClearBestParticles(self.pStatePntr)

    def clearCache(self):
        '''
        Clears the internal cache of the managed ParticleSwarm C++ object.
        '''
        pLibDTSG.tsgParticleSwarmState_ClearCache(self.pStatePntr)

    def initializeParticlesInsideBox(self, lfBoxLower, lfBoxUpper, random01 = DREAM.RandomGenerator(sType = "default")):
        '''
        Initialize the particle swarm state with randomized particles (determined by gen_random01) inside a box bounded by the
        parameters box_lower and box_upper. The i-th entry in these parameters respectively represent the lower and upper
        bounds on the particle position values for the i-th dimension. The parameter random01 controls the distribution of
        the particles.

        lfBoxLower : a one-dimensional NumPy array with lfBoxLower.shape[0] = self.getNumDimensions()
        lfBoxUpper : a one-dimensional NumPy array with lfBoxLower.shape[0] = self.getNumDimensions()
        random01   : a DREAM.RandomGenerator instance that produces floats in [0,1]
        '''
        iNumDims = self.getNumDimensions()
        if (lfBoxLower.shape != (iNumDims,)):
            raise InputError("lfBoxLower", "lfBoxLower.shape should be (self.getNumDimensions(),)")
        if (lfBoxUpper.shape != (iNumDims,)):
            raise InputError("lfBoxUpper", "lfBoxUpper.shape should be (self.getNumDimensions(),)")
        pLibDTSG.tsgParticleSwarmState_InitializeParticlesInsideBox(self.pStatePntr, as_ctypes(lfBoxLower), as_ctypes(lfBoxUpper),
                                                                    c_char_p(random01.sType), c_int(random01.iSeed),
                                                                    type_dream_random(random01.pCallable))

def ParticleSwarm(pObjectiveFunction, pInside, fInertiaWeight, fCognitiveCoeff, fSocialCoeff, iNumIterations, oParticleSwarmState,
                  random01 = DREAM.RandomGenerator(sType = "default")):
    '''
    Wrapper around TasOptimization::ParticleSwarm().

    Runs iNumIterations of the particle swarm algorithm on an input state cParticleSwarmState to minimize the function
    pObjectiveFunction over a domain specified by pInside. The parameters fInertiaWeight, fCognitiveCoeff, and fSocialCoeff
    control the evolution of the algorithm. The parameter random01 controls the distribution of the particles.

    pObjectiveFunction  : a Python lambda representing the objective function; it should take in one 2D NumPy array (x_batch)
                          and produce a 1D NumPy array, sized (iNumBatch,), whose i-th entry should be the result of evaluating
                          the objective function to x_batch[i,:]; it is expected that x_batch.shape[1] = .getNumDimensions().
    pInside             : a Python lambda representing the function domain; it should take in a 1D NumPy array (x) and produce a
                          Boolean (isInside); when called, it should return True if x is in the domain and False otherwise;
                          it is expected that x.shape[0] = .getNumDimensions().
    fInertiaWeight      : a double that controls the speed of the particles; should be in (0,1).
    fCognitiveCoeff     : a double that controls how much a particle favors its own trajectory; usually in [1,3].
    fSocialCoeff        : a double that controls how much a particle favors the swarm's trajectories; usually in [1,3].
    iNumIterations      : a positive integer representing the number iterations the algorithm is run.
    oParticleSwarmState : an instance of the Python ParticleSwarmState class; it will contain the results of applying the algorithm.
    random01            : (optional) a DREAM.RandomGenerator instance that produces floats in [0,1]
    '''
    def cpp_obj_fn(num_dim, num_batch, x_batch_ptr, fval_ptr, err_arr):
        err_arr[0] = 1
        aX = np.ctypeslib.as_array(x_batch_ptr, (num_batch, num_dim))
        aResult = pObjectiveFunction(aX)
        if aResult.shape != (num_batch, ):
            print("ERROR: incorrect output from the objective function given to ParticleSwarm(), should be a NumPy array with shape (iNumBatch,)")
            return
        aFVal = np.ctypeslib.as_array(fval_ptr, (num_batch,))
        aFVal[0:num_batch] = aResult[0:num_batch]
        err_arr[0] = 0

    def cpp_dom_fn(num_dim, x_ptr, err_arr):
        err_arr[0] = 1
        aX = np.ctypeslib.as_array(x_ptr, (num_dim,))
        iResult = pInside(aX)
        if not isinstance(iResult, bool):
            print("ERROR: incorrect output from the domain function given to ParticleSwarm(), should be a 'bool' but received '" +
                  type(iResult).__name__ + "'")
            return False
        err_arr[0] = 0
        return iResult

    pErrorCode = (c_int * 1)()
    pLibDTSG.tsgParticleSwarm(type_optim_obj_fn(cpp_obj_fn), type_optim_dom_fn(cpp_dom_fn), c_double(fInertiaWeight),
                              c_double(fCognitiveCoeff), c_double(fSocialCoeff), c_int(iNumIterations),
                              oParticleSwarmState.pStatePntr, c_char_p(random01.sType), c_int(random01.iSeed),
                              type_dream_random(random01.pCallable), pErrorCode)

    if pErrorCode[0] != 0:
        raise InputError("ParticleSwarm", "An error occurred during the call to Tasmanian.")