1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# Copyright (c) 2022, Miroslav Stoyanov & Weiwei Kong
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
# and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
# or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND
# IMPLIED. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF
# THE SOFTWARE WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL
# ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE. THE USER ASSUMES
# RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING
# FROM OR ARISING OUT OF, IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
from ctypes import c_char_p, c_int, c_double, c_void_p, POINTER, cdll, cast, CFUNCTYPE
from numpy.ctypeslib import as_ctypes
import numpy as np
import sys
from TasmanianConfig import __path_libdream__
from TasmanianConfig import TasmanianInputError as InputError
import TasmanianDREAM as DREAM
type_optim_obj_fn = CFUNCTYPE(None, c_int, c_int, POINTER(c_double), POINTER(c_double), POINTER(c_int))
type_optim_dom_fn = CFUNCTYPE(c_int, c_int, POINTER(c_double), POINTER(c_int))
type_dream_random = CFUNCTYPE(c_double)
pLibDTSG = cdll.LoadLibrary(__path_libdream__)
pLibDTSG.tsgParticleSwarmState_Construct.restype = c_void_p
pLibDTSG.tsgParticleSwarmState_Construct.argtypes = [c_int, c_int]
pLibDTSG.tsgParticleSwarmState_Destruct.argtypes = [c_void_p]
pLibDTSG.tsgParticleSwarmState_GetNumDimensions.restype = c_int
pLibDTSG.tsgParticleSwarmState_GetNumDimensions.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_GetNumParticles.restype = c_int
pLibDTSG.tsgParticleSwarmState_GetNumParticles.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_GetParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_GetParticleVelocities.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_GetBestParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_GetBestPosition.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_IsPositionInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsPositionInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_IsVelocityInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsVelocityInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_IsBestPositionInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsBestPositionInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_IsCacheInitialized.restype = c_int
pLibDTSG.tsgParticleSwarmState_IsCacheInitialized.argtype = [c_void_p]
pLibDTSG.tsgParticleSwarmState_SetParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_SetParticleVelocities.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_SetBestParticlePositions.argtypes = [c_void_p, POINTER(c_double)]
pLibDTSG.tsgParticleSwarmState_ClearBestParticles.argtypes = [c_void_p]
pLibDTSG.tsgParticleSwarmState_ClearCache.argtypes = [c_void_p]
pLibDTSG.tsgParticleSwarmState_InitializeParticlesInsideBox.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double), c_char_p, c_int, type_dream_random]
pLibDTSG.tsgParticleSwarm.argtypes = [type_optim_obj_fn, type_optim_dom_fn, c_double, c_double, c_double, c_int, c_void_p,
c_char_p, c_int, type_dream_random, POINTER(c_int)]
class ParticleSwarmState:
'''
Wrapper to class TasOptimization::ParticleSwarmState
'''
def __init__(self, iNumDimensions, iNumParticles):
'''
Constructs a new state with a given number of dimensions and particles.
iNumDimensions : positive integer indicating the number of dimensions.
iNumParticles : positive integer indicating the number of particles.
'''
self.TasmanianParticleSwarmState = True
self.pStatePntr = c_void_p(pLibDTSG.tsgParticleSwarmState_Construct(iNumDimensions, iNumParticles))
def __del__(self):
'''
Deletes an instance of the particle swarm state.
'''
pLibDTSG.tsgParticleSwarmState_Destruct(self.pStatePntr)
def getNumDimensions(self):
'''
Return the number of dimensions.
'''
return pLibDTSG.tsgParticleSwarmState_GetNumDimensions(self.pStatePntr)
def getNumParticles(self):
'''
Return the number of particles.
'''
return pLibDTSG.tsgParticleSwarmState_GetNumParticles(self.pStatePntr)
def getParticlePositions(self):
'''
Return the particle positions as a 2D NumPy array. The shape of this array is (self.getNumParticles(), self.getNumDimensions())
and the i-th row if this array corresponds to the position of the i-th particle.
'''
iNumDims = self.getNumDimensions()
iNumPart = self.getNumParticles()
aResult = np.zeros((iNumDims * iNumPart,), np.float64)
pLibDTSG.tsgParticleSwarmState_GetParticlePositions(self.pStatePntr, as_ctypes(aResult))
return aResult.reshape((iNumPart, iNumDims))
def getParticleVelocities(self):
'''
Return the particle velocities as a 2D NumPy array. The shape of this array is (self.getNumParticles(), self.getNumDimensions())
and the i-th row if this array corresponds to the velocity of the i-th particle.
'''
iNumDims = self.getNumDimensions()
iNumPart = self.getNumParticles()
aResult = np.zeros((iNumDims * iNumPart,), np.float64)
pLibDTSG.tsgParticleSwarmState_GetParticleVelocities(self.pStatePntr, as_ctypes(aResult))
return aResult.reshape((iNumPart, iNumDims))
def getBestParticlePositions(self):
'''
Return the best particle positions as a 2D NumPy array. The shape of this array is (self.getNumParticles()+1 , self.getNumDimensions())
and the i-th row if this array corresponds to the best position of the i-th particle for the first .getNumParticles()
particles. The last row corresponds to the best particle position of the swarm.
'''
iNumDims = self.getNumDimensions()
iNumPart = self.getNumParticles()
aResult = np.zeros((iNumDims * (iNumPart + 1),), np.float64)
pLibDTSG.tsgParticleSwarmState_GetBestParticlePositions(self.pStatePntr, as_ctypes(aResult))
return aResult.reshape((iNumPart + 1, iNumDims))
def getBestPosition(self):
'''
Return the best particle position of the swarm as a 1D NumPy array. The size of the array is self.getNumDimensions().
'''
iNumDims = self.getNumDimensions()
aResult = np.zeros((iNumDims,), np.float64)
pLibDTSG.tsgParticleSwarmState_GetBestPosition(self.pStatePntr, as_ctypes(aResult))
return aResult
def isPositionInitialized(self):
'''
Returns True if the particle positions have been initialized and False otherwise.
'''
return bool(pLibDTSG.tsgParticleSwarmState_IsPositionInitialized(self.pStatePntr))
def isVelocityInitialized(self):
'''
Returns True if the particle velocities have been initialized and False otherwise.
'''
return bool(pLibDTSG.tsgParticleSwarmState_IsVelocityInitialized(self.pStatePntr))
def isBestPositionInitialized(self):
'''
Returns True if the best particle positions have been initialized and False otherwise.
'''
return bool(pLibDTSG.tsgParticleSwarmState_IsBestPositionInitialized(self.pStatePntr))
def isCacheInitialized(self):
'''
Returns True if the cache has been initialized and False otherwise.
'''
return bool(pLibDTSG.tsgParticleSwarmState_IsCacheInitialized(self.pStatePntr))
def setParticlePositions(self, llfNewPPosns):
'''
Set new particle positions from a NumPy array.
llfNewPPosns : a two-dimensional numpy.ndarray with
llfNewPPosns.shape[0] = self.getNumParticles()
llfNewPPosns.shape[1] = self.getNumDimensions()
'''
iNumPart = self.getNumParticles()
iNumDims = self.getNumDimensions()
if (llfNewPPosns.shape[0] != iNumPart):
raise InputError("llfNewPPosns", "llfNewPPosns.shape[0] should match the number of particles")
if (llfNewPPosns.shape[1] != iNumDims):
raise InputError("llfNewPPosns", "llfNewPPosns.shape[1] should match the number of dimensions")
llfNewPPosns.resize((iNumDims * iNumPart,))
pLibDTSG.tsgParticleSwarmState_SetParticlePositions(self.pStatePntr, as_ctypes(llfNewPPosns))
llfNewPPosns.resize((iNumPart, iNumDims))
def setParticleVelocities(self, llfNewPVelcs):
'''
Set new particle velocities from a NumPy array.
llfNewPVelcs : a two-dimensional numpy.ndarray with
llfNewPVelcs.shape[0] = self.getNumParticles()
llfNewPVelcs.shape[1] = self.getNumDimensions()
'''
iNumPart = self.getNumParticles()
iNumDims = self.getNumDimensions()
if (llfNewPVelcs.shape[0] != iNumPart):
raise InputError("llfNewPVelcs", "llfNewPVelcs.shape[0] should match the number of particles")
if (llfNewPVelcs.shape[1] != iNumDims):
raise InputError("llfNewPVelcs", "llfNewPVelcs.shape[1] should match the number of dimensions")
llfNewPVelcs.resize((iNumDims * iNumPart,))
pLibDTSG.tsgParticleSwarmState_SetParticleVelocities(self.pStatePntr, as_ctypes(llfNewPVelcs))
llfNewPVelcs.resize((iNumPart, iNumDims))
def setBestParticlePositions(self, llfNewBPPosns):
'''
Set new best particle positions from a NumPy array.
llfNewBPPosns : a two-dimensional numpy.ndarray with
llfNewPVelcs.shape[0] = self.getNumParticles() + 1
llfNewPVelcs.shape[1] = self.getNumDimensions()
'''
iNumPart = self.getNumParticles()
iNumDims = self.getNumDimensions()
if (llfNewBPPosns.shape[0] != iNumPart + 1):
raise InputError("llfNewBPPosns", "llfNewBPPosns.shape[0] should match the number of particles + 1")
if (llfNewBPPosns.shape[1] != iNumDims):
raise InputError("llfNewBPPosns", "llfNewBPPosns.shape[1] should match the number of dimensions")
llfNewBPPosns.resize(((iNumPart + 1) * iNumDims,))
pLibDTSG.tsgParticleSwarmState_SetBestParticlePositions(self.pStatePntr, as_ctypes(llfNewBPPosns))
llfNewBPPosns.resize((iNumPart + 1, iNumDims))
def clearBestParticles(self):
'''
Clears the vector of best particles.
'''
pLibDTSG.tsgParticleSwarmState_ClearBestParticles(self.pStatePntr)
def clearCache(self):
'''
Clears the internal cache of the managed ParticleSwarm C++ object.
'''
pLibDTSG.tsgParticleSwarmState_ClearCache(self.pStatePntr)
def initializeParticlesInsideBox(self, lfBoxLower, lfBoxUpper, random01 = DREAM.RandomGenerator(sType = "default")):
'''
Initialize the particle swarm state with randomized particles (determined by gen_random01) inside a box bounded by the
parameters box_lower and box_upper. The i-th entry in these parameters respectively represent the lower and upper
bounds on the particle position values for the i-th dimension. The parameter random01 controls the distribution of
the particles.
lfBoxLower : a one-dimensional NumPy array with lfBoxLower.shape[0] = self.getNumDimensions()
lfBoxUpper : a one-dimensional NumPy array with lfBoxLower.shape[0] = self.getNumDimensions()
random01 : a DREAM.RandomGenerator instance that produces floats in [0,1]
'''
iNumDims = self.getNumDimensions()
if (lfBoxLower.shape != (iNumDims,)):
raise InputError("lfBoxLower", "lfBoxLower.shape should be (self.getNumDimensions(),)")
if (lfBoxUpper.shape != (iNumDims,)):
raise InputError("lfBoxUpper", "lfBoxUpper.shape should be (self.getNumDimensions(),)")
pLibDTSG.tsgParticleSwarmState_InitializeParticlesInsideBox(self.pStatePntr, as_ctypes(lfBoxLower), as_ctypes(lfBoxUpper),
c_char_p(random01.sType), c_int(random01.iSeed),
type_dream_random(random01.pCallable))
def ParticleSwarm(pObjectiveFunction, pInside, fInertiaWeight, fCognitiveCoeff, fSocialCoeff, iNumIterations, oParticleSwarmState,
random01 = DREAM.RandomGenerator(sType = "default")):
'''
Wrapper around TasOptimization::ParticleSwarm().
Runs iNumIterations of the particle swarm algorithm on an input state cParticleSwarmState to minimize the function
pObjectiveFunction over a domain specified by pInside. The parameters fInertiaWeight, fCognitiveCoeff, and fSocialCoeff
control the evolution of the algorithm. The parameter random01 controls the distribution of the particles.
pObjectiveFunction : a Python lambda representing the objective function; it should take in one 2D NumPy array (x_batch)
and produce a 1D NumPy array, sized (iNumBatch,), whose i-th entry should be the result of evaluating
the objective function to x_batch[i,:]; it is expected that x_batch.shape[1] = .getNumDimensions().
pInside : a Python lambda representing the function domain; it should take in a 1D NumPy array (x) and produce a
Boolean (isInside); when called, it should return True if x is in the domain and False otherwise;
it is expected that x.shape[0] = .getNumDimensions().
fInertiaWeight : a double that controls the speed of the particles; should be in (0,1).
fCognitiveCoeff : a double that controls how much a particle favors its own trajectory; usually in [1,3].
fSocialCoeff : a double that controls how much a particle favors the swarm's trajectories; usually in [1,3].
iNumIterations : a positive integer representing the number iterations the algorithm is run.
oParticleSwarmState : an instance of the Python ParticleSwarmState class; it will contain the results of applying the algorithm.
random01 : (optional) a DREAM.RandomGenerator instance that produces floats in [0,1]
'''
def cpp_obj_fn(num_dim, num_batch, x_batch_ptr, fval_ptr, err_arr):
err_arr[0] = 1
aX = np.ctypeslib.as_array(x_batch_ptr, (num_batch, num_dim))
aResult = pObjectiveFunction(aX)
if aResult.shape != (num_batch, ):
print("ERROR: incorrect output from the objective function given to ParticleSwarm(), should be a NumPy array with shape (iNumBatch,)")
return
aFVal = np.ctypeslib.as_array(fval_ptr, (num_batch,))
aFVal[0:num_batch] = aResult[0:num_batch]
err_arr[0] = 0
def cpp_dom_fn(num_dim, x_ptr, err_arr):
err_arr[0] = 1
aX = np.ctypeslib.as_array(x_ptr, (num_dim,))
iResult = pInside(aX)
if not isinstance(iResult, bool):
print("ERROR: incorrect output from the domain function given to ParticleSwarm(), should be a 'bool' but received '" +
type(iResult).__name__ + "'")
return False
err_arr[0] = 0
return iResult
pErrorCode = (c_int * 1)()
pLibDTSG.tsgParticleSwarm(type_optim_obj_fn(cpp_obj_fn), type_optim_dom_fn(cpp_dom_fn), c_double(fInertiaWeight),
c_double(fCognitiveCoeff), c_double(fSocialCoeff), c_int(iNumIterations),
oParticleSwarmState.pStatePntr, c_char_p(random01.sType), c_int(random01.iSeed),
type_dream_random(random01.pCallable), pErrorCode)
if pErrorCode[0] != 0:
raise InputError("ParticleSwarm", "An error occurred during the call to Tasmanian.")
|