File: TasmanianSG.py

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (2584 lines) | stat: -rw-r--r-- 125,834 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
##############################################################################################################################################################################
# Copyright (c) 2017, Miroslav Stoyanov
#
# This file is part of
# Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
#    and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
#    or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
# THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
# COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
# THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
# IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
##############################################################################################################################################################################

from ctypes import c_char_p, c_int, c_double, c_void_p, POINTER, CDLL, create_string_buffer, RTLD_GLOBAL
import numpy as np
import sys

from TasmanianConfig import TasmanianInputError, __path_libsparsegrid__
pLibTSG = CDLL(__path_libsparsegrid__, mode = RTLD_GLOBAL)

# The ctypes library requires that we manually specify the return types of functions. In C, this is done by header files, so the
# declarations below serve as a header.

# Return types for TasmanianSparseGrid C class methods.
pLibTSG.tsgConstructTasmanianSparseGrid.restype = c_void_p
pLibTSG.tsgGetVersion.restype = c_char_p
pLibTSG.tsgGetLicense.restype = c_char_p
pLibTSG.tsgGetVersionMajor.restype = c_int
pLibTSG.tsgGetVersionMinor.restype = c_int
pLibTSG.tsgIsOpenMPEnabled.restype = c_int
pLibTSG.tsgIsCudaEnabled.restype = c_int
pLibTSG.tsgIsHipEnabled.restype = c_int
pLibTSG.tsgIsDpcppEnabled.restype = c_int
pLibTSG.tsgGetNumDimensions.restype = c_int
pLibTSG.tsgGetNumOutputs.restype = c_int
pLibTSG.tsgGetNumLoaded.restype = c_int
pLibTSG.tsgGetNumNeeded.restype = c_int
pLibTSG.tsgGetNumPoints.restype = c_int
pLibTSG.tsgRead.restype = c_int
pLibTSG.tsgGetAlpha.restype = c_double
pLibTSG.tsgGetBeta.restype = c_double
pLibTSG.tsgGetOrder.restype = c_int
pLibTSG.tsgGetCustomRuleDescription.restype = c_char_p
pLibTSG.tsgGetSubrules.restype = c_void_p
pLibTSG.tsgGetLoadedPoints.restype = POINTER(c_double)
pLibTSG.tsgGetNeededPoints.restype = POINTER(c_double)
pLibTSG.tsgGetPoints.restype = POINTER(c_double)
pLibTSG.tsgBatchGetInterpolationWeights.restype = POINTER(c_double)
pLibTSG.tsgIsSetDomainTransfrom.restype = c_int
pLibTSG.tsgIsSetConformalTransformASIN.restype = c_int
pLibTSG.tsgEvaluateSparseHierarchicalFunctionsGetNZ.restype = c_int
pLibTSG.tsgIsUsingConstruction.restype = c_int
pLibTSG.tsgGetCandidateConstructionPointsVoidPntr.restype = c_void_p
pLibTSG.tsgGetCandidateConstructionPointsSurplusVoidPntr.restype = c_void_p
pLibTSG.tsgGetCandidateConstructionPointsPythonGetNP.restype = c_int
pLibTSG.tsgGetAccelerationType.restype = c_char_p
pLibTSG.tsgIsAccelerationAvailable.restype = c_int
pLibTSG.tsgGetGPUID.restype = c_int
pLibTSG.tsgGetNumGPUs.restype = c_int
pLibTSG.tsgGetGPUMemory.restype = c_int

# Argument types for TasmanianSparseGrid C class methods.
pLibTSG.tsgDestructTasmanianSparseGrid.argtypes = [c_void_p]
pLibTSG.tsgCopySubGrid.argtypes = [c_void_p, c_void_p, c_int, c_int]
pLibTSG.tsgWrite.argtypes = [c_void_p, c_char_p]
pLibTSG.tsgWriteBinary.argtypes = [c_void_p, c_char_p]
pLibTSG.tsgRead.argtypes = [c_void_p, c_char_p]
pLibTSG.tsgMakeGlobalGrid.argtypes = [c_void_p, c_int, c_int, c_int, c_char_p, c_char_p, POINTER(c_int), c_double, c_double, c_char_p, POINTER(c_int)]
pLibTSG.tsgMakeSequenceGrid.argtypes = [c_void_p, c_int, c_int, c_int, c_char_p, c_char_p, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgMakeLocalPolynomialGrid.argtypes = [c_void_p, c_int, c_int, c_int, c_int, c_char_p, POINTER(c_int)]
pLibTSG.tsgMakeWaveletGrid.argtypes = [c_void_p, c_int, c_int, c_int, c_int, POINTER(c_int)]
pLibTSG.tsgMakeFourierGrid.argtypes = [c_void_p, c_int, c_int, c_int, c_char_p, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgMakeGridFromCustomTabulated.argtypes = [c_void_p, c_int, c_int, c_int, c_char_p, c_void_p, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgUpdateGlobalGrid.argtypes = [c_void_p, c_int, c_char_p, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgUpdateSequenceGrid.argtypes = [c_void_p, c_int, c_char_p, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgUpdateFourierGrid.argtypes = [c_void_p, c_int, c_char_p, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgGetAlpha.argtypes = [c_void_p]
pLibTSG.tsgGetBeta.argtypes = [c_void_p]
pLibTSG.tsgGetOrder.argtypes = [c_void_p]
pLibTSG.tsgGetNumDimensions.argtypes = [c_void_p]
pLibTSG.tsgGetNumOutputs.argtypes = [c_void_p]
pLibTSG.tsgCopyRuleChars.argtypes = [c_void_p, c_int, c_char_p, POINTER(c_int)] # char is not really const
pLibTSG.tsgGetCustomRuleDescription.argtypes = [c_void_p]
pLibTSG.tsgGetSubrules.argtypes = [c_void_p, c_int, c_int, c_char_p]
pLibTSG.tsgGetNumLoaded.argtypes = [c_void_p]
pLibTSG.tsgGetNumNeeded.argtypes = [c_void_p]
pLibTSG.tsgGetNumPoints.argtypes = [c_void_p]
pLibTSG.tsgGetLoadedPoints.argtypes = [c_void_p]
pLibTSG.tsgGetNeededPoints.argtypes = [c_void_p]
pLibTSG.tsgGetPoints.argtypes = [c_void_p]
pLibTSG.tsgGetLoadedPointsStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgGetNeededPointsStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgGetPointsStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgGetQuadratureWeightsStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgGetInterpolationWeightsStatic.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgGetDifferentiationWeightsStatic.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgLoadNeededValues.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgGetLoadedValuesStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgEvaluate.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgEvaluateFast.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgIntegrate.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgDifferentiate.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgEvaluateBatch.argtypes = [c_void_p, POINTER(c_double), c_int, POINTER(c_double)]
pLibTSG.tsgBatchGetInterpolationWeights.argtypes = [c_void_p, POINTER(c_double), c_int]
pLibTSG.tsgBatchGetInterpolationWeightsStatic.argtypes = [c_void_p, POINTER(c_double), c_int, POINTER(c_double)]
pLibTSG.tsgIsGlobal.argtypes = [c_void_p]
pLibTSG.tsgIsSequence.argtypes = [c_void_p]
pLibTSG.tsgIsLocalPolynomial.argtypes = [c_void_p]
pLibTSG.tsgIsWavelet.argtypes = [c_void_p]
pLibTSG.tsgIsFourier.argtypes = [c_void_p]
pLibTSG.tsgSetDomainTransform.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgIsSetDomainTransfrom.argtypes = [c_void_p]
pLibTSG.tsgClearDomainTransform.argtypes = [c_void_p]
pLibTSG.tsgGetDomainTransform.argtypes = [c_void_p, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgSetConformalTransformASIN.argtypes = [c_void_p, POINTER(c_int)]
pLibTSG.tsgIsSetConformalTransformASIN.argtypes = [c_void_p]
pLibTSG.tsgClearConformalTransform.argtypes = [c_void_p]
pLibTSG.tsgGetConformalTransformASIN.argtypes = [c_void_p, POINTER(c_int)]
pLibTSG.tsgClearLevelLimits.argtypes = [c_void_p]
pLibTSG.tsgGetLevelLimits.argtypes = [c_void_p, POINTER(c_int)]
pLibTSG.tsgSetAnisotropicRefinement.argtypes = [c_void_p, c_char_p, c_int, c_int, POINTER(c_int)]
pLibTSG.tsgEstimateAnisotropicCoefficientsStatic.argtypes = [c_void_p, c_char_p, c_int, POINTER(c_int)]
pLibTSG.tsgSetGlobalSurplusRefinement.argtypes = [c_void_p, c_double, c_int, POINTER(c_int)]
pLibTSG.tsgSetLocalSurplusRefinement.argtypes = [c_void_p, c_double, c_char_p, c_int, POINTER(c_int), POINTER(c_double)]
pLibTSG.tsgClearRefinement.argtypes = [c_void_p]
pLibTSG.tsgMergeRefinement.argtypes = [c_void_p]
pLibTSG.tsgRemovePointsByHierarchicalCoefficient.argtypes = [c_void_p, c_double, c_int, POINTER(c_double)]
pLibTSG.tsgRemovePointsByHierarchicalCoefficientHardCutoff.argtypes = [c_void_p, c_int, c_int, POINTER(c_double)]
pLibTSG.tsgEvaluateHierarchicalFunctions.argtypes = [c_void_p, POINTER(c_double), c_int, POINTER(c_double)]
pLibTSG.tsgGetHierarchicalSupportStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgSetHierarchicalCoefficients.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgEvaluateSparseHierarchicalFunctionsGetNZ.argtypes = [c_void_p, POINTER(c_double), c_int]
pLibTSG.tsgEvaluateSparseHierarchicalFunctionsStatic.argtypes = [c_void_p, POINTER(c_double), c_int, POINTER(c_int), POINTER(c_int), POINTER(c_double)]
pLibTSG.tsgGetHierarchicalCoefficientsStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgIntegrateHierarchicalFunctionsStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgBeginConstruction.argtypes = [c_void_p]
pLibTSG.tsgIsUsingConstruction.argtypes = [c_void_p]
pLibTSG.tsgGetCandidateConstructionPointsVoidPntr.argtypes = [c_void_p, c_char_p, c_int, POINTER(c_int), POINTER(c_int)]
pLibTSG.tsgGetCandidateConstructionPointsSurplusVoidPntr.argtypes = [c_void_p, c_double, c_char_p, c_int, POINTER(c_int), POINTER(c_double)]
pLibTSG.tsgGetCandidateConstructionPointsPythonGetNP.argtypes = [c_void_p, c_void_p]
pLibTSG.tsgGetCandidateConstructionPointsPythonStatic.argtypes = [c_void_p, POINTER(c_double)]
pLibTSG.tsgGetCandidateConstructionPointsPythonDeleteVect.argtypes = [c_void_p]
pLibTSG.tsgLoadConstructedPoint.argtypes = [c_void_p, POINTER(c_double), c_int, POINTER(c_double)]
pLibTSG.tsgFinishConstruction.argtypes = [c_void_p]
pLibTSG.tsgPrintStats.argtypes = [c_void_p]
pLibTSG.tsgEnableAcceleration.argtypes = [c_void_p, c_char_p]
pLibTSG.tsgEnableAccelerationGPU.argtypes = [c_void_p, c_char_p, c_int]
pLibTSG.tsgGetAccelerationType.argtypes = [c_void_p]
pLibTSG.tsgIsAccelerationAvailable.argtypes = [c_char_p]
pLibTSG.tsgSetGPUID.argtypes = [c_void_p, c_int]
pLibTSG.tsgGetGPUID.argtypes = [c_void_p]
pLibTSG.tsgGetGPUMemory.argtypes = [c_int]
pLibTSG.tsgGetGPUName.argtypes = [c_int, c_int, c_char_p, POINTER(c_int)] # not really const here

# Return types for CustomTabulated C class methods.
pLibTSG.tsgConstructCustomTabulated.restype = c_void_p;
pLibTSG.tsgReadCustomTabulated.restype = c_int
pLibTSG.tsgGetNumLevelsCustomTabulated.restype = c_int;
pLibTSG.tsgGetNumPointsCustomTabulated.restype = c_int;
pLibTSG.tsgGetIExactCustomTabulated.restype = c_int;
pLibTSG.tsgGetQExactCustomTabulated.restype = c_int;
pLibTSG.tsgGetDescriptionCustomTabulated.restype = c_char_p;
pLibTSG.tsgMakeCustomTabulatedFromData.restype = c_void_p;

# Argument types for CustomTabulated C class methods.
pLibTSG.tsgDestructCustomTabulated.argtypes = [c_void_p];
pLibTSG.tsgReadCustomTabulated.argtypes = [c_void_p, c_char_p]
pLibTSG.tsgWriteCustomTabulated.argtypes = [c_void_p, c_char_p]
pLibTSG.tsgGetNumLevelsCustomTabulated.argtypes = [c_void_p];
pLibTSG.tsgGetNumPointsCustomTabulated.argtypes = [c_void_p, c_int];
pLibTSG.tsgGetIExactCustomTabulated.argtypes = [c_void_p, c_int];
pLibTSG.tsgGetQExactCustomTabulated.argtypes = [c_void_p, c_int];
pLibTSG.tsgGetDescriptionCustomTabulated.argtypes = [c_void_p];
pLibTSG.tsgGetWeightsNodesStaticCustomTabulated.argtypes = [c_void_p, c_int, POINTER(c_double), POINTER(c_double)]
pLibTSG.tsgMakeCustomTabulatedFromData.argtype = [c_int, POINTER(c_int), POINTER(c_int), POINTER(c_double), POINTER(c_double), c_char_p]

# Specifications for other C functions.
pLibTSG.tsgPythonGetGlobalPolynomialSpace.restype = POINTER(c_int)
pLibTSG.tsgPythonGetGlobalPolynomialSpace.argtypes = [c_void_p, c_int, POINTER(c_int)]
pLibTSG.tsgDeleteInts.argtypes = [POINTER(c_int)]

bTsgPlotting = True
try:
    import matplotlib.pyplot as tsgPlot
except:
    bTsgPlotting = False
    tsgPlot = []

lsTsgGlobalRules = ["clenshaw-curtis", "clenshaw-curtis-zero", "chebyshev", "chebyshev-odd", "gauss-legendre", "gauss-legendre-odd", "gauss-patterson", "leja", "leja-odd", "rleja", "rleja-odd", "rleja-double2", "rleja-double4", "rleja-shifted", "rleja-shifted-even", "rleja-shifted-double", "max-lebesgue", "max-lebesgue-odd", "min-lebesgue", "min-lebesgue-odd", "min-delta", "min-delta-odd", "gauss-chebyshev1", "gauss-chebyshev1-odd", "gauss-chebyshev2", "gauss-chebyshev2-odd", "fejer2", "gauss-gegenbauer", "gauss-gegenbauer-odd", "gauss-jacobi", "gauss-jacobi-odd", "gauss-laguerre", "gauss-laguerre-odd", "gauss-hermite", "gauss-hermite-odd", "custom-tabulated"]
lsTsgGlobalTypes = ["level", "curved", "iptotal", "ipcurved", "qptotal", "qpcurved", "hyperbolic", "iphyperbolic", "qphyperbolic", "tensor", "iptensor", "qptensor"]
lsTsgCurvedTypes = ["curved", "ipcurved", "qpcurved"]
lsTsgRefineTypes = ["classic", "parents", "direction", "fds", "stable"]
lsTsgSequenceRules = ["leja", "rleja", "rleja-shifted", "max-lebesgue", "min-lebesgue", "min-delta"]
lsTsgLocalRules = ["localp", "semi-localp", "localp-zero", "localp-boundary"]
lsTsgAccelTypes = ["none", "cpu-blas", "gpu-default", "gpu-cublas", "gpu-cuda", "gpu-rocblas", "gpu-hip", "gpu-magma"]

class TasmanianSimpleSparseMatrix:
    def __init__(self):
        self.aPntr = []
        self.aIndx = []
        self.aVals = []
        self.iNumRows = 0
        self.iNumCols = 0

    def getDenseForm(self):
        if ((self.iNumRows == 0) or (self.iNumCols == 0)):
            return np.empty([0,0], np.float64)
        aMat = np.zeros([self.iNumRows, self.iNumCols], np.float64 if not np.iscomplexobj(self.aVals) else np.complex128)
        for iI in range(self.iNumRows):
            iJ = self.aPntr[iI]
            while(iJ < self.aPntr[iI+1]):
                aMat[iI, self.aIndx[iJ]] = self.aVals[iJ]
                iJ += 1
        return aMat


class TasmanianSparseGrid:
    def __init__(self):
        '''
        constructor, creates an empty grid instance
        '''
        self.TasmanianSparseGridObject = True
        self.pGrid = pLibTSG.tsgConstructTasmanianSparseGrid()

    def __del__(self):
        '''
        destructor, calls the C++ destructor and releases all memory
        used by this instance of the class
        Make sure to call this to avoid memory leaks
        '''
        pLibTSG.tsgDestructTasmanianSparseGrid(self.pGrid)

    def stringBufferToString(self, pName, iNumChars):
        S = [s for s in pName]
        sName = ""
        for iI in range(iNumChars):
            sName += str(S[iI], encoding='utf8')
        return sName

    def getVersion(self):
        '''
        returns the hardcoded version string from the library

        '''
        return str(pLibTSG.tsgGetVersion(), encoding='utf8')

    def getLicense(self):
        '''
        returns the hardcoded license string from the library

        '''
        return str(pLibTSG.tsgGetLicense(), encoding='utf8')

    def getVersionMajor(self):
        '''
        returns the hardcoded version major int
        '''
        return pLibTSG.tsgGetVersionMajor()

    def getVersionMinor(self):
        '''
        returns the hardcoded version minor int
        '''
        return pLibTSG.tsgGetVersionMinor()

    def isOpenMPEnabled(self):
        '''
        returns True if the library has been compiled with OpenMP support
        '''
        return (pLibTSG.tsgIsOpenMPEnabled() != 0)

    def isCudaEnabled(self):
        '''
        returns True if the library has been compiled with CUDA support
        '''
        return (pLibTSG.tsgIsCudaEnabled() != 0)

    def isHipEnabled(self):
        '''
        returns True if the library has been compiled with HIP support
        '''
        return (pLibTSG.tsgIsHipEnabled() != 0)

    def isDpcppEnabled(self):
        '''
        returns True if the library has been compiled with DPC++ support
        '''
        return (pLibTSG.tsgIsDpcppEnabled() != 0)

    def read(self, sFilename):
        '''
        reads the grid from a file
        discards any existing grid held by this class

        sFilename: string indicating a grid file where a grid was
                   already written using write from Python or any other
                   Tasmanian interface

        output: boolean
                True: the read was successful
                False: the read failed,
                       check the CLI output for an error message

        '''
        if pLibTSG.tsgRead(self.pGrid, bytes(sFilename, encoding='utf8')) == 0:
            raise TasmanianInputError("sFilename", "ERROR: {0:1s} does not appear to be a valid Tasmanian file.".format(sFilename))

    def write(self, sFilename, bUseBinaryFormat = True):
        '''
        writes the grid to a file

        sFilename: string indicating a grid file where a grid will
                   be written

        bUseBinaryFormat: boolean
                True: write to a binary file
                False: write to an ASCII file

        '''
        if (bUseBinaryFormat):
            pLibTSG.tsgWriteBinary(self.pGrid, bytes(sFilename, encoding='utf8'))
        else:
            pLibTSG.tsgWrite(self.pGrid, bytes(sFilename, encoding='utf8'))

    def makeGlobalGrid(self, iDimension, iOutputs, iDepth, sType, sRule, liAnisotropicWeights=[], fAlpha=0.0, fBeta=0.0, sCustomFilename="", liLevelLimits=[]):
        '''
        creates a new sparse grid using a global rule
        discards any existing grid held by this class

        iDimension: int (positive)
                    the number of inputs

        iOutputs: int (non-negative)
                  the number of outputs

        iDepth: int (non-negative)
                controls the density of the grid, i.e.,
                the offset for the tensor selection, the meaning of
                iDepth depends on sType
                Example 1: sType == 'iptotal' will give a grid that
                           interpolates exactly all polynomials of
                           degree up to and including iDepth
                Example 2: sType == 'qptotal' will give a grid that
                           integrates exactly all polynomials of degree
                           up to and including iDepth

        sType: string identifying the tensor selection strategy
              'level'     'curved'     'hyperbolic'     'tensor'
              'iptotal'   'ipcurved'   'iphyperbolic'   'iptensor'
              'qptotal'   'qpcurved'   'qphyperbolic'   'qptensor'

        sRule: string (defines the 1-D rule that induces the grid)

           Interpolation rules

              Note: the quadrature induced by those rules is constructed
                    by integrating the interpolant

              'clenshaw-curtis'    'clenshaw-curtis-zero'      'fejer2'
              'rleja'    'rleja-odd'  'rleja-double2'   'rleja-double4'
              'rleja-shifted'   'rleja-shifted-even'
              'max-lebesgue'    'max-lebesgue-odd'
              'min-lebesgue'    'min-lebesgue-odd'
              'leja'            'leja-odd'
              'min-delta'       'min-delta-odd'

              'chebyshev'       'chebyshev-odd'
                approximation using roots of Chebyshev polynomials
                non-nested case (in contrast to Clenshaw-Curtis nodes)

           Quadrature rules, the weights target exactness with respect
                             to the highest polynomial degree possible

               'gauss-legendre'  'gauss-legendre-odd'
                approximation using roots of polynomials orthogonal in
                measure Uniform

               'gauss-patterson'  (a.k.a. nested Gauss-Legendre)
                Note: the nodes and weights are hard-coded hence there
                is a limit on the highest possible depth

               'gauss-chebyshev1'  'gauss-chebyshev1-odd'
               'gauss-chebyshev2'  'gauss-chebyshev2-odd'
                 approximation using roots of polynomials orthogonal in
                 measures  1/sqrt(1-x^2) and sqrt(1-x^2)  (respectively)

              'gauss-gegenbauer'  'gauss-gegenbauer-odd'
                approximation using roots of polynomials orthogonal in
                measure (1-x^2)^alpha

              'gauss-jacobi'
                approximation using roots of polynomials orthogonal in
                measure (1-x)^alpha * (1+x)^beta

              'gauss-laguerre'
                approximation using roots of polynomials orthogonal in
                measure x^alpha * epx(-x)

              'gauss-hermite'  'gauss-hermite-odd'
                approximation using roots of polynomials orthogonal in
                measure |x|^alpha * epx(-x^2)

        liAnisotropicWeights: list or numpy.ndarray of weights
                              length must be iDimension or 2*iDimension
                              the first iDimension weights
                                                       must be positive
                              see the manual for details

        fAlpha, fBeta: floats
              fAlpha : the alpha parameter for Gegenbauer, Jacobi,
                       Hermite and Laguerre rules
              fBeta  : the beta parameter for Jacobi rules

        sCustomRule: string giving the path to the file with
                     custom-tabulated rule

        '''
        if (iDimension <= 0):
            raise TasmanianInputError("iDimension", "ERROR: dimension should be a positive integer")
        if (iOutputs < 0):
            raise TasmanianInputError("iOutputs", "ERROR: outputs should be a non-negative integer")
        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")
        if (sRule not in lsTsgGlobalRules):
            raise TasmanianInputError("sRule", "ERROR: invalid global rule, see TasmanianSG.lsTsgGlobalRules for list of accepted global rules")
        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            if (sType in lsTsgCurvedTypes):
                iNumWeights = 2*iDimension
            else:
                iNumWeights = iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
            else:
                aAWeights = np.array([liAnisotropicWeights[i] for i in range(iNumWeights)], np.int32)
                pAnisoWeights = np.ctypeslib.as_ctypes(aAWeights)

        pCustomRule = bytes(sCustomFilename, encoding='utf8') if sCustomFilename else None

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgMakeGlobalGrid(self.pGrid, iDimension, iOutputs, iDepth, bytes(sType, encoding='utf8'), bytes(sRule, encoding='utf8'), pAnisoWeights, c_double(fAlpha), c_double(fBeta), pCustomRule, pLevelLimits)

    def makeSequenceGrid(self, iDimension, iOutputs, iDepth, sType, sRule, liAnisotropicWeights=[], liLevelLimits=[]):
        '''
        creates a new sparse grid using a sequence rule
        discards any existing grid held by this class

        iDimension: int (positive)
              the number of inputs

        iOutputs: int (non-negative)
              the number of outputs

        iDepth: int (non-negative)
                controls the density of the grid, i.e.,
                the offset for the tensor selection, the meaning of
                iDepth depends on sType
                Example 1: sType == 'iptotal' will give a grid that
                           interpolates exactly all polynomials of
                           degree up to and including iDepth
                Example 2: sType == 'qptotal' will give a grid that
                           integrates exactly all polynomials of degree
                           up to and including iDepth

        sType: string identifying the tensor selection strategy
              'level'     'curved'     'hyperbolic'     'tensor'
              'iptotal'   'ipcurved'   'iphyperbolic'   'iptensor'
              'qptotal'   'qpcurved'   'qphyperbolic'   'qptensor'

        sRule: string (defines the 1-D rule that induces the grid)
              'leja'       'rleja'      'rleja-shifted'
              'max-lebesgue'   'min-lebesgue'   'min-delta'

        liAnisotropicWeights: list or numpy.ndarray of weights
                              length must be iDimension or 2*iDimension
                              the first iDimension weights
                                                       must be positive
                              see the manual for details

        '''
        if (iDimension <= 0):
            raise TasmanianInputError("iDimension", "ERROR: dimension should be a positive integer")
        if (iOutputs < 0):
            raise TasmanianInputError("iOutputs", "ERROR: outputs should be a non-negative integer")
        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")
        if (sRule not in lsTsgSequenceRules):
            raise TasmanianInputError("sRule", "ERROR: invalid sequence rule, see TasmanianSG.lsTsgSequenceRules for list of accepted sequence rules")
        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            if (sType in lsTsgCurvedTypes):
                iNumWeights = 2*iDimension
            else:
                iNumWeights = iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
            else:
                pAnisoWeights = (c_int*iNumWeights)()
                for iI in range(iNumWeights):
                    pAnisoWeights[iI] = liAnisotropicWeights[iI]

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgMakeSequenceGrid(self.pGrid, iDimension, iOutputs, iDepth, bytes(sType, encoding='utf8'), bytes(sRule, encoding='utf8'), pAnisoWeights, pLevelLimits)

    def makeLocalPolynomialGrid(self, iDimension, iOutputs, iDepth, iOrder=1, sRule="localp", liLevelLimits=[]):
        '''
        creates a new sparse grid using a local polynomial rule
        discards any existing grid held by this class

        iDimension: int (positive)
              the number of inputs

        iOutputs: int (non-negative)
              the number of outputs

        iDepth: int (non-negative)
                controls the density of the grid, i.e.,
                the number of levels to use

        iOrder: int (must be -1 or bigger)
                -1 indicates largest possible order
                 1 means linear, 2 means quadratic, etc.
                 0 means piece-wise constant, it has different hierarchy
                   then the other orders, most notably the 1D rule
                   triples the number of points per level (as opposed
                   to double for the other cases)

        sRule: string (defines the 1-D rule that induces the grid)
              'localp'  'localp-zero'  'semi-localp'  'localp-boundary'

        '''
        if (iDimension <= 0):
            raise TasmanianInputError("iDimension", "ERROR: dimension should be a positive integer")
        if (iOutputs < 0):
            raise TasmanianInputError("iOutputs", "ERROR: outputs should be a non-negative integer")
        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")
        if (iOrder < -1):
            raise TasmanianInputError("iOrder", "ERROR: order should be a non-negative integer")
        if (sRule not in lsTsgLocalRules):
            raise TasmanianInputError("sRule", "ERROR: invalid local polynomial rule, see TasmanianSG.lsTsgLocalRules for list of accepted sequence rules")

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgMakeLocalPolynomialGrid(self.pGrid, iDimension, iOutputs, iDepth, iOrder, bytes(sRule, encoding='utf8'), pLevelLimits)

    def makeWaveletGrid(self, iDimension, iOutputs, iDepth, iOrder=1, liLevelLimits=[]):
        '''
        creates a new sparse grid using a wavelet rule
        discards any existing grid held by this class

        iDimension: int (positive)
              the number of inputs

        iOutputs: int (non-negative)
              the number of outputs

        iDepth: int (non-negative)
                controls the density of the grid, i.e.,
                the number of levels to use

        iOrder: int (must be 1 or 3)
              only wavelets of order 1 and 3 are implemented

        '''
        if (iDimension <= 0):
            raise TasmanianInputError("iDimension", "ERROR: dimension should be a positive integer")
        if (iOutputs < 0):
            raise TasmanianInputError("iOutputs", "ERROR: outputs should be a non-negative integer")
        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")
        if (iOrder not in [1, 3]):
            raise TasmanianInputError("iOrder", "ERROR: order should be either 1 or 3 (only linear and cubic wavelets are available)")

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgMakeWaveletGrid(self.pGrid, iDimension, iOutputs, iDepth, iOrder, pLevelLimits)

    def makeFourierGrid(self, iDimension, iOutputs, iDepth, sType, liAnisotropicWeights=[], liLevelLimits=[]):
        '''
        creates a new sparse grid using a Fourier rule
        discards any existing grid held by this class

        iDimension: int (positive)
              the number of inputs

        iOutputs: int (non-negative)
              the number of outputs

        iDepth: int (non-negative)
                controls the density of the grid, i.e.,
                the offset for the tensor selection, the meaning of
                iDepth depends on sType

        sType: string identifying the tensor selection strategy
              'level'     'curved'     'hyperbolic'     'tensor'
              'iptotal'   'ipcurved'   'iphyperbolic'   'iptensor'
              'qptotal'   'qpcurved'   'qphyperbolic'   'qptensor'

        liAnisotropicWeights: list or numpy.ndarray of weights
                              length must be iDimension or 2*iDimension
                              the first iDimension weights
                                                       must be positive
                              see the manual for details

        '''
        if (iDimension <= 0):
            raise TasmanianInputError("iDimension", "ERROR: dimension should be a positive integer")
        if (iOutputs < 0):
            raise TasmanianInputError("iOutputs", "ERROR: outputs should be a non-negative integer")
        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")

        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            if (sType in lsTsgCurvedTypes):
                iNumWeights = 2*iDimension
            else:
                iNumWeights = iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
            else:
                pAnisoWeights = (c_int*iNumWeights)()
                for iI in range(iNumWeights):
                    pAnisoWeights[iI] = liAnisotropicWeights[iI]

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgMakeFourierGrid(self.pGrid, iDimension, iOutputs, iDepth, bytes(sType, encoding='utf8'), pAnisoWeights, pLevelLimits)

    def makeGlobalGridCustom(self, iDimension, iOutputs, iDepth, sType, pCustomTabulated, liAnisotropicWeights=[], liLevelLimits=[]):
        '''
        Creates a new sparse grid using a CustomTabulated object. Discards any existing grid held by this class.

        Uses the same inputs as in makeGlobalGrid(), but with an additional input named pCustomTabulated. This new input should be
        a Python CustomTabulated object, which will be used to populate the weights and nodes of the output grid.

        See the manual for more details.
        '''
        if not hasattr(pCustomTabulated, "CustomTabulatedObject"):
            raise TasmanianInputError("pCustomTabulated", "ERROR: pCustomTabulated must be an instance of CustomTabulated")
        self.__testMakeGlobalGrid(iDimension, iOutputs, iDepth, sType, liAnisotropicWeights, liLevelLimits)
        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            iNumWeights = 2*iDimension if sType in lsTsgCurvedTypes else iDimension
            pAnisoWeights = (c_int*iNumWeights)()
            for iI in range(iNumWeights):
                pAnisoWeights[iI] = liAnisotropicWeights[iI]
        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgMakeGridFromCustomTabulated(c_void_p(self.pGrid), c_int(iDimension), c_int(iOutputs), c_int(iDepth),
                                               bytes(sType, encoding='utf8'), c_void_p(pCustomTabulated.pCustomTabulated),
                                               pAnisoWeights, pLevelLimits)

    def copyGrid(self, pGrid, iOutputsBegin = 0, iOutputsEnd = -1):
        '''
        accepts an instance of TasmanianSparseGrid class and creates
        a hard copy of the class and all included data
        original class is not modified

        pGrid: instance of TasmanianSparseGrid class
            the source for the copy

        iOutputsBegin: integer indicating the first output to copy

        iOutputsEnd: integer one bigger than the last output to copy
                     if set to -1, all outputs from iOutputsBegin to
                     the end will be copied

        Examples:

        grid.copyGrid(other, 0, -1) # copy all outputs (default)
        grid.copyGrid(other, 0, other.getNumOutputs()) # also copy all
        grid.copyGrid(other, 0, 3) # copy outputs 0, 1, and 2
        grid.copyGrid(other, 1, 4) # copy outputs 1, 2, and 3

        '''
        if (not isinstance(pGrid, TasmanianSparseGrid)):
            raise TasmanianInputError("pGrid", "ERROR: pGrid must be an instance of TasmanianSparseGrid")

        pLibTSG.tsgCopySubGrid(self.pGrid, pGrid.pGrid, iOutputsBegin, iOutputsEnd)

    def updateGlobalGrid(self, iDepth, sType, liAnisotropicWeights=[], liLevelLimits=[]):
        '''
        adds the points defined by depth, type and anisotropy
        to the existing grid

        basically, the same as calling makeGlobalGrid with sRule,
                   fAlpha and fBeta of this grid and the new iDepth,
                   sType and liAnisotropicWeights then adding the
                   resulting points to the current grid

        inputs: see help(TasmanianSG.TasmanianSparseGrid.makeGlobalGrid)

        '''
        if (not self.isGlobal()):
            raise TasmanianInputError("updateGlobalGrid", "ERROR: calling updateGlobalGrid for a grid that is not global")

        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")

        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")

        iDimension = self.getNumDimensions()
        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            if (sType in lsTsgCurvedTypes):
                iNumWeights = 2*iDimension
            else:
                iNumWeights = iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
            else:
                pAnisoWeights = (c_int*iNumWeights)()
                for iI in range(iNumWeights):
                    pAnisoWeights[iI] = liAnisotropicWeights[iI]

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgUpdateGlobalGrid(self.pGrid, iDepth, bytes(sType, encoding='utf8'), pAnisoWeights, pLevelLimits)

    def updateSequenceGrid(self, iDepth, sType, liAnisotropicWeights=[], liLevelLimits=[]):
        '''
        adds the points defined by depth, type and anisotropy
        to the existing grid

        basically, the same as calling makeSequenceGrid() with sRule,
                   of this grid and the new iDepth, sType and
                   liAnisotropicWeights then adding the resulting points
                   to the current grid

        inputs: see help(Tasmanian.SparseGrid.makeGlobalGrid)

        '''
        if (not self.isSequence()):
            raise TasmanianInputError("updateSequenceGrid", "ERROR: calling updateSequenceGrid for a grid that is not a sequence grid")

        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")

        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")

        iDimension = self.getNumDimensions()
        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            if (sType in lsTsgCurvedTypes):
                iNumWeights = 2*iDimension
            else:
                iNumWeights = iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
            else:
                pAnisoWeights = (c_int*iNumWeights)()
                for iI in range(iNumWeights):
                    pAnisoWeights[iI] = liAnisotropicWeights[iI]

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgUpdateSequenceGrid(self.pGrid, iDepth, bytes(sType, encoding='utf8'), pAnisoWeights, pLevelLimits)

    def updateFourierGrid(self, iDepth, sType, liAnisotropicWeights=[], liLevelLimits=[]):
        '''
        adds the points defined by depth, type and anisotropy
        to the existing grid

        basically, the same as calling makeFourierGrid() with sRule,
                   of this grid and the new iDepth, sType and
                   liAnisotropicWeights then adding the resulting points
                   to the current grid

        inputs: see help(Tasmanian.SparseGrid.makeGlobalGrid)

        '''
        if (not self.isFourier()):
            raise TasmanianInputError("updateFourierGrid", "ERROR: calling updateFourierGrid for a grid that is not a Fourier grid")

        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")

        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see Tasmanian.TasmanianSG.lsTsgGlobalTypes for list of accepted types")

        iDimension = self.getNumDimensions()
        pAnisoWeights = None
        if (len(liAnisotropicWeights) > 0):
            if (sType in lsTsgCurvedTypes):
                iNumWeights = 2*iDimension
            else:
                iNumWeights = iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
            else:
                pAnisoWeights = (c_int*iNumWeights)()
                for iI in range(iNumWeights):
                    pAnisoWeights[iI] = liAnisotropicWeights[iI]

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgUpdateFourierGrid(self.pGrid, iDepth, bytes(sType, encoding='utf8'), pAnisoWeights, pLevelLimits)

    def getAlpha(self):
        '''
        returns the value of fAlpha in the call to makeGlobalGrid
        if makeGlobalGrid has not been called, returns 0.0

        '''
        return pLibTSG.tsgGetAlpha(self.pGrid)

    def getBeta(self):
        '''
        returns the value of fBeta in the call to makeGlobalGrid
        if makeGlobalGrid has not been called, returns 0.0

        '''
        return pLibTSG.tsgGetBeta(self.pGrid)

    def getOrder(self):
        '''
        returns the value of iOrder in the call to
        makeLocalPolynomialGrid or makeWaveletGrid

        if makeLocalPolynomialGrid and makeWaveletGrid
        have not been called, returns -1

        '''
        return pLibTSG.tsgGetOrder(self.pGrid)

    def getNumDimensions(self):
        '''
        returns the value of iDimension in the make***Grid command
        if no grid has been made, it returns 0

        '''
        return pLibTSG.tsgGetNumDimensions(self.pGrid)

    def getNumOutputs(self):
        '''
        returns the value of iOutputs in the make***Grid command
        if no grid has been made, it returns 0

        '''
        return pLibTSG.tsgGetNumOutputs(self.pGrid)

    def getRule(self):
        '''
        returns the value of sRule in the make***Grid command
        if makeWaveletGrid is used, returns "wavelet"
        if no grid has been made, it returns "unknown"

        '''
        pName = create_string_buffer(128);
        iNumChars = np.array([0], np.int32)
        pLibTSG.tsgCopyRuleChars(self.pGrid, 128, pName, np.ctypeslib.as_ctypes(iNumChars))
        return self.stringBufferToString(pName, iNumChars[0])

    def getCustomRuleDescription(self):
        '''
        returns the description provided in the custom rule file
        if not using a custom grid, returns ""

        '''
        return str(pLibTSG.tsgGetCustomRuleDescription(self.pGrid), encoding='utf8') if "custom-tabulated" in self.getRule() else ""

    def getNumLoaded(self):
        '''
        returns the number of points loaded in the existing interpolant

        '''
        return pLibTSG.tsgGetNumLoaded(self.pGrid)

    def getNumNeeded(self):
        '''
        returns the number of points needed to form the interpolant or
        form the next interpolant following a refinement

        '''
        return pLibTSG.tsgGetNumNeeded(self.pGrid)

    def getNumPoints(self):
        '''
        if points have been loaded, returns the same as getNumLoaded()
        otherwise, returns the same as getNumNeeded()

        '''
        return pLibTSG.tsgGetNumPoints(self.pGrid)

    def getLoadedPoints(self):
        '''
        returns the points loaded in the existing interpolant

        output: a 2-D numpy.ndarray of size getNumLoaded() X iDimension
            reach row corresponds to one point
            if (getNumLoaded() == 0): returns numpy.empty([0,0])

        '''
        iNumDims = self.getNumDimensions()
        iNumPoints = self.getNumLoaded()
        if (iNumPoints == 0):
            return np.empty([0, 0], np.float64)
        aPoints = np.empty([iNumPoints * iNumDims], np.float64)
        pLibTSG.tsgGetLoadedPointsStatic(self.pGrid, np.ctypeslib.as_ctypes(aPoints))
        return aPoints.reshape([iNumPoints, iNumDims])

    def getNeededPoints(self):
        '''
        returns the points needed to form the interpolant or the next
        level of refinement following a set***Refinement() call

        output: 2-D numpy.ndarray of size getNumNeeded() X iDimension
            reach row corresponds to one point
            if (getNumNeeded() == 0): returns numpy.empty([0,0])

        '''
        iNumDims = self.getNumDimensions()
        iNumPoints = self.getNumNeeded()
        if (iNumPoints == 0):
            return np.empty([0, 0], np.float64)
        aPoints = np.empty([iNumPoints * iNumDims], np.float64)
        pLibTSG.tsgGetNeededPointsStatic(self.pGrid, np.ctypeslib.as_ctypes(aPoints))
        return aPoints.reshape([iNumPoints, iNumDims])

    def getPoints(self):
        '''
        if points have been loaded, gives the same as getLoadedPoints()
        otherwise, returns the same as getNeededPoints()

        '''
        iNumDims = self.getNumDimensions()
        iNumPoints = self.getNumPoints()
        if (iNumPoints == 0):
            return np.empty([0, 0], np.float64)
        aPoints = np.empty([iNumPoints * iNumDims], np.float64)
        pLibTSG.tsgGetPointsStatic(self.pGrid, np.ctypeslib.as_ctypes(aPoints))
        return aPoints.reshape([iNumPoints, iNumDims])

    def getQuadratureWeights(self):
        '''
        returns the quadrature weights associated with
        the points in getPoints()

        output: a 1-D numpy.ndarray of length getNumPoints()
                the order of the weights matches
                the order in getPoints()

        '''
        iNumPoints = self.getNumPoints()
        if (iNumPoints == 0):
            return np.empty([0], np.float64)
        aWeights = np.empty([iNumPoints], np.float64)
        pLibTSG.tsgGetQuadratureWeightsStatic(self.pGrid, np.ctypeslib.as_ctypes(aWeights))
        return aWeights

    def getInterpolationWeights(self, lfX):
        '''
        returns the interpolation weights associated with the points
        in getPoints()

        lfX: a 1-D numpy.ndarray with length iDimensions
             the entries indicate the points for evaluating the weights

        output: a 1-D numpy.ndarray of length getNumPoints()
            the order of the weights matches the order in getPoints()

        '''
        iNumX = len(lfX)
        if (iNumX != self.getNumDimensions()):
            raise TasmanianInputError("lfX", "ERROR: len(lfX) should equal {0:1d} instead it equals {1:1d}".format(self.getNumDimensions(), iNumX))
        iNumPoints = self.getNumPoints()
        if (iNumPoints == 0):
            return np.empty([0], np.float64)
        aWeights = np.empty([iNumPoints], np.float64)
        pLibTSG.tsgGetInterpolationWeightsStatic(self.pGrid, np.ctypeslib.as_ctypes(lfX), np.ctypeslib.as_ctypes(aWeights))
        return aWeights

    def getInterpolationWeightsBatch(self, llfX):
        '''
        returns the interpolation weights associated with the points
        in getPoints()

        finds multiple weights with a single library call
        uses OpenMP if enabled in libtasmaniansparsegrids.so

        llfX: a 2-D numpy.ndarray with second dimension iDimensions
              each row in the array is a single requested point

        output: a 2-D numpy.ndarray
                with dimensions llfX.shape[0] X getNumPoints()
                each row corresponds to the weight for one row of llfX

        '''
        if (len(llfX.shape) != 2):
            raise TasmanianInputError("llfX", "ERROR: llfX should be a 2-D numpy.ndarray instread it has dimension {0:1d}".format(len(llfX.shape)))
        iNumX = llfX.shape[0]
        if (iNumX == 0):
            return np.empty([0, self.getNumPoints()], np.float64)
        iNumDim = llfX.shape[1]
        if (iNumDim != self.getNumDimensions()):
            raise TasmanianInputError("llfX", "ERROR: llfX.shape[1] should equal {0:1d} instead it equals {1:1d}".format(self.getNumDimensions(), iNumDim))
        iNumPoints = self.getNumPoints()
        if (iNumPoints == 0):
            return np.empty([0, 0], np.float64)
        aWeights = np.empty([iNumX, iNumPoints], np.float64)
        pLibTSG.tsgBatchGetInterpolationWeightsStatic(self.pGrid,
            np.ctypeslib.as_ctypes(llfX.reshape([iNumX * iNumDim])), iNumX,
            np.ctypeslib.as_ctypes(aWeights.reshape([iNumX * iNumPoints])))
        return aWeights

    def getDifferentiationWeights(self, lfX):
        '''
        returns the differentiation weights associated with the points
        in getPoints()

        lfX: a 1-D numpy.ndarray with length iDimensions
             the entries indicate the points for evaluating the weights

        output: a 2-D numpy.ndarray of size (getNumPoints(), iDimensions)
            the order of the weights matches the order in getPoints()

        Similar to the other Weights methods, those are generally slower than
        the internal alternatives, e.g., differentiate() or evaluate().
        '''
        iNumX = len(lfX)
        if (iNumX != self.getNumDimensions()):
            raise TasmanianInputError("lfX", "ERROR: len(lfX) should equal {0:1d} instead it equals {1:1d}".format(self.getNumDimensions(), iNumX))
        iNumPoints = self.getNumPoints()
        if (iNumPoints == 0):
            return np.empty([0,0], np.float64)
        aWeights = np.empty([iNumPoints * iNumX], np.float64)
        pLibTSG.tsgGetDifferentiationWeightsStatic(self.pGrid, np.ctypeslib.as_ctypes(lfX), np.ctypeslib.as_ctypes(aWeights))
        return aWeights.reshape([iNumPoints, iNumX])

    def loadNeededValues(self, llfVals):
        '''
        loads the values of the target function at the needed points
        if there are no needed points, this reset the currently loaded
        values

        llfVals: a 2-D numpy.ndarray
                 with dimensions getNumNeeded() X iOutputs
                 each row corresponds to the values of the outputs at
                 the corresponding needed point. The order and leading
                 dimension must match the points obtained form
                 getNeededPoints()

        '''
        if (len(llfVals.shape) != 2):
            raise TasmanianInputError("llfVals", "ERROR: llfVals should be a 2-D numpy.ndarray, instead it has {0:1d} dimensions".format(len(llfVals.shape)))
        if (self.getNumNeeded() == 0):
            if (llfVals.shape[0] != self.getNumLoaded()):
                raise TasmanianInputError("llfVals", "ERROR: leading dimension of llfVals is {0:1d} but the number of current points is {1:1d}".format(llfVals.shape[0], self.getNumLoaded()))
        elif (llfVals.shape[0] != self.getNumNeeded()):
            raise TasmanianInputError("llfVals", "ERROR: leading dimension of llfVals is {0:1d} but the number of needed points is {1:1d}".format(llfVals.shape[0], self.getNumNeeded()))
        if (llfVals.shape[1] != self.getNumOutputs()):
            raise TasmanianInputError("llfVals", "ERROR: second dimension of llfVals is {0:1d} but the number of outputs is set to {1:1d}".format(llfVals.shape[1], self.getNumOutputs()))
        iNumPoints = llfVals.shape[0]
        iNumDims = llfVals.shape[1]
        pLibTSG.tsgLoadNeededValues(self.pGrid, np.ctypeslib.as_ctypes(llfVals.reshape([iNumPoints * iNumDims])))

    def loadNeededPoints(self, llfVals):
        '''
        Alias of loadNeededValues().
        '''
        self.loadNeededValues(llfVals)

    def getLoadedValues(self):
        '''
        Returns the model values as given to Tasmanian by the loadNeededPoints() method.
        The ordering will match the current internal ordering, e.g., mixing the different
        model values from different refinement iterations.

        Returns a two dimensional numpy.ndarray with size getNumPoints() by getNumOutputs()
        '''
        iNumPoints  = self.getNumPoints()
        iNumOutputs = self.getNumOutputs()
        if (iNumPoints == 0 or iNumOutputs == 0):
            return np.empty([0, 0], np.float64)
        aVals = np.empty((iNumPoints * iNumOutputs,), np.float64)
        pLibTSG.tsgGetLoadedValuesStatic(self.pGrid, np.ctypeslib.as_ctypes(aVals))
        return aVals.reshape((iNumPoints, iNumOutputs))

    def evaluateThreadSafe(self, lfX):
        '''
        evaluates the intepolant at a single points of interest and
        returns the result
        This is the thread safe version, but it does not use
        acceleration of any type

        this should be called after the grid has been created and after
        values have been loaded

        lfX: a 1-D numpy.ndarray with length iDimensions
             the entries indicate the points for evaluating the weights

        output: returns a 1-D numpy.ndarray of length iOutputs
            the values of the interpolant at lfX

        '''
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("evaluateThreadSafe", "ERROR: cannot call evaluate for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        if (len(lfX.shape) != 1):
            raise TasmanianInputError("lfX", "ERROR: lfX should be 1D numpy array")
        iNumX = lfX.shape[0]
        if (iNumX != self.getNumDimensions()):
            raise TasmanianInputError("lfX", "ERROR: lfX should have lenth {0:1d} instead it has length {1:1d}".format(self.getNumDimensions(),iNumX))
        iNumOutputs = self.getNumOutputs()
        aY = np.empty([iNumOutputs], np.float64)
        pLibTSG.tsgEvaluate(self.pGrid, np.ctypeslib.as_ctypes(lfX), np.ctypeslib.as_ctypes(aY))
        return aY

    def evaluate(self, lfX):
        '''
        evaluates the intepolant at a single points of interest and
        returns the result
        This is the accelerated version using the selected acceleration
        type, but it is potentially not thread safe

        this should be called after the grid has been created and after
        values have been loaded

        lfX: a 1-D numpy.ndarray with length iDimensions
             the entries indicate the points for evaluating the weights

        output: returns a 1-D numpy.ndarray of length iOutputs
            the values of the interpolant at lfX

        '''
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("evaluate", "ERROR: cannot call evaluate for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        if (len(lfX.shape) != 1):
            raise TasmanianInputError("lfX", "ERROR: lfX should be 1D numpy array")
        iNumX = lfX.shape[0]
        if (iNumX != self.getNumDimensions()):
            raise TasmanianInputError("lfX", "ERROR: lfX should have lenth {0:1d} instead it has length {1:1d}".format(self.getNumDimensions(),iNumX))
        iNumOutputs = self.getNumOutputs()
        aY = np.empty([iNumOutputs], np.float64)
        pLibTSG.tsgEvaluateFast(self.pGrid, np.ctypeslib.as_ctypes(lfX), np.ctypeslib.as_ctypes(aY))
        return aY

    def evaluateBatch(self, llfX):
        '''
        evaluates the intepolant at the points of interest and returns
        the result

        this should be called after the grid has been created and after
        values have been loaded

        llfX: a 2-D numpy.ndarray
              with second dimension equal to iDimensions
              each row in the array is a single requested point

        output: a 2-D numpy.ndarray
                with dimensions llfX.shape[0] X iOutputs
                each row corresponds to the value of the interpolant
                for one row of llfX

        '''
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("evaluateBatch", "ERROR: cannot call evaluateBatch for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        if (len(llfX.shape) != 2):
            raise TasmanianInputError("llfX", "ERROR: llfX should be a 2-D numpy.ndarray instread it has dimension {0:1d}".format(len(llfX.shape)))
        iNumX = llfX.shape[0]
        if (iNumX == 0):
            return np.empty([0, self.getNumOutputs()], np.float64)
        iNumDim = llfX.shape[1]
        if (iNumDim != self.getNumDimensions()):
            raise TasmanianInputError("llfX", "ERROR: llfX.shape[1] should equal {0:1d} instead it equals {1:1d}".format(self.getNumDimensions(), iNumDim))
        iNumOutputs = self.getNumOutputs()
        aY = np.empty([iNumX, iNumOutputs], np.float64)
        # np.ctypeslib.as_ctypes(llfX.reshape([iNumX*iNumDim,])) messes up, the first 4 entries randomly get set to machine eps (10^-310) and 0
        lfX = llfX.reshape([iNumX*iNumDim,])
        pLibTSG.tsgEvaluateBatch(self.pGrid, np.ctypeslib.as_ctypes(lfX), iNumX, np.ctypeslib.as_ctypes(aY.reshape([iNumX*iNumOutputs,])))
        return aY

    def integrate(self):
        '''
        returns the integral of the interpolant

        output: returns a 1-D numpy.ndarray of length iOutputs
            the integral of the interpolant

        '''
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("integrate", "ERROR: cannot call integrate for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        iNumOutputs = self.getNumOutputs()
        aQ = np.empty([iNumOutputs], np.float64)
        pLibTSG.tsgIntegrate(self.pGrid, np.ctypeslib.as_ctypes(aQ))
        return aQ

    def differentiate(self, lfX):
        '''
        returns the derivative (Jacobian or gradient vector) of the interpolant

        lfX: a 1-D numpy.ndarray with length iNumDimensions which is the evaluation point

        output: if iNumOutputs == 1, returns a 1-D numpy.ndarray of length iNumDimensions; if iNumOutputs >= 2, returns a 2-D
            numpy.ndarray of dimension [iNumOutputs, iNumDimensions]
        '''
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("differentiate", "ERROR: cannot call differentiate for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        iNumOutputs = self.getNumOutputs()
        iNumDimensions = self.getNumDimensions()
        aDx = np.empty([iNumDimensions * iNumOutputs], np.float64)
        pLibTSG.tsgDifferentiate(self.pGrid, np.ctypeslib.as_ctypes(lfX), np.ctypeslib.as_ctypes(aDx))
        return np.squeeze(np.resize(aDx, [iNumOutputs, iNumDimensions]))

    def isGlobal(self):
        '''
        returns True if using a global grid

        '''
        return (pLibTSG.tsgIsGlobal(self.pGrid) != 0)

    def isSequence(self):
        '''
        returns True if using a sequence grid

        '''
        return (pLibTSG.tsgIsSequence(self.pGrid) != 0)

    def isLocalPolynomial(self):
        '''
        returns True if using a local polynomial grid

        '''
        return (pLibTSG.tsgIsLocalPolynomial(self.pGrid) != 0)

    def isWavelet(self):
        '''
        returns True if using a local wavelet grid

        '''
        return (pLibTSG.tsgIsWavelet(self.pGrid) != 0)

    def isFourier(self):
        '''
        returns True if using a Fourier grid
        '''
        return (pLibTSG.tsgIsFourier(self.pGrid) != 0)

    def setDomainTransform(self, llfTransform):
        '''
        sets the lower and upper bound for each dimension

        Note: gauss-laguerre and gauss-hermite rules are defined on
              unbounded domain, in which case  this sets the
              shift and scale parameters, consult the manual

        llfTransform: a 2-D numpy.ndarray of size iDimension X 2
                      transform specifies the lower and upper bound
                      of the domain in each direction.

                      For gauss-laguerre and gauss-hermite grids, the
                      transform gives the a and b parameters of the
                      weights
                       exp(-b (x - a))
                       exp(-b (x - a)^2)

        '''
        lShape = llfTransform.shape
        if (len(lShape) != 2):
            raise TasmanianInputError("llfTransform", "ERROR: llfTransform should be a 2-D numpy.ndarray")
        if (lShape[0] != self.getNumDimensions()):
            raise TasmanianInputError("llfTransform", "ERROR: the first dimension of llfTransform is {0:1d} and it should match iDimension: {1:1d}".format(lShape[0], self.getNumDimensions()))
        if (lShape[1] != 2):
            raise TasmanianInputError("llfTransform", "ERROR: the second dimension of llfTransform is {0:1d} and it should be 2".format(lShape[1]))
        iNumDimensions = llfTransform.shape[0]
        # NOTE: copy is done to convert 2-D ndarray to two 1-D arrays
        pA = (c_double*iNumDimensions)()
        pB = (c_double*iNumDimensions)()
        for iI in range(iNumDimensions):
            pA[iI] = llfTransform[iI][0]
            pB[iI] = llfTransform[iI][1]
        pLibTSG.tsgSetDomainTransform(self.pGrid, pA, pB)

    def isSetDomainTransfrom(self):
        '''
        returns True if the grid is defined for non-canonical domain
        returns False if using a canonical domain

        '''
        return (pLibTSG.tsgIsSetDomainTransfrom(self.pGrid) != 0)

    def clearDomainTransform(self):
        '''
        resets the domain to canonical
        loaded values will be kept, however, the values now correspond
        to canonical points and may be invalid for your application

        '''
        pLibTSG.tsgClearDomainTransform(self.pGrid)

    def getDomainTransform(self):
        '''
        returns llfTransform from the call to setDomainTransform()

        if setDomainTransform() has not been called or if the
        transformed has been cleared by clearDomainTransform(),
        then this returns an empty matrix

        '''
        if (not self.isSetDomainTransfrom()):
            return np.empty([0,2], np.float64)

        iNumDimensions = self.getNumDimensions()
        pA = (c_double*iNumDimensions)()
        pB = (c_double*iNumDimensions)()
        pLibTSG.tsgGetDomainTransform(self.pGrid, pA, pB)
        llfTransform = np.empty([iNumDimensions, 2], np.float64)
        for iI in range(iNumDimensions):
            llfTransform[iI][0] = pA[iI]
            llfTransform[iI][1] = pB[iI]
        return llfTransform

    def setConformalTransformASIN(self, liTruncation):
        '''
        sets conformal domain transform based on truncated
        Maclaurin series of arcsin()

        liTruncation: 1-D numpy.ndarray of non-negative integers
                      indicating the truncation order in each direction
                      0 indicates no transform applied to this direction

        '''
        lShape = liTruncation.shape
        if (len(lShape) != 1):
            raise TasmanianInputError("liTruncation", "ERROR: liTruncation should be a 1-D numpy.ndarray")
        if (lShape[0] != self.getNumDimensions()):
            raise TasmanianInputError("liTruncation", "ERROR: the length of liTruncation is {0:1d} and it should match iDimension: {1:1d}".format(lShape[0], self.getNumDimensions()))
        iNumDimensions = lShape[0]
        pTruncation = (c_int*iNumDimensions)()
        for iI in range(iNumDimensions):
            pTruncation[iI] = liTruncation[iI] # this converts Python longs to c_int
        pLibTSG.tsgSetConformalTransformASIN(self.pGrid, pTruncation)

    def isSetConformalTransformASIN(self):
        '''
        returns True if conformal transform is set
        returns False otherwise

        see: setConformalTransformASIN()

        '''
        return (pLibTSG.tsgIsSetConformalTransformASIN(self.pGrid) != 0)

    def clearConformalTransform(self):
        '''
        resets the conformal domain transform
        loaded values will be kept, however, the values now correspond
        to canonical points and may be invalid for your application

        '''
        pLibTSG.tsgClearConformalTransform(self.pGrid)

    def getConformalTransformASIN(self):
        '''
        returns liTruncation from the call to setConformalTransformASIN()

        if setConformalTransformASIN() has not been called or if the
        transformed has been cleared by clearConformalTransform(),
        then this returns an empty matrix

        '''
        if (not self.isSetConformalTransformASIN()):
            return np.empty([0,], int)

        iNumDimensions = self.getNumDimensions()
        pTruncation = (c_int*iNumDimensions)()
        pLibTSG.tsgGetConformalTransformASIN(self.pGrid, pTruncation)
        liTruncation = np.empty([iNumDimensions,], int)
        for iI in range(iNumDimensions):
            liTruncation[iI] = pTruncation[iI] # convert c_int to python long
        return liTruncation

    def clearLevelLimits(self):
        '''
        clears the limits set by the last make***Grid or refine command
        if no limits are set, this has no effect
        '''
        pLibTSG.tsgClearLevelLimits(self.pGrid)

    def getLevelLimits(self):
        '''
        returns the limits set by the last call to make***Grid or refine
        returns a vector of integers corresponding to the limits for each
        direction, -1 indicates no limit
        '''
        iNumDimensions = self.getNumDimensions()
        pTruncation = (c_int*iNumDimensions)()
        pLibTSG.tsgGetLevelLimits(self.pGrid, pTruncation)
        liLimits = np.empty([iNumDimensions,], int)
        for iI in range(iNumDimensions):
            liLimits[iI] = pTruncation[iI] # convert c_int to python long
        return liLimits

    def setAnisotropicRefinement(self, sType, iMinGrowth, iOutput, liLevelLimits = []):
        '''
        estimates anisotropic coefficients from the current set of
        loaded points and updates the grid with the best points
        according to the estimate

        sType: string identifying the estimate to use (see the Manual)
               recommended: 'iptotal'   'ipcurved'

        iMinGrowth: int (positive)
                minimum number of new points to include in the new grid

        iOutput: int (indicates the output to use)
             selects which output to use for refinement
             sequence grids accept -1 to indicate all outputs

        '''
        if (self.getNumOutputs() == 0):
            raise TasmanianInputError("setAnisotropicRefinement", "ERROR: cannot set refinement for grid with iOutput = 0")
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("setAnisotropicRefinement", "ERROR: cannot call setAnisotropicRefinement for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        if (iMinGrowth <= 0):
            raise TasmanianInputError("iMinGrowth", "ERROR: the number of growth should be positive integer")
        if (iOutput == -1):
            if (not self.isSequence()):
                raise TasmanianInputError("iOutput", "ERROR: iOutput = -1 can be used only for sequence grids")
        if (iOutput < -1):
            raise TasmanianInputError("iOutput", "ERROR: iOutput should be -1 or a non-negative integer")
        if (iOutput >= self.getNumOutputs()):
            raise TasmanianInputError("iOutput", "ERROR: iOutput cannot exceed the index of the last output {0:1d}".format(self.getNumOutputs() - 1))
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            iDimension = self.getNumDimensions()
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        pLibTSG.tsgSetAnisotropicRefinement(self.pGrid, bytes(sType, encoding='utf8'), iMinGrowth, iOutput, pLevelLimits)

    def getAnisotropicRefinement(self, sType, iMinGrowth, iOutput, liLevelLimits = []):
        '''
        Calls setAnistropicRefinement() on the inputs and then getNeededPoints().
        '''
        self.setAnisotropicRefinement(sType, iMinGrowth, iOutput, liLevelLimits=liLevelLimits)
        return self.getNeededPoints()

    def estimateAnisotropicCoefficients(self, sType, iOutput):
        '''
        returns the estimate of the anisotropic coefficients from the
        current set of loaded points
        see the manual

        sType: string identifying the estimate to use (see the Manual)
               recommended: 'iptotal'   'ipcurved'


        iOutput: int (indicates the output to use)
             selects which output to use for refinement
             sequence grids accept -1 to indicate all outputs

        outputs: 1-D numpy.ndarray
                 of length getNumDimensions() or 2*getNumDimensions()
                 the first set of getNumDimensions() entries correspond
                                                 to the xi coefficients
                 the second set of getNumDimensions() entries correspond
                                                 to the eta coefficients

        '''
        if (self.getNumOutputs() == 0):
            raise TasmanianInputError("estimateAnisotropicCoefficients", "ERROR: cannot set refinement for grid with iOutput = 0")
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("estimateAnisotropicCoefficients", "ERROR: cannot call estimateAnisotropicCoefficients for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        if (iOutput == -1):
            if (not self.isSequence()):
                raise TasmanianInputError("iOutput", "ERROR: iOutput = -1 can be used only for sequence grids")
        if (iOutput < -1):
            raise TasmanianInputError("iOutput", "ERROR: iOutput should be -1 or a non-negative integer")
        if (iOutput >= self.getNumOutputs()):
            raise TasmanianInputError("iOutput", "ERROR: iOutput cannot exceed the index of the last output {0:1d}".format(self.getNumOutputs() - 1))
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")

        iNumCoeffs = self.getNumDimensions()
        if ("curved" in sType):
            iNumCoeffs = iNumCoeffs * 2

        aCoeff = np.empty([iNumCoeffs], np.int32)
        pLibTSG.tsgEstimateAnisotropicCoefficientsStatic(self.pGrid, bytes(sType, encoding='utf8'), iOutput, np.ctypeslib.as_ctypes(aCoeff))

        return aCoeff

    def setSurplusRefinement(self, fTolerance, iOutput, sCriteria = "", liLevelLimits = [], llfScaleCorrection = []):
        '''
        using hierarchical surplusses as an error indicator, the surplus
        refinement adds points to the grid to improve accuracy

        when using sequence grids: this algorithm corresponds to the
                                   greedy Knapsack problem

        when using local polynomial or wavelet grids, this call
                                 corresponds to local spatial refinement

        fTolerance: float (non-negative)
                    the relative error tolerance, i.e.,
                    we refine only for points associated with surplus
                    that exceeds the tolerance

        iOutput: int (indicates the output to use)
                 selects which output to use for refinement
                 sequence and local polynomial grids accept -1 to
                 indicate all outputs

        sCriteria: hierarchical and direction refinement strategy
                   'classic'  'parents'   'direction'   'fds'   'stable'
                  applicable only for Local Polynomial and Wavelet grids

        llfScaleCorrection: 2-D numpy.ndarray of non-negative numbers
                            Instead of comparing the normalized surpluses to
                            the tolerance, the scaled surplus will be used.
                            The correction allows to manually guide the
                            refinement process.
                            The surplus of the j-th output of the i-th point
                            will be scaled by llfScaleCorrection[i][j].
                            llfScaleCorrection.shape[0] must be equal to
                            getNumLoaded()
                            If empty, the scale is assumed 1.0
                            llfScaleCorrection.shape[1] must be equal to the
                            number of outputs used in the process, which is
                            equal to getNumOutputs() for iOutput == -1,
                            or 1 if iOutput > -1.
        '''
        if (self.isGlobal()):
            if (self.getRule() not in lsTsgSequenceRules):
                raise TasmanianInputError("setSurplusRefinement", "ERROR: setSurplusRefinement cannot be used with global grids with non-sequence rule")
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("setSurplusRefinement", "ERROR: cannot call setSurplusRefinement for a grid before any points are loaded, i.e., call loadNeededPoints first!")
        if (fTolerance < 0.0):
            raise TasmanianInputError("fTolerance", "ERROR: fTolerance must be non-negative")
        iActiveOutputs = self.getNumOutputs()
        pScaleCorrection = None
        if (len(llfScaleCorrection) > 0):
            if (iOutput > -1):
                iActiveOutputs = 1
            if (len(llfScaleCorrection.shape) != 2):
                raise TasmanianInputError("llfScaleCorrection", "ERROR: llfScaleCorrection must be a 2-D numpy.ndarray, instead it has {0:1d} dimensions".format(len(llfScaleCorrection.shape)))
            if (llfScaleCorrection.shape[0] != self.getNumLoaded()):
                raise TasmanianInputError("llfScaleCorrection", "ERROR: leading dimension of llfScaleCorrection is {0:1d} but the number of current points is {1:1d}".format(llfScaleCorrection.shape[0], self.getNumLoaded()))
            if (llfScaleCorrection.shape[1] != iActiveOutputs):
                raise TasmanianInputError("llfScaleCorrection", "ERROR: second dimension of llfScaleCorrection is {0:1d} but the refinement is set to use {1:1d}".format(llfScaleCorrection.shape[0], iActiveOutputs))
            pScaleCorrection = np.ctypeslib.as_ctypes(llfScaleCorrection.reshape([self.getNumLoaded() * iActiveOutputs]))

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            iDimension = self.getNumDimensions()
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")
            pLevelLimits = (c_int*iDimension)()
            for iI in range(iDimension):
                pLevelLimits[iI] = liLevelLimits[iI]

        if (len(sCriteria) == 0):
            if (not self.isSequence() and not self.isGlobal()):
                raise TasmanianInputError("sCriteria", "ERROR: sCriteria must be specified")
            pLibTSG.tsgSetGlobalSurplusRefinement(self.pGrid, c_double(fTolerance), iOutput, pLevelLimits)
        else:
            if (self.isSequence()):
                raise TasmanianInputError("sCriteria", "ERROR: sCriteria cannot be used for sequence grids")
            if (not sCriteria in lsTsgRefineTypes):
                raise TasmanianInputError("sCriteria", "ERROR: invalid criteria, see TasmanianSG.lsTsgRefineTypes for the list of accepted types")

            pLibTSG.tsgSetLocalSurplusRefinement(self.pGrid, c_double(fTolerance), bytes(sCriteria, encoding='utf8'), iOutput, pLevelLimits, pScaleCorrection)

    def getSurplusRefinement(self, fTolerance, iOutput, sCriteria = "", liLevelLimits = [], llfScaleCorrection = []):
        '''
        Calls setSurplusRefinement() on the inputs and then getNeededPoints().
        '''
        self.setSurplusRefinement(fTolerance, iOutput, sCriteria=sCriteria, liLevelLimits=liLevelLimits, llfScaleCorrection=llfScaleCorrection)
        return self.getNeededPoints()

    def clearRefinement(self):
        '''
        clear the last call to set***Refinement,
        only works if called before the points are loaded, i.e.,
        before loadNeededPoints()

        if getNumNeeded() == 0, this call will have no effect

        '''
        pLibTSG.tsgClearRefinement(self.pGrid)

    def mergeRefinement(self):
        '''
        combines the loaded and needed points into a single grid
        it also invalidates any currently loaded values, i.e., the
        grid cannot be used for internal integration or interpolation
        until loadNeededPoints() or setHierarchicalCoefficients()
        is called (even if those have been called before)

        if getNumNeeded() == 0, this call will have no effect

        '''
        pLibTSG.tsgMergeRefinement(self.pGrid)

    def beginConstruction(self):
        '''
        start dynamic construction procedure
        '''
        pLibTSG.tsgBeginConstruction(self.pGrid)

    def isUsingConstruction(self):
        '''
        check if using dynamic construction
        '''
        return (pLibTSG.tsgIsUsingConstruction(self.pGrid) != 0)

    def getCandidateConstructionPoints(self, sType, liAnisotropicWeightsOrOutput, liLevelLimits = []):
        '''
        returns the sorted points for the construction
        '''
        if (not self.isUsingConstruction()):
            raise TasmanianInputError("getCandidateConstructionPoints", "ERROR: calling getCandidateConstructionPoints() before beginConstruction()")
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")
        iNumDims = self.getNumDimensions()
        pAnisoWeights = None
        iOutput = -1

        if (isinstance(liAnisotropicWeightsOrOutput, int)):
            iOutput = liAnisotropicWeightsOrOutput
        elif (isinstance(liAnisotropicWeightsOrOutput, (list, np.ndarray))):
            if (len(liAnisotropicWeightsOrOutput) > 0):
                if (sType in lsTsgCurvedTypes):
                    iNumWeights = 2*iNumDims
                else:
                    iNumWeights = iNumDims
                if (len(liAnisotropicWeightsOrOutput) != iNumWeights):
                    raise TasmanianInputError("liAnisotropicWeightsOrOutput", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeightsOrOutput)))
                else:
                    aAWeights = np.array([liAnisotropicWeightsOrOutput[i] for i in range(iNumWeights)], np.int32)
                    pAnisoWeights = np.ctypeslib.as_ctypes(aAWeights)
        else:
            raise TasmanianInputError("liAnisotropicWeightsOrOutput", "ERROR: liAnisotropicWeightsOrOutput should be either an integer or numpy.ndarray")

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iNumDims):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to the grid dimension")
            pLevelLimits = (c_int*iNumDims)()
            for iI in range(iNumDims):
                pLevelLimits[iI] = liLevelLimits[iI]

        pVector = pLibTSG.tsgGetCandidateConstructionPointsVoidPntr(self.pGrid, bytes(sType, encoding='utf8'), iOutput, pAnisoWeights, pLevelLimits)

        iNumPoints = pLibTSG.tsgGetCandidateConstructionPointsPythonGetNP(self.pGrid, pVector)
        if (iNumPoints == 0):
            pLibTSG.tsgGetCandidateConstructionPointsPythonDeleteVect(pVector)
            return np.empty([0, 0], np.float64)
        aPoints = np.empty([iNumPoints * iNumDims], np.float64)

        pLibTSG.tsgGetCandidateConstructionPointsPythonStatic(pVector, np.ctypeslib.as_ctypes(aPoints))
        pLibTSG.tsgGetCandidateConstructionPointsPythonDeleteVect(pVector)

        return aPoints.reshape([iNumPoints, iNumDims])

    def getCandidateConstructionPointsSurplus(self, fTolerance, sRefinementType, iOutput = -1, liLevelLimits = [], aScaleCorrection = []):
        '''
        returns the sorted points for the construction
        '''
        if (not self.isUsingConstruction()):
            raise TasmanianInputError("getCandidateConstructionPointsSurplus", "ERROR: calling getCandidateConstructionPointsSurplus() before beginConstruction()")
        iNumDims = self.getNumDimensions()

        if (not sRefinementType in lsTsgRefineTypes):
            raise TasmanianInputError("sRefinementType", "ERROR: calling getCandidateConstructionPointsSurplus() called with incorrect type, see TasmanianSG.lsTsgRefineTypes")

        pLevelLimits = None
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iNumDims):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to the grid dimension")
            pLevelLimits = (c_int*iNumDims)()
            for iI in range(iNumDims):
                pLevelLimits[iI] = liLevelLimits[iI]

        pScale = None
        if (len(aScaleCorrection) > 0):
            pScale = np.ctypeslib.as_ctypes(aScaleCorrection.reshape([np.prod(aScaleCorrection.shape),]))

        pVector = pLibTSG.tsgGetCandidateConstructionPointsSurplusVoidPntr(self.pGrid, c_double(fTolerance), bytes(sRefinementType, encoding='utf8'), iOutput, pLevelLimits, pScale)

        iNumPoints = pLibTSG.tsgGetCandidateConstructionPointsPythonGetNP(self.pGrid, pVector)
        if (iNumPoints == 0):
            pLibTSG.tsgGetCandidateConstructionPointsPythonDeleteVect(pVector)
            return np.empty([0, 0], np.float64)
        aPoints = np.empty([iNumPoints * iNumDims], np.float64)

        pLibTSG.tsgGetCandidateConstructionPointsPythonStatic(pVector, np.ctypeslib.as_ctypes(aPoints))
        pLibTSG.tsgGetCandidateConstructionPointsPythonDeleteVect(pVector)

        return aPoints.reshape([iNumPoints, iNumDims])


    def loadConstructedPoint(self, lfX, lfY):
        '''
        load the currently computed point or points

        lfX: should be 1D (single point case) or 2D (multi-point case)
             numpy.ndarray
             1D case: the lenght should be iDimensions indicating the
             computed point
             2D case: lfX.shape[1] shold be iDimensions and lfX.shape[0]
             should be the number of computed points
        lfY: should be a 1D or 2D numpy.ndarray matching lfY
             1D case: the length should be iOutputs indicated the
             corresponding model value
             2D case: lfY.shape[1] should be iOutputs and lfY.shape[0]
             must match lfX.shape[0]

        if lfX or lfY are not numpy.ndarrays, an attempt would be made
        to cast them using numpy.array() funciton (e.g., lfX and lfY
        could be 1D lists or tuples).
        '''
        if (not self.isUsingConstruction()):
            raise TasmanianInputError("loadConstructedPoint", "ERROR: calling loadConstructedPoint() before beginConstruction()")
        iNumDims = self.getNumDimensions()
        iNumOuts = self.getNumOutputs()
        if (not isinstance(lfX, np.ndarray)):
            lfX = np.array(lfX)
        if (not isinstance(lfY, np.ndarray)):
            lfY = np.array(lfY)
        if (len(lfX.shape) == 1):
            if (lfX.shape[0] != iNumDims):
                raise TasmanianInputError("lfX", "ERROR: lfX should be 1D numpy.ndarray with length equal to the grid dimension")
            if (len(lfY.shape) != 1 or lfY.shape[0] != iNumOuts):
                raise TasmanianInputError("lfY", "ERROR: lfY should be 1D numpy.ndarray with length equal to the model outputs")
            pLibTSG.tsgLoadConstructedPoint(self.pGrid, np.ctypeslib.as_ctypes(lfX), 1, np.ctypeslib.as_ctypes(lfY))
        elif (len(lfX.shape) == 2):
            iNumX = lfX.shape[0]
            if (iNumX == 0):
                return
            if (len(lfY.shape) != 2):
                raise TasmanianInputError("lfY", "ERROR: if lfX is 2D array, then lfY should be 2D array as well")
            if (lfX.shape[1] != iNumDims):
                raise TasmanianInputError("lfX", "ERROR: lfX should be 2D numpy.ndarray with shape[1] equal to the grid dimension")
            if (lfY.shape[1] != iNumOuts):
                raise TasmanianInputError("lfY", "ERROR: lfY should be 2D numpy.ndarray with shape[1] equal to the model outputs")
            if (lfY.shape[0] != iNumX):
                raise TasmanianInputError("lfY", "ERROR: lfY should provide the same number of entries as lfX, i.e., shape[0] must match")
            pLibTSG.tsgLoadConstructedPoint(self.pGrid, np.ctypeslib.as_ctypes(lfX.reshape(iNumX * iNumDims)), iNumX, np.ctypeslib.as_ctypes(lfY.reshape(iNumX * iNumOuts)))
        else:
            raise TasmanianInputError("lfX", "ERROR: lfX should be 1D or 2D numpy.ndarray")


    def finishConstruction(self):
        '''
        end the dynamic construction procedure
        '''
        pLibTSG.tsgFinishConstruction(self.pGrid)

    def removePointsByHierarchicalCoefficient(self, fTolerance, iOutput = -1, aScaleCorrection = [], iNumKeep = -1):
        '''
        removes any points in the grid with relative surplus that
        exceeds the tolerance or keeps the set number of points
        with largest surplus

        fTolerance: float (positive)
                    the relative surplus tolerance, i.e.,
                    we keep only for points associated with surplus
                    that exceeds the tolerance
                    if iNumKeep is positive, then fTolerance is ignored

        iOutput: int (indicates the output to use)
                 selects which output to consider
                 accept -1 to indicate all outputs

        lfScaleCorrection: numpy array of doubles, either 1D or 2D
                           if iOutputs = -1 and getNumOutputs() > 1,
                           then using 2D array with shape
                           getNumLoaded() X getNumOutputs() with
                           one weight per hierarchical coefficient
                           if iOutputs > -1, then using 1D array with
                           one weight per point

        iNumKeep: int (positive or equal to -1)
                  indicates the number of points to keep
                  if set to -1 then fTolerance is used as a cutoff
                  if positive then the given number of points will be kept
        '''
        if (not self.isLocalPolynomial()):
            raise TasmanianInputError("removePointsByHierarchicalCoefficient", "ERROR: calling removePointsByHierarchicalCoefficient for a grid that isn't local polynomial")
        if (iNumKeep == -1 and fTolerance <= 0.0):
            raise TasmanianInputError("fTolerance", "ERROR: fTolerance must be a positive integer")
        if (iOutput < -1):
            raise TasmanianInputError("iOutput", "ERROR: iOutput should be -1 or a non-negative integer")
        if (iOutput >= self.getNumOutputs()):
            raise TasmanianInputError("iOutput", "ERROR: iOutput cannot exceed the index of the last output {0:1d}".format(self.getNumOutputs() - 1))
        if (self.getNumLoaded() == 0):
            raise TasmanianInputError("removePointsByHierarchicalCoefficient", "ERROR: calling removePointsByHierarchicalCoefficient when no points are loades")
        if (iNumKeep == 0 or iNumKeep < -1 or iNumKeep > self.getNumLoaded()):
            raise TasmanianInputError("iNumKeep", "ERROR: iNumKeep should be either -1 or positive without exceeding the number of loaded points.")
        if (len(aScaleCorrection) > 0):
            lShape = aScaleCorrection.shape
            if (len(lShape) != 2):
                raise TasmanianInputError("aScaleCorrection", "ERROR: aScaleCorrection should be a 2D array")
            if (lShape[0] != self.getNumLoaded()):
                raise TasmanianInputError("aScaleCorrection", "ERROR: aScaleCorrection.shape[0] should match getNumLoaded()")
            if (iOutput == -1 and lShape[1] != self.getNumOutputs()):
                raise TasmanianInputError("aScaleCorrection", "ERROR: aScaleCorrection.shape[1] should match getNumOutputs()")
            if (iOutput != -1 and lShape[1] != 1):
                raise TasmanianInputError("aScaleCorrection", "ERROR: aScaleCorrection.shape[1] should be 1")

        if (len(aScaleCorrection) == 0):
            if (iNumKeep == -1):
                pLibTSG.tsgRemovePointsByHierarchicalCoefficient(self.pGrid, fTolerance, iOutput, None)
            else:
                pLibTSG.tsgRemovePointsByHierarchicalCoefficientHardCutoff(self.pGrid, iNumKeep, iOutput, None)
        else:
            lShape = aScaleCorrection.shape
            iNumWeights = lShape[0]
            if (iOutput == -1):
                iNumWeights *= lShape[1]
            if (iNumKeep == -1):
                pLibTSG.tsgRemovePointsByHierarchicalCoefficient(self.pGrid, fTolerance, iOutput,           np.ctypeslib.as_ctypes(aScaleCorrection.reshape([iNumWeights,])))
            else:
                pLibTSG.tsgRemovePointsByHierarchicalCoefficientHardCutoff(self.pGrid, iNumKeep, iOutput,           np.ctypeslib.as_ctypes(aScaleCorrection.reshape([iNumWeights,])))

    def getHierarchicalCoefficients(self):
        '''
        For global grids, this just returns the values loaded using the
        call to loadNeededPoints().
        In all other cases, this returns the list of hierarchical
        coefficients, i.e., surpluses.

        returns a 2-D numpy array getNumPoints() by getNumOutputs()
        '''
        iNumOuts = self.getNumOutputs()
        if (iNumOuts == 0):
            return np.empty([0,0], np.float64)
        iNumPoints = self.getNumLoaded()
        if (iNumPoints == 0):
            return np.empty([0,iNumOuts], np.float64)

        if (not self.isFourier()):
            aSurp = np.empty([iNumOuts * iNumPoints], np.float64)
            pLibTSG.tsgGetHierarchicalCoefficientsStatic(self.pGrid, np.ctypeslib.as_ctypes(aSurp))
        else:
            aSurp = np.empty([2 * iNumOuts * iNumPoints], np.float64)
            pLibTSG.tsgGetHierarchicalCoefficientsStatic(self.pGrid, np.ctypeslib.as_ctypes(aSurp))
            aSurp = aSurp[:(iNumOuts * iNumPoints)] + 1j * aSurp[(iNumOuts * iNumPoints):]

        return aSurp.reshape([iNumPoints, iNumOuts])

    def evaluateHierarchicalFunctions(self, llfX):
        '''
        evaluates the hierarchical functions at a set of points in the
        domain and return a 2-D numpy.ndarray with the result

        llfX: a 2-D numpy.ndarray with llfX.shape[1] == iDimensions
              the entries indicate the points for evaluating the weights

        output: returns a 2-D numpy.ndarray of
                shape == [llfX.shape[0], getNumPoints()]
                the values of the basis functions at the points
        '''
        if (len(llfX.shape) != 2):
            raise TasmanianInputError("llfX", "ERROR: calling evaluateHierarchicalFunctions llfX should be a 2-D numpy array")
        if (llfX.shape[1] != self.getNumDimensions()):
            raise TasmanianInputError("llfX", "ERROR: calling evaluateHierarchicalFunctions llfX.shape[1] is not equal to getNumDimensions()")
        iNumX = llfX.shape[0]
        # see evaluateBatch()
        lfX = llfX.reshape([llfX.shape[0] * llfX.shape[1]])

        if not self.isFourier():
            aResult = np.empty([iNumX * self.getNumPoints()], np.float64)
            pLibTSG.tsgEvaluateHierarchicalFunctions(self.pGrid, np.ctypeslib.as_ctypes(lfX), iNumX, np.ctypeslib.as_ctypes(aResult))
        else:
            aResult = np.empty([2 * iNumX * self.getNumPoints()], np.float64)
            pLibTSG.tsgEvaluateHierarchicalFunctions(self.pGrid, np.ctypeslib.as_ctypes(lfX), iNumX, np.ctypeslib.as_ctypes(aResult))
            aResult = aResult[0::2] + 1j * aResult[1::2]

        return aResult.reshape([iNumX, self.getNumPoints()])

    def getHierarchicalSupport(self):
        '''
        returns the support of the hierarchical basis in a 2-D numpy.ndarray

        - only local-polynomial and wavelet grids have restricted support
        - the support of all basis is restricted to the domain even
          if the support includes additional ares

        output: shape == [getNumPoints(), getNumDimensions()]
                the support entries correspond to the output of getPoints()
                if x represents a point in the domain and
                if abs( x[j] - getPoints()[i, j] ) > getSupport()[i, j]
                then the i-th entry in evaluateHierarchicalFunctions(x)
                corresponding to x is guaranteed to be zero
        '''
        if (self.getNumPoints() == 0):
            return np.empty([0,0], np.float64)
        aResult = np.empty((self.getNumPoints() * self.getNumDimensions()), np.float64)
        pLibTSG.tsgGetHierarchicalSupportStatic(self.pGrid, np.ctypeslib.as_ctypes(aResult))
        return aResult.reshape((self.getNumPoints(), self.getNumDimensions()))

    def evaluateSparseHierarchicalFunctions(self, llfX):
        '''
        evaluates the hierarchical functions at a set of points in the
        domain. The distinction between this function and
        evaluateHierarchicalFunctions() lies in the type of the returned
        result, namely a sparse vs a dense matrix.

        The motivation for this function is that Local Polynomial and
        Wavelet grids usually result in sparse matrices

        llfX: a 2-D numpy.ndarray with llfX.shape[1] == iDimensions
              the entries indicate the points for evaluating

        output: returns a TasmanianSimpleSparseMatrix class
                which is a simple class with three fields:
                aPntr, aIndx, and aVals which are numpy.ndarray of types
                int32, int32, and float64
                iNumRows and iNumCols are meta fields and have values
                iNumRows = llfX.shape[0]
                iNumCols = self.getNumPoints()
                The sparse matrix is compressed along the llfX.shape[0]
                dimension, i.e., using column compressed format
        '''
        if (len(llfX.shape) != 2):
            raise TasmanianInputError("llfX", "ERROR: calling evaluateSparseHierarchicalFunctions(), llfX should be a 2-D numpy array")
        if (llfX.shape[1] != self.getNumDimensions()):
            raise TasmanianInputError("llfX", "ERROR: calling evaluateSparseHierarchicalFunctions(), llfX.shape[1] is not equal to getNumDimensions()")
        iNumX = llfX.shape[0]
        pMat = TasmanianSimpleSparseMatrix()
        iNumNZ = pLibTSG.tsgEvaluateSparseHierarchicalFunctionsGetNZ(self.pGrid, np.ctypeslib.as_ctypes(llfX.reshape([llfX.shape[0] * llfX.shape[1]])), iNumX)
        pMat.aPntr = np.empty([iNumX+1,], np.int32)
        pMat.aIndx = np.empty([iNumNZ,], np.int32)
        pMat.aVals = np.empty([iNumNZ if not self.isFourier() else 2 * iNumNZ,], np.float64)
        pMat.iNumRows = iNumX
        pMat.iNumCols = self.getNumPoints()
        # see evaluateBatch()
        lfX = llfX.reshape([llfX.shape[0] * llfX.shape[1]])
        pLibTSG.tsgEvaluateSparseHierarchicalFunctionsStatic(self.pGrid, np.ctypeslib.as_ctypes(lfX), iNumX,
                                                             np.ctypeslib.as_ctypes(pMat.aPntr), np.ctypeslib.as_ctypes(pMat.aIndx), np.ctypeslib.as_ctypes(pMat.aVals))

        return pMat

    def setHierarchicalCoefficients(self, llfCoefficients):
        '''
        Local polynomial, Wavelet, and Sequence grids construct
        approximation using hierarchical coefficients based on the
        loaded values. This function does the opposite, the hierarchical
        coefficients are loaded directly and the values are computed
        based on the coefficients. The coefficients can be computed,
        e.g., by solving least-squares or compressed sensing problem
                   min || A c - f ||
        where A is a matrix returned by evaluateHierarchicalFunctions()
        or evaluateSparseHierarchicalFunctions() for a set of points
        llfX; f are the values of the target function at the llfX
        points; and c is the vector with corresponding hierarchical
        coefficients.

        If there is a pending refinement, i.e., getNumLoaded() != 0 and
        getNumNeeded() != 0, then the refinement is discarded (since it
        was computed based on the old and now obsolete values)

        llfCoefficients: a 2-D numpy.ndarray
                         with dimensions getNumPoints() X iOutputs
                         each row corresponds to the values of the
                         coefficients at the corresponding point.
                         The order and leading dimension must match the
                         points obtained form getPoints(), the same
                         order as the second dimension of
                         evaluateHierarchicalFunctions()
        '''
        if (len(llfCoefficients.shape) != 2):
            raise TasmanianInputError("llfCoefficients", "ERROR: llfCoefficients should be a 2-D numpy.ndarray, instead it has {0:1d} dimensions".format(len(llfCoefficients.shape)))
        if (llfCoefficients.shape[0] != self.getNumPoints()):
            raise TasmanianInputError("llfCoefficients", "ERROR: leading dimension of llfCoefficients is {0:1d} but the number of current points is {1:1d}".format(llfCoefficients.shape[0], self.getNumNeeded()))
        if (llfCoefficients.shape[1] != self.getNumOutputs()):
            raise TasmanianInputError("llfCoefficients", "ERROR: second dimension of llfCoefficients is {0:1d} but the number of outputs is set to {1:1d}".format(llfCoefficients.shape[1], self.getNumOutputs()))
        if (self.isFourier() and (not np.iscomplexobj(llfCoefficients))):
            raise TasmanianInputError("llfCoefficients", "ERROR: using Fourier grid but llfCoefficients is not complex")

        iNumPoints = llfCoefficients.shape[0]
        iNumDims = llfCoefficients.shape[1]

        if self.isFourier():
            llfCoefficientsTmp = np.vstack((np.real(llfCoefficients), np.imag(llfCoefficients)))
            llfCoefficients = llfCoefficientsTmp.reshape([2 * iNumPoints * iNumDims,])
        else:
            llfCoefficients = llfCoefficients.reshape([iNumPoints * iNumDims,])

        pLibTSG.tsgSetHierarchicalCoefficients(self.pGrid, np.ctypeslib.as_ctypes(llfCoefficients))

    def integrateHierarchicalFunctions(self):
        '''
        Computes the integrals of the hierarchical basis functions,
        i.e., the same functions computed by evaluateHierarchicalFunctions().

        returns a one dimensional np.ndarray with size self.getNumPoints()
        '''
        iNumPoints = self.getNumPoints()
        if (iNumPoints == 0):
            return np.empty([0,], np.float64)

        aIntegrals = np.zeros([iNumPoints,])
        pLibTSG.tsgIntegrateHierarchicalFunctionsStatic(self.pGrid, np.ctypeslib.as_ctypes(aIntegrals))

        return aIntegrals

    def getGlobalPolynomialSpace(self, bInterpolation):
        '''
        returns a matrix corresponding to the polynomial space that is
        integrated or interpolated exactly by the current grid

        bInterpolation: boolean
                indicates whether to give the space associated
                with integration or interpolation

        output: is a 2-D numpy.ndarray of integers
            output.shape[0] indicates the cardinality of the space
            output.shape[1] is equal to iDimension
            each row corresponds to a multi-index associated with a
            polynomial in a hierarchical tensor basis, for example,
            monomials

            see the manual for details

        '''
        iInterp = 0
        if (bInterpolation):
            iInterp = 1
        pNumIndexes = (c_int*1)()
        pIndexes = pLibTSG.tsgPythonGetGlobalPolynomialSpace(self.pGrid, iInterp, pNumIndexes)
        iNumDimensions = self.getNumDimensions()
        lliPolynomials = np.empty([pNumIndexes[0], iNumDimensions], int)
        for iI in range(pNumIndexes[0]):
            for iJ in range(iNumDimensions):
                lliPolynomials[iI][iJ] = pIndexes[iI*iNumDimensions + iJ]
        pLibTSG.tsgDeleteInts(pIndexes)
        return lliPolynomials

    def enableAcceleration(self, sAccelerationType, iGPUID = None):
        '''
        Enables the use of accelerated backend libraries and extensions,
        such as BLAS and CUDA.
        Each acceleration type requires corresponding CMake compile
        options, otherwise the backend will fallback to the closest
        available options.

        sAccelerationType: string

          'none'
              core fallback mode, relies on sequential implementation
              if compiled with Tasmanian_ENABLE_OPENMP this will use
              simple "omp parallel for" to take advantage of multiple cpu cores

          'cpu-blas'
              uses BLAS level 2 and 3 functions for acceleration of batch
              evaluations
              requires Tasmanian_ENABLE_BLAS=ON
              this is the default mode, if available

          'gpu-default'
              uses CUDA kernels, cuBlas, cuSparse and MAGMA libraries for
              accelerated matrix operations, e.g., cublasDgemm
              refer to TasGrid::TypeAcceleration for more details

          'gpu_cublas'
              uses the Nvidia cuBlas and cuSparse libraries

          'gpu-cuda'
              uses custom CUDA kernels in addition to the accelerated
              linear algebra libraries

           'gpu-magma'
              uses the custom CUDA kernels and the MAGMA library in place
              of the default Nvidia libraries

        iGPU: integer
              indicates the GPU device to use, if set to None then device
              zero will be used first or the device set with setGPUID()
        '''
        if (sAccelerationType not in lsTsgAccelTypes):
            raise TasmanianInputError("sAccelerationType", "ERROR: invalid acceleration type")

        if (iGPUID is None):
            pLibTSG.tsgEnableAcceleration(self.pGrid, bytes(sAccelerationType, encoding='utf8'))
        else:
            if ((iGPUID < 0) or (iGPUID >= self.getNumGPUs())):
                raise TasmanianInputError("iGPUID", "ERROR: invalid GPU ID number")
            pLibTSG.tsgEnableAccelerationGPU(self.pGrid, bytes(sAccelerationType, encoding='utf8'), iGPUID)

    def getAccelerationType(self):
        '''
        returns the type of acceleration set by enableAcceleration
        '''
        return str(pLibTSG.tsgGetAccelerationType(self.pGrid), encoding='utf8')

    def isAccelerationAvailable(self, sAccelerationType):
        '''
           returns True if the library has been compiled with support
           for sAccelerationType.
           Even if this returns False, you can use the type for
           enableAcceleration, but the library will default to the next
           available type (see the Manual)
        '''
        if (sAccelerationType not in lsTsgAccelTypes):
            raise TasmanianInputError("sAccelerationType", "ERROR: invalid acceleration type")

        return (pLibTSG.tsgIsAccelerationAvailable(bytes(sAccelerationType, encoding='utf8')) != 0)

    def setGPUID(self, iGPUID):
        '''
        when using cuda on a machine with multiple GPUs, this helps set
        the GPU for this grid
        NOTE: each instance of the sparse grids class holds a separate
              instance of iGPUID and different grids can be assigned to
              different GPUs (on multi-gpu system)
        iGPUID can be changed at any time, however, this will cause
        some of the internal cache to be invalidated and it may lead
        to extraneous data movement

        calling read or make***Grid will reset the selected GPU

        defaults to 0

        this doesn't do anything unless enableAcceleration is called
        using a "gpu-" acceleration type
        '''
        if ((iGPUID < 0) or (iGPUID >= self.getNumGPUs())):
            raise TasmanianInputError("iGPUID", "ERROR: invalid GPU ID number")
        pLibTSG.tsgSetGPUID(self.pGrid, iGPUID)

    def getGPUID(self):
        '''
        returns the GPU ID set using setGPUID
        '''
        return pLibTSG.tsgGetGPUID(self.pGrid)

    def getNumGPUs(self):
        '''
        returns the number of available GPUs according to cuda

        this is one of several functions designed to allow basic
        management of multi-gpu setup with only Tasmanian module
        '''
        return pLibTSG.tsgGetNumGPUs()

    def getGPUMemory(self, iGPUID):
        '''
        returns the total memory (in MegaBytes, 1024**2 bytes) of the
        corresponding GPU

        this is one of several functions designed to allow basic
        management of multi-gpu setup with only Tasmanian module
        '''
        if ((iGPUID < 0) or (iGPUID >= self.getNumGPUs())):
            raise TasmanianInputError("iGPUID", "ERROR: invalid GPU ID number")
        return pLibTSG.tsgGetGPUMemory(iGPUID)

    def getGPUName(self, iGPUID):
        '''
        return the cuda name ID of the corresponding GPU

        this is one of several functions designed to allow basic
        management of multi-gpu setup with only Tasmanian module
        '''
        if ((iGPUID < 0) or (iGPUID >= self.getNumGPUs())):
            raise TasmanianInputError("iGPUID", "ERROR: invalid GPU ID number")
        pName = create_string_buffer(256)
        iNumChars = np.array([0], np.int32)
        pLibTSG.tsgGetGPUName(iGPUID, 256, pName, np.ctypeslib.as_ctypes(iNumChars))
        return self.stringBufferToString(pName, iNumChars[0])

    def printStats(self):
        '''
        calls the library printStats() function, which displays basic
        information about this instance of the grid
        '''
        pLibTSG.tsgPrintStats(self.pGrid)

    def plotPoints2D(self, pAxisObject=tsgPlot, sStyle="bo", iMarkerSize=3):
        '''
        plots the points in a 2D plot using matplotlib.pyplot
        applicable only for grids with iDimensions == 2

        pAxisObject: axis object from the matplotlib.pyplot package

        sStyle: string
                the matplotlib.pyplot style, e.g.,
                'ko' will make black cirlces, 'rx' will use red crosses

        iMarkerSize: positive integer
                     the marker size for plotting the points
        '''
        if (not bTsgPlotting):
            raise TasmanianInputError("plotPoints2D", "ERROR: could not load matplotlib.pyplot")

        if (self.getNumDimensions() != 2):
            raise TasmanianInputError("plotPoints2D", "ERROR: cannot plot a grid with other than 2 dimensions")

        aPoints = self.getPoints()

        fXmin = min(aPoints[:,0])
        fXmax = max(aPoints[:,0])
        fYmin = min(aPoints[:,1])
        fYmax = max(aPoints[:,1])
        if (fXmin == fXmax):
            fXmin = fXmin - 0.1
            fXmax = fXmax + 0.1
        if (fYmin == fYmax):
            fYmin = fYmin - 0.1
            fYmax = fYmax + 0.1

        pAxisObject.plot(aPoints[:,0], aPoints[:,1], sStyle, markersize=iMarkerSize)
        pAxisObject.axis([fXmin - 0.1 * np.fabs(fXmin), fXmax + 0.1 * np.fabs(fYmax), fYmin - 0.1 * np.fabs(fYmin), fYmax + 0.1 * np.fabs(fYmax)])

    def plotResponse2D(self, iOutput=0, iNumDim0=100, iNumDim1=100, pAxisObject=tsgPlot, sCmap="jet"):
        '''
        plots the response in a 2D plot using matplotlib.pyplot
        applicable only for grids with iDimensions == 2

        iOutput is the output to use for plotting

        iNumDim0, iNumDim1: positive integers
               the points for the plot are selected on a dense grid with
               number of points iNumDim0 and iNumDim1 in dimensions
               0 and 1 respectively

        pAxisObject: axis object from the matplotlib.pyplot package

        sCmap: string indicating the map to use, e.g., "jet" or "heat"
        '''
        if (not bTsgPlotting):
            raise TasmanianInputError("plotResponse2D", "ERROR: could not load matplotlib.pyplot")
        if (iOutput < 0):
            raise TasmanianInputError("iOutput", "ERROR: iOutput should be a non-negative integer")
        if (iOutput >= self.getNumOutputs()):
            raise TasmanianInputError("iOutput", "ERROR: iOutput cannot exceed the index of the last output {0:1d}".format(self.getNumOutputs() - 1))
        if (self.getNumDimensions() != 2):
            raise TasmanianInputError("plotResponse2D", "ERROR: cannot plot a grid with other than 2 dimensions")
        if (iNumDim0 < 1):
            raise TasmanianInputError("iNumDim0", "ERROR: the number of points should be at least 1")
        if (iNumDim1 < 1):
            raise TasmanianInputError("iNumDim1", "ERROR: the number of points should be at least 1")

        aPoints = self.getPoints()

        fXmin = min(aPoints[:,0])
        fXmax = max(aPoints[:,0])
        fYmin = min(aPoints[:,1])
        fYmax = max(aPoints[:,1])
        if (fXmin == fXmax):
            fXmin = fXmin - 0.1
            fXmax = fXmax + 0.1
        if (fYmin == fYmax):
            fYmin = fYmin - 0.1
            fYmax = fYmax + 0.1

        x = np.linspace(fXmin, fXmax, iNumDim0)
        y = np.linspace(fYmax, fYmin, iNumDim1) # flip the order of y to match the top-to-bottom pixel indexing

        XX, YY = np.meshgrid(x, y)
        ZZ = self.evaluateBatch(np.vstack((XX.reshape((iNumDim0*iNumDim1,)), YY.reshape((iNumDim0*iNumDim1,)))).T)
        ZZ = ZZ[:,iOutput].reshape((iNumDim0,iNumDim1))

        pAxisObject.imshow(ZZ, cmap=sCmap, extent=[fXmin, fXmax, fYmin, fYmax])

    def __testMakeGlobalGrid(self, iDimension, iOutputs, iDepth, sType, liAnisotropicWeights, liLevelLimits):
        '''
        Tests the correctness of makeGlobalGrid() and its variants.
        '''
        if (iDimension <= 0):
            raise TasmanianInputError("iDimension", "ERROR: dimension should be a positive integer")
        if (iOutputs < 0):
            raise TasmanianInputError("iOutputs", "ERROR: outputs should be a non-negative integer")
        if (iDepth < 0):
            raise TasmanianInputError("iDepth", "ERROR: depth should be a non-negative integer")
        if (sType not in lsTsgGlobalTypes):
            raise TasmanianInputError("sType", "ERROR: invalid type, see TasmanianSG.lsTsgGlobalTypes for list of accepted types")
        if (len(liAnisotropicWeights) > 0):
            iNumWeights = 2*iDimension if sType in lsTsgCurvedTypes else iDimension
            if (len(liAnisotropicWeights) != iNumWeights):
                raise TasmanianInputError("liAnisotropicWeights", "ERROR: wrong number of liAnisotropicWeights, sType '{0:s}' needs {1:1d} "
                                          "weights but len(liAnisotropicWeights) == {2:1d}".format(sType, iNumWeights, len(liAnisotropicWeights)))
        if (len(liLevelLimits) > 0):
            if (len(liLevelLimits) != iDimension):
                raise TasmanianInputError("liLevelLimits", "ERROR: invalid number of level limits, must be equal to iDimension")

def makeGlobalGrid(iDimension, iOutputs, iDepth, sType, sRule, liAnisotropicWeights=[], fAlpha=0.0, fBeta=0.0, sCustomFilename="", liLevelLimits=[]):
    '''
    Factory method equivalent to TasmanianSparseGrid.makeGlobalGrid().
    '''
    grid = TasmanianSparseGrid()
    grid.makeGlobalGrid(iDimension, iOutputs, iDepth, sType, sRule, liAnisotropicWeights, fAlpha, fBeta, sCustomFilename, liLevelLimits)
    return grid

def makeSequenceGrid(iDimension, iOutputs, iDepth, sType, sRule, liAnisotropicWeights=[], liLevelLimits=[]):
    '''
    Factory method equivalent to TasmanianSparseGrid.makeSequenceGrid().
    '''
    grid = TasmanianSparseGrid()
    grid.makeSequenceGrid(iDimension, iOutputs, iDepth, sType, sRule, liAnisotropicWeights, liLevelLimits)
    return grid

def makeFourierGrid(iDimension, iOutputs, iDepth, sType, liAnisotropicWeights=[], liLevelLimits=[]):
    '''
    Factory method equivalent to TasmanianSparseGrid.makeFourierGrid().
    '''
    grid = TasmanianSparseGrid()
    grid.makeFourierGrid(iDimension, iOutputs, iDepth, sType, liAnisotropicWeights, liLevelLimits)
    return grid

def makeLocalPolynomialGrid(iDimension, iOutputs, iDepth, iOrder=1, sRule="localp", liLevelLimits=[]):
    '''
    Factory method equivalent to TasmanianSparseGrid.makeLocalPolynomialGrid().
    '''
    grid = TasmanianSparseGrid()
    grid.makeLocalPolynomialGrid(iDimension, iOutputs, iDepth, iOrder, sRule, liLevelLimits)
    return grid

def makeWaveletGrid(iDimension, iOutputs, iDepth, iOrder=1, liLevelLimits=[]):
    '''
    Factory method equivalent to TasmanianSparseGrid.makeWaveletGrid().
    '''
    grid = TasmanianSparseGrid()
    grid.makeWaveletGrid(iDimension, iOutputs, iDepth, iOrder, liLevelLimits)
    return grid

def makeGlobalGridCustom(iDimension, iOutputs, iDepth, sType, pCustomTabulated, liAnisotropicWeights=[], liLevelLimits=[]):
    '''
    Factory method equivalent to TasmanianSparseGrid.makeGlobalGridCustom().
    '''
    grid = TasmanianSparseGrid()
    grid.makeGlobalGridCustom(iDimension, iOutputs, iDepth, sType, pCustomTabulated, liAnisotropicWeights, liLevelLimits)
    return grid

def copyGrid(source, iOutputsBegin = 0, iOutputsEnd = -1):
    '''
    Factory method equivalent to TasmanianSparseGrid.copyGrid().
    '''
    grid = TasmanianSparseGrid()
    grid.copyGrid(source, iOutputsBegin, iOutputsEnd)
    return grid

def check_np_arr(np_data_name, np_data, expected_length, expected_dimension):
    '''
    Utility function that checks if a NumPy array conforms to given input lengths and dimensions.
    '''
    if len(np_data.shape) != expected_dimension:
        raise TasmanianInputError(np_data_name, "ERROR: the dimension of "  + np_data_name +
                                  " does not match the expected dimension of " + str(expected_dimension))
    if len(np_data) != expected_length:
        raise TasmanianInputError(np_data_name, "ERROR: the length of "  + np_data_name +
                                  " does not match the expected length of " + str(expected_length))

class CustomTabulated:
    def __init__(self):
        '''
        Constructor that creates an empty CustomTabulated instance.
        '''
        self.CustomTabulatedObject = True
        self.pCustomTabulated = pLibTSG.tsgConstructCustomTabulated()

    def __del__(self):
        '''
        Destructor that calls the C++ destructor and releases all memory used by this instance of the class.
        Make sure to call this to avoid memory leaks.
        '''
        pLibTSG.tsgDestructCustomTabulated(self.pCustomTabulated)

    def read(self, sFilename):
        '''
        Reads the CustomTabulated object from a file and discards any existing grid held by this class.

        sFilename: string indicating a CustomTabulated that was already written using write from Python or any other
                   Tasmanian interfaces.

        output: boolean
            True: the read was successful
            False: the read failed, check the CLI output for an error message
        '''
        if pLibTSG.tsgReadCustomTabulated(self.pCustomTabulated, bytes(sFilename, encoding='utf8')) == 0:
            raise TasmanianInputError("sFilename", "ERROR: {0:1s} does not appear to be a valid Tasmanian file.".format(sFilename))

    def write(self, sFilename):
        '''
        Writes the CustomTabulated object to a file in ASCII format.

        sFilename: string indicating a location where the CustomTabulated instance will be written to.
        '''
        pLibTSG.tsgWriteCustomTabulated(self.pCustomTabulated, bytes(sFilename, encoding='utf8'))

    def getNumLevels(self):
        return pLibTSG.tsgGetNumLevelsCustomTabulated(self.pCustomTabulated)

    def getNumPoints(self, level):
        return pLibTSG.tsgGetNumPointsCustomTabulated(self.pCustomTabulated, c_int(level))

    def getIExact(self, level):
        return pLibTSG.tsgGetIExactCustomTabulated(self.pCustomTabulated, c_int(level))

    def getQExact(self, level):
        return pLibTSG.tsgGetQExactCustomTabulated(self.pCustomTabulated, c_int(level))

    def getDescription(self):
        return pLibTSG.tsgGetDescriptionCustomTabulated(self.pCustomTabulated).decode('UTF-8')

    def getWeightsNodes(self, level):
        '''
        Outputs the weights and nodes (in that order) of the CustomTabulated instance for a given level.

        level: int indicating the level where the weights/nodes will be pulled from.

        output: int (weights), int (nodes)
        '''
        iNumPoints = self.getNumPoints(level)
        if (iNumPoints == 0):
            return np.empty([0], np.float64), np.empty([0], np.float64)
        pWeights, pNodes = (iNumPoints * c_double)(), (iNumPoints * c_double)()
        pLibTSG.tsgGetWeightsNodesStaticCustomTabulated(self.pCustomTabulated, c_int(level), pWeights, pNodes)
        return np.array(pWeights), np.array(pNodes)

def makeCustomTabulatedFromFile(filename):
    '''
    Wrapper that calls the CustomTabulated constructor which reads its data from a file.

    filename: string indicating the location of the file.

    output: CustomTabulated
    '''
    ct = CustomTabulated()
    ct.read(filename)
    return ct

def makeCustomTabulatedFromData(num_levels, num_nodes, precision, nodes, weights, description):
    '''
    Wrapper that calls the CustomTabulated constructor which takes ownership of its input data.

    num_levels: int indicating the number of levels of the instance.
    num_nodes: 1D NumPy array of length num_levels whose i-th entry is the number of nodes at level i.
    precision: 1D NumPy array of length num_levels whose i-th entry is the (quadrature/integration) precision at level i.
    nodes: Python list of length num_levels whose i-th entry is a 1D NumPy array containing the nodes at level i.
    weights: Python list of length num_levels whose i-th entry is a 1D NumPy array containing the quadrature weights at level i.
    description: string that briefly describes the instance.

    output: CustomTabulated
    '''
    # nodes and weights are expected to be Python lists.
    if len(nodes) != num_levels:
        raise TasmanianInputError("nodes", "ERROR: the length of nodes does not match the expected length " + str(num_levels))
    if len(weights) != num_levels:
        raise TasmanianInputError("weights", "ERROR: the length of weights does not match the expected length " + str(num_levels))
    check_np_arr("num_nodes", num_nodes, num_levels, 1);
    check_np_arr("precision", precision, num_levels, 1);
    for i in range(num_levels):
        check_np_arr("nodes["+str(i)+"]", nodes[i], num_nodes[i], 1);
        check_np_arr("weights["+str(i)+"]", weights[i], num_nodes[i], 1);
    ct = CustomTabulated()
    # create the C arrays for num_nodes, precision, nodes, and weights by copying.
    pNumNodes, pPrecision, pNodes, pWeights = None, None, None, None
    if (num_levels > 0):
        pNumNodes = (c_int * num_levels)()
        pPrecision = (c_int * num_levels)()
        for iI in range(num_levels):
            pNumNodes[iI] = num_nodes[iI]
            pPrecision[iI] = precision[iI]
        total_num_nodes = np.sum(num_nodes)
        pNodes = (c_double * total_num_nodes)()
        node_idx = 0
        for lfJ in nodes:
            for fK in lfJ:
                pNodes[node_idx] = fK
                node_idx += 1
        pWeights = (c_double * total_num_nodes)()
        weight_idx = 0
        for lfJ in weights:
            for fK in lfJ:
                pWeights[weight_idx] = fK
                weight_idx += 1
    ct.pCustomTabulated = pLibTSG.tsgMakeCustomTabulatedFromData(c_int(num_levels), pNumNodes, pPrecision, pNodes, pWeights,
                                                                 bytes(description, encoding='utf8'))
    return ct

def makeCustomTabulatedSubset(pCustomTabulated, iStartIndex, iStride, sDescription):
    '''
    Wrapper that creates a subset of an input CustomTabulated object. Specifically, it chooses the levels that start at
    iStartIndex with displacement given by iStride.

    pCustomTabulated: CustomTabulated instance to take the subset of.
    iStartIndex: starting index of the subset.
    iStride: distance between the levels of the subset.
    description: string that briefly describes the subset.

    output: CustomTabulated
    '''
    if not hasattr(pCustomTabulated, "CustomTabulatedObject"):
        raise TasmanianInputError("pCustomTabulated", "ERROR: pCustomTabulated must be an instance of CustomTabulated")
    if (iStartIndex < 0 | iStartIndex >= pCustomTabulated.getNumLevels()):
        raise TasmanianInputError("iStartIndex", "ERROR: iStartIndex must be between 0 and " + str(pCustomTabulated.getNumLevels()))
    if (iStride <= 0):
        raise TasmanianInputError("iStride", "ERROR: iStride must be positive")
    ct = CustomTabulated()
    ct.pCustomTabulated = pLibTSG.tsgGetSubrules(c_void_p(pCustomTabulated.pCustomTabulated), c_int(iStartIndex), c_int(iStride),
                                                 bytes(sDescription, encoding='utf8'))
    return(ct)