1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_CUDA_WRAPPERS_CPP
#define __TASMANIAN_CUDA_WRAPPERS_CPP
#include "tsgGpuWrappers.hpp"
#include "tsgCudaWrappers.hpp"
/*!
* \file tsgCudaWrappers.cpp
* \brief Wrappers to CUDA functionality.
* \author Miroslav Stoyanov
* \ingroup TasmanianTPLWrappers
*
* Realizations of the GPU algorithms using the CUDA backend.
*/
namespace TasGrid{
/*
* Meta methods
*/
template<typename T> void GpuVector<T>::resize(AccelerationContext const*, size_t count){
if (count != num_entries){ // if the current array is not big enough
clear(); // resets dynamic_mode
num_entries = count;
TasGpu::cucheck( cudaMalloc(((void**) &gpu_data), num_entries * sizeof(T)), "cudaMalloc()");
}
}
template<typename T> void GpuVector<T>::clear(){
num_entries = 0;
if (gpu_data != nullptr) // if I own the data and the data is not null
TasGpu::cucheck( cudaFree(gpu_data), "cudaFree()");
gpu_data = nullptr;
}
template<typename T> void GpuVector<T>::load(AccelerationContext const *acc, size_t count, const T* cpu_data){
resize(acc, count);
TasGpu::cucheck( cudaMemcpy(gpu_data, cpu_data, num_entries * sizeof(T), cudaMemcpyHostToDevice), "cudaMemcpy() to device");
}
template<typename T> void GpuVector<T>::unload(AccelerationContext const*, size_t num, T* cpu_data) const{
TasGpu::cucheck( cudaMemcpy(cpu_data, gpu_data, num * sizeof(T), cudaMemcpyDeviceToHost), "cudaMemcpy() from device");
}
template void GpuVector<double>::resize(AccelerationContext const*, size_t);
template void GpuVector<double>::clear();
template void GpuVector<double>::load(AccelerationContext const*, size_t, const double*);
template void GpuVector<double>::unload(AccelerationContext const*, size_t, double*) const;
template void GpuVector<std::complex<double>>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::complex<double>>::clear();
template void GpuVector<std::complex<double>>::load(AccelerationContext const*, size_t, const std::complex<double>*);
template void GpuVector<std::complex<double>>::unload(AccelerationContext const*, size_t, std::complex<double>*) const;
template void GpuVector<float>::resize(AccelerationContext const*, size_t);
template void GpuVector<float>::clear();
template void GpuVector<float>::load(AccelerationContext const*, size_t, const float*);
template void GpuVector<float>::unload(AccelerationContext const*, size_t, float*) const;
template void GpuVector<int>::resize(AccelerationContext const*, size_t);
template void GpuVector<int>::clear();
template void GpuVector<int>::load(AccelerationContext const*, size_t, const int*);
template void GpuVector<int>::unload(AccelerationContext const*, size_t, int*) const;
template<> void deleteHandle<AccHandle::Cublas>(int *p){ cublasDestroy(reinterpret_cast<cublasHandle_t>(p)); }
template<> void deleteHandle<AccHandle::Cusparse>(int *p){ cusparseDestroy(reinterpret_cast<cusparseHandle_t>(p)); }
template<> void deleteHandle<AccHandle::Cusolver>(int *p){ cusolverDnDestroy(reinterpret_cast<cusolverDnHandle_t>(p)); }
void GpuEngine::setCuBlasHandle(void *handle){
cublas_handle = std::unique_ptr<int, HandleDeleter<AccHandle::Cublas>>
(reinterpret_cast<int*>(handle), HandleDeleter<AccHandle::Cublas>(false));
}
void GpuEngine::setCuSparseHandle(void *handle){
cusparse_handle = std::unique_ptr<int, HandleDeleter<AccHandle::Cusparse>>
(reinterpret_cast<int*>(handle), HandleDeleter<AccHandle::Cusparse>(false));
}
void GpuEngine::setCuSolverDnHandle(void *handle){
cusolver_handle = std::unique_ptr<int, HandleDeleter<AccHandle::Cusolver>>
(reinterpret_cast<int*>(handle), HandleDeleter<AccHandle::Cusolver>(false));
}
int AccelerationMeta::getNumGpuDevices(){
int gpu_count = 0;
TasGpu::cucheck( cudaGetDeviceCount(&gpu_count), "cudaGetDeviceCount()");
return gpu_count;
}
void AccelerationMeta::setDefaultGpuDevice(int deviceID){
cudaSetDevice(deviceID);
}
unsigned long long AccelerationMeta::getTotalGPUMemory(int deviceID){
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, deviceID);
return prop.totalGlobalMem;
}
std::string AccelerationMeta::getGpuDeviceName(int deviceID){
if ((deviceID < 0) || (deviceID >= getNumGpuDevices())) return std::string();
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, deviceID);
return std::string(prop.name);
}
template<typename T> void AccelerationMeta::recvGpuArray(AccelerationContext const*, size_t num_entries, const T *gpu_data, std::vector<T> &cpu_data){
cpu_data.resize(num_entries);
TasGpu::cucheck( cudaMemcpy(cpu_data.data(), gpu_data, num_entries * sizeof(T), cudaMemcpyDeviceToHost), "cudaRecv(type, type)");
}
template<typename T> void AccelerationMeta::delGpuArray(AccelerationContext const*, T *x){
TasGpu::cucheck( cudaFree(x), "cudaFree() in delCudaArray()");
}
void* AccelerationMeta::createCublasHandle(){
cublasHandle_t handle;
cublasCreate(&handle);
return (void*) handle;
}
void AccelerationMeta::deleteCublasHandle(void *handle){
cublasDestroy(reinterpret_cast<cublasHandle_t>(handle));
}
template void AccelerationMeta::recvGpuArray<double>(AccelerationContext const*, size_t num_entries, const double*, std::vector<double>&);
template void AccelerationMeta::recvGpuArray<float>(AccelerationContext const*, size_t num_entries, const float*, std::vector<float>&);
template void AccelerationMeta::recvGpuArray<int>(AccelerationContext const*, size_t num_entries, const int*, std::vector<int>&);
template void AccelerationMeta::delGpuArray<double>(AccelerationContext const*, double*);
template void AccelerationMeta::delGpuArray<float>(AccelerationContext const*, float*);
template void AccelerationMeta::delGpuArray<int>(AccelerationContext const*, int*);
namespace TasGpu{
/*
* cuBLAS section
*/
//! \brief Converts character to cublas operation.
constexpr cublasOperation_t cublas_trans(char trans){
return (trans == 'N') ? CUBLAS_OP_N : ((trans == 'T') ? CUBLAS_OP_T : CUBLAS_OP_C);
}
//! \brief Wrapper around sgeam().
void geam(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
int m, int n, float alpha, float const A[], int lda,
float beta, float const B[], int ldb, float C[], int ldc){
cucheck(cublasSgeam(handle, transa, transb, m, n, &alpha, A, lda, &beta, B, ldb, C, ldc), "cublasSgeam()");
}
//! \brief Wrapper around dgeam().
void geam(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
int m, int n, double alpha, double const A[], int lda,
double beta, double const B[], int ldb, double C[], int ldc){
cucheck(cublasDgeam(handle, transa, transb, m, n, &alpha, A, lda, &beta, B, ldb, C, ldc), "cublasDgeam()");
}
//! \brief Wrapper around zgeam().
void geam(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
int m, int n, std::complex<double> alpha, std::complex<double> const A[], int lda,
std::complex<double> beta, std::complex<double> const B[], int ldb, std::complex<double> C[], int ldc){
cucheck(cublasZgeam(handle, transa, transb, m, n, reinterpret_cast<cuDoubleComplex*>(&alpha),
reinterpret_cast<cuDoubleComplex const*>(A), lda, reinterpret_cast<cuDoubleComplex*>(&beta),
reinterpret_cast<cuDoubleComplex const*>(B), ldb,
reinterpret_cast<cuDoubleComplex*>(C), ldc), "cublasZgeam()");
}
//! \brief Wrapper around sgemv().
inline void gemv(cublasHandle_t handle, cublasOperation_t transa, int M, int N,
float alpha, float const A[], int lda, float const x[], int incx, float beta, float y[], int incy){
cucheck( cublasSgemv(handle, transa, M, N, &alpha, A, lda, x, incx, &beta, y, incy), "cublasSgemv()");
}
//! \brief Wrapper around dgemv().
inline void gemv(cublasHandle_t handle, cublasOperation_t transa, int M, int N,
double alpha, double const A[], int lda, double const x[], int incx, double beta, double y[], int incy){
cucheck( cublasDgemv(handle, transa, M, N, &alpha, A, lda, x, incx, &beta, y, incy), "cublasDgemv()");
}
//! \brief Wrapper around dtrsv().
inline void trsv(cublasHandle_t handle, cublasFillMode_t uplo, cublasOperation_t trans, cublasDiagType_t diag,
int n, const double A[], int lda, double x[], int incx){
cucheck(cublasDtrsv(handle, uplo, trans, diag, n, A, lda, x, incx), "cublasDtrsv()");
}
//! \brief Wrapper around ztrsv().
inline void trsv(cublasHandle_t handle, cublasFillMode_t uplo, cublasOperation_t trans, cublasDiagType_t diag,
int n, const std::complex<double> A[], int lda, std::complex<double> x[], int incx){
cucheck(cublasZtrsv(handle, uplo, trans, diag, n, reinterpret_cast<cuDoubleComplex const*>(A), lda,
reinterpret_cast<cuDoubleComplex*>(x), incx), "cublasZtrsv()");
}
//! \brief Wrapper around sgemm().
inline void gemm(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int M, int N, int K,
float alpha, float const A[], int lda, float const B[], int ldb, float beta, float C[], int ldc){
cucheck( cublasSgemm(handle, transa, transb, M, N, K, &alpha, A, lda, B, ldb, &beta, C, ldc), "cublasSgemm()");
}
//! \brief Wrapper around dgemm().
inline void gemm(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int M, int N, int K,
double alpha, double const A[], int lda, double const B[], int ldb, double beta, double C[], int ldc){
cucheck( cublasDgemm(handle, transa, transb, M, N, K, &alpha, A, lda, B, ldb, &beta, C, ldc), "cublasDgemm()");
}
//! \brief Wrapper around dtrsm().
inline void trsm(cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag, int m, int n,
double alpha, double const A[], int lda, double B[], int ldb){
cucheck(cublasDtrsm(handle, side, uplo, trans, diag, m, n, &alpha, A, lda, B, ldb), "cublasDtrsm()");
}
//! \brief Wrapper around ztrsm().
inline void trsm(cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag, int m, int n,
std::complex<double> alpha, std::complex<double> const A[], int lda, std::complex<double> B[], int ldb){
cucheck(cublasZtrsm(handle, side, uplo, trans, diag, m, n, reinterpret_cast<cuDoubleComplex*>(&alpha),
reinterpret_cast<cuDoubleComplex const*>(A), lda, reinterpret_cast<cuDoubleComplex*>(B), ldb), "cublasZtrsm()");
}
#if (CUDART_VERSION < 13000)
/*
* cuSparse section
*/
//! \brief Returns the buffer size needed by gemvi.
template<typename T>
size_t size_sparse_gemvi(cusparseHandle_t handle, cusparseOperation_t transa, int M, int N, int nnz){
static_assert(std::is_same<T, double>::value || std::is_same<T, float>::value, "size_sparse_gemvi() works only with float and double");
int buff_size = 0;
if (std::is_same<T, float>::value){
cucheck( cusparseSgemvi_bufferSize(handle, transa, M, N, nnz, &buff_size), "cusparseSgemvi_bufferSize()");
}else{
cucheck( cusparseDgemvi_bufferSize(handle, transa, M, N, nnz, &buff_size), "cusparseDgemvi_bufferSize()");
}
return static_cast<size_t>(buff_size);
}
//! \brief Wrapper around sgemvi().
inline void sparse_gemvi(cusparseHandle_t handle, cusparseOperation_t transa,
int M, int N, float alpha, float const A[], int lda,
int nnz, const float x[], int const indx[], float beta, float y[]){
GpuVector<float> buff(nullptr, size_sparse_gemvi<float>(handle, transa, M, N, nnz) );
cucheck( cusparseSgemvi(handle, transa, M, N, &alpha, A, lda, nnz, x, indx, &beta, y, CUSPARSE_INDEX_BASE_ZERO, buff.data()), "cusparseSgemvi()");
}
//! \brief Wrapper around dgemvi().
inline void sparse_gemvi(cusparseHandle_t handle, cusparseOperation_t transa,
int M, int N, double alpha, double const A[], int lda,
int nnz, const double x[], int const indx[], double beta, double y[]){
GpuVector<double> buff(nullptr, size_sparse_gemvi<double>(handle, transa, M, N, nnz) );
cucheck( cusparseDgemvi(handle, transa, M, N, &alpha, A, lda, nnz, x, indx, &beta, y, CUSPARSE_INDEX_BASE_ZERO, buff.data()), "cusparseDgemvi()");
}
#endif
#if (CUDART_VERSION < 11000)
//! \brief Wrapper around sgemv().
inline void sparse_gemv(cusparseHandle_t handle, cusparseOperation_t transa, int M, int N, int nnz,
float alpha, cusparseMatDesc &matdesc, float const vals[], int const pntr[], int const indx[],
float const x[], float beta, float y[]){
cucheck( cusparseScsrmv(handle, transa, M, N, nnz, &alpha, matdesc, vals, pntr, indx, x, &beta, y), "cusparseScsrmv()");
}
//! \brief Wrapper around dgemv().
inline void sparse_gemv(cusparseHandle_t handle, cusparseOperation_t transa, int M, int N, int nnz,
double alpha, cusparseMatDesc &matdesc, double const vals[], int const pntr[], int const indx[],
double const x[], double beta, double y[]){
cucheck( cusparseDcsrmv(handle, transa, M, N, nnz, &alpha, matdesc, vals, pntr, indx, x, &beta, y), "cusparseDcsrmv()");
}
//! \brief Wrapper around sgemm().
inline void sparse_gemm(cusparseHandle_t handle, cusparseOperation_t transa, cusparseOperation_t transb,
int M, int N, int K, int nnz, float alpha,
cusparseMatDesc &matdesc, float const vals[], int const pntr[], int const indx[],
float const B[], int ldb, float beta, float C[], int ldc){
cucheck( cusparseScsrmm2(handle, transa, transb, M, N, K, nnz, &alpha, matdesc, vals, pntr, indx, B, ldb, &beta, C, ldc), "cusparseScsrmm2()");
}
//! \brief Wrapper around dgemm().
inline void sparse_gemm(cusparseHandle_t handle, cusparseOperation_t transa, cusparseOperation_t transb,
int M, int N, int K, int nnz, double alpha,
cusparseMatDesc &matdesc, double const vals[], int const pntr[], int const indx[],
double const B[], int ldb, double beta, double C[], int ldc){
cucheck( cusparseDcsrmm2(handle, transa, transb, M, N, K, nnz, &alpha, matdesc, vals, pntr, indx, B, ldb, &beta, C, ldc), "cusparseDcsrmm2()");
}
#else
//! \brief Wrapper around sgemv().
template<typename scalar_type>
inline void sparse_gemv(cusparseHandle_t handle, int M, int N, int nnz, typename GpuVector<scalar_type>::value_type alpha,
scalar_type const vals[], int const pntr[], int const indx[], scalar_type const x[],
typename GpuVector<scalar_type>::value_type beta, scalar_type y[]){
auto matdesc = makeSparseMatDesc(M, N, nnz, pntr, indx, vals);
auto xdesc = makeSparseDenseVecDesc(N, x);
auto ydesc = makeSparseDenseVecDesc(M, y);
cudaDataType_t cuda_type = (std::is_same<scalar_type, float>::value) ? CUDA_R_32F : CUDA_R_64F;
size_t bsize = 0;
#if (CUDART_VERSION < 12000)
cucheck( cusparseSpMV_bufferSize(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_MV_ALG_DEFAULT, &bsize),
"cusparseSpMV_bufferSize()"
);
#else
cucheck( cusparseSpMV_bufferSize(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_SPMV_ALG_DEFAULT, &bsize),
"cusparseSpMV_bufferSize()"
);
#endif
GpuVector<scalar_type> buffer(nullptr, bsize / sizeof(scalar_type));
#if (CUDART_VERSION < 12000)
cucheck( cusparseSpMV(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_MV_ALG_DEFAULT, buffer.data()),
"cusparseSpMV()"
);
#else
cucheck( cusparseSpMV(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_SPMV_ALG_DEFAULT, buffer.data()),
"cusparseSpMV()"
);
#endif
}
//! \brief Wrapper around dgemm().
template<typename scalar_type>
inline void sparse_gemm(cusparseHandle_t handle, int M, int N, int K, int nnz, typename GpuVector<scalar_type>::value_type alpha,
scalar_type const vals[], int const pntr[], int const indx[],
scalar_type const B[], int ldb, typename GpuVector<scalar_type>::value_type beta, scalar_type C[], int ldc){
auto matdesc = makeSparseMatDesc(M, K, nnz, pntr, indx, vals);
auto bdesc = makeSparseDenseMatDesc(N, K, ldb, B);
auto cdesc = makeSparseDenseMatDesc(M, N, ldc, C);
cudaDataType_t cuda_type = (std::is_same<scalar_type, float>::value) ? CUDA_R_32F : CUDA_R_64F;
size_t bsize = 0;
cucheck( cusparseSpMM_bufferSize(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE,
&alpha, matdesc, bdesc, &beta, cdesc, cuda_type, CUSPARSE_SPMM_ALG_DEFAULT, &bsize), "cusparseSpMM_bufferSize()");
GpuVector<scalar_type> buffer(nullptr, bsize / sizeof(scalar_type));
cucheck( cusparseSpMM(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE, &alpha, matdesc, bdesc, &beta, cdesc,
cuda_type, CUSPARSE_SPMM_ALG_DEFAULT, buffer.data()),
"cusparseSpMM()"
);
}
#endif
/*
* cuSolver section
*/
//! \brief Wrapper around dgeqrf() - get size.
inline size_t size_geqrf(cusolverDnHandle_t handle, int m, int n, double A[], int lda){
int result = 0;
cucheck(cusolverDnDgeqrf_bufferSize(handle, m, n, A, lda, &result), "cusolverDnDgeqrf_bufferSize()");
return static_cast<size_t>(result);
}
//! \brief Wrapper around zgeqrf() - get size.
inline size_t size_geqrf(cusolverDnHandle_t handle, int m, int n, std::complex<double> A[], int lda){
int result = 0;
cucheck(cusolverDnZgeqrf_bufferSize(handle, m, n, reinterpret_cast<cuDoubleComplex*>(A), lda, &result), "cusolverDnZgeqrf_bufferSize()");
return static_cast<size_t>(result);
}
//! \brief Wrapper around dgeqrf().
inline void geqrf(cusolverDnHandle_t handle, int m, int n, double A[], int lda, double tau[]){
GpuVector<double> workspace(nullptr, size_geqrf(handle, m, n, A, lda) );
GpuVector<int> info(nullptr, std::vector<int>(1, 0));
cucheck(cusolverDnDgeqrf(handle, m, n, A, lda, tau, workspace.data(), static_cast<int>(workspace.size()), info.data()), "cusolverDnDgeqrf()");
if (info.unload(nullptr)[0] != 0)
throw std::runtime_error("cusolverDnDgeqrf() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around zgeqrf().
inline void geqrf(cusolverDnHandle_t handle, int m, int n, std::complex<double> A[], int lda, std::complex<double> tau[]){
GpuVector<std::complex<double>> workspace( nullptr, size_geqrf(handle, m, n, A, lda) );
GpuVector<int> info(nullptr, std::vector<int>(1, 0));
cucheck(cusolverDnZgeqrf(handle, m, n, reinterpret_cast<cuDoubleComplex*>(A), lda,
reinterpret_cast<cuDoubleComplex*>(tau), reinterpret_cast<cuDoubleComplex*>(workspace.data()),
static_cast<int>(workspace.size()), info.data()), "cusolverDnZgeqrf()");
if (info.unload(nullptr)[0] != 0)
throw std::runtime_error("cusolverDnZgeqrf() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around dormqr() - get size.
inline size_t size_gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
int m, int n, int k, double const A[], int lda,
double const tau[], double const C[], int ldc){
int result = 0;
cucheck(cusolverDnDormqr_bufferSize(handle, side, trans, m, n, k, A, lda, tau, C, ldc, &result), "cusolverDnDormqr_bufferSize()");
return static_cast<size_t>(result);
}
//! \brief Wrapper around zunmqr() - get size.
inline size_t size_gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
int m, int n, int k, std::complex<double> const A[], int lda,
std::complex<double> const tau[], std::complex<double> const C[], int ldc){
int result = 0;
cucheck(cusolverDnZunmqr_bufferSize(handle, side, trans, m, n, k, reinterpret_cast<cuDoubleComplex const*>(A), lda,
reinterpret_cast<cuDoubleComplex const*>(tau), reinterpret_cast<cuDoubleComplex const*>(C), ldc, &result),
"cusolverDnZunmqr_bufferSize()");
return static_cast<size_t>(result);
}
//! \brief Wrapper around dormqr().
inline void gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
int m, int n, int k, double const A[], int lda, double const tau[], double C[], int ldc){
GpuVector<int> info(nullptr, std::vector<int>(1, 0));
GpuVector<double> workspace( nullptr, size_gemqr(handle, side, trans, m, n, k, A, lda, tau, C, ldc) );
cucheck(cusolverDnDormqr(handle, side, trans, m, n, k, A, lda, tau, C, ldc,
workspace.data(), static_cast<int>(workspace.size()), info.data()), "cusolverDnDormqr()");
if (info.unload(nullptr)[0] != 0)
throw std::runtime_error("cusolverDnDormqr() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around zunmqr().
inline void gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
int m, int n, int k, std::complex<double> const A[], int lda, std::complex<double> const tau[],
std::complex<double> C[], int ldc){
GpuVector<int> info(nullptr, std::vector<int>(1, 0));
GpuVector<std::complex<double>> workspace( nullptr, size_gemqr(handle, side, trans, m, n, k, A, lda, tau, C, ldc) );
cucheck(cusolverDnZunmqr(handle, side, trans, m, n, k, reinterpret_cast<cuDoubleComplex const*>(A), lda,
reinterpret_cast<cuDoubleComplex const*>(tau), reinterpret_cast<cuDoubleComplex*>(C), ldc,
reinterpret_cast<cuDoubleComplex*>(workspace.data()), static_cast<int>(workspace.size()), info.data()),
"cusolverDnZunmqr()");
if (info.unload(nullptr)[0] != 0)
throw std::runtime_error("cusolverDnZunmqr() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around cusolverDnDgetrs().
void getrs(cusolverDnHandle_t handle, cublasOperation_t trans, int n, int nrhs, double const A[], int lda, int const ipiv[], double B[], int ldb){
GpuVector<int> info(nullptr, std::vector<int>(1, 0));
cucheck(cusolverDnDgetrs(handle, trans, n, nrhs, A, lda, ipiv, B, ldb, info.data()), "cusolverDnDgetrs()");
if (info.unload(nullptr)[0] != 0)
throw std::runtime_error("cusolverDnDgetrs() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around cusolverDnDgetrf().
void factorizePLU(AccelerationContext const *acceleration, int n, double A[], int ipiv[]){
cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
int size = 0;
cucheck(cusolverDnDgetrf_bufferSize(cusolverdnh, n, n, A, n, &size), "cusolverDnDgetrf_bufferSize()");
GpuVector<double> workspace(nullptr, static_cast<size_t>(size));
GpuVector<int> info(nullptr, std::vector<int>(1, 0));
cucheck(cusolverDnDgetrf(cusolverdnh, n, n, A, n, workspace.data(), ipiv, info.data()), "cusolverDnDgetrf()");
if (info.unload(nullptr)[0] != 0)
throw std::runtime_error("cusolverDnDgetrf() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int const ipiv[], double b[]){
cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
getrs(cusolverdnh, (trans == 'T') ? CUBLAS_OP_T: CUBLAS_OP_N, n, 1, A, n, ipiv, b, n);
}
void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int const ipiv[], int nrhs, double B[]){
cublasHandle_t cublash = getCuBlasHandle(acceleration);
cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
GpuVector<double> BT(nullptr, n, nrhs);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, n, nrhs, 1.0, B, nrhs, 0.0, B, nrhs, BT.data(), n);
getrs(cusolverdnh, (trans == 'T') ? CUBLAS_OP_T: CUBLAS_OP_N, n, nrhs, A, n, ipiv, BT.data(), n);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, nrhs, n, 1.0, BT.data(), n, 0.0, BT.data(), n, B, nrhs);
}
/*
* Algorithm section
*/
template<typename scalar_type>
void solveLSmultiGPU(AccelerationContext const *acceleration, int n, int m, scalar_type A[], int nrhs, scalar_type B[]){
cublasHandle_t cublash = getCuBlasHandle(acceleration);
cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
GpuVector<scalar_type> AT(nullptr, n, m);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, n, m, 1.0, A, m, 0.0, A, m, AT.data(), n);
GpuVector<scalar_type> T(nullptr, m);
geqrf(cusolverdnh, n, m, AT.data(), n, T.data());
cublasOperation_t trans = (std::is_same<scalar_type, double>::value) ? CUBLAS_OP_T : CUBLAS_OP_C;
if (nrhs == 1){
gemqr(cusolverdnh, CUBLAS_SIDE_LEFT, trans, n, 1, m, AT.data(), n, T.data(), B, n);
trsv(cublash, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, m, AT.data(), n, B, 1);
}else{
GpuVector<scalar_type> BT(nullptr, n, nrhs);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, n, nrhs, 1.0, B, nrhs, 0.0, B, nrhs, BT.data(), n);
gemqr(cusolverdnh, CUBLAS_SIDE_LEFT, trans, n, nrhs, m, AT.data(), n, T.data(), BT.data(), n);
trsm(cublash, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, m, nrhs, 1.0, AT.data(), n, BT.data(), n);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, nrhs, n, 1.0, BT.data(), n, 0.0, BT.data(), n, B, nrhs);
}
}
template void solveLSmultiGPU<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiGPU<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);
#ifndef Tasmanian_ENABLE_MAGMA
template<typename scalar_type>
void solveLSmultiOOC(AccelerationContext const*, int, int, scalar_type[], int, scalar_type[]){}
#endif
template void solveLSmultiOOC<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiOOC<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);
template<typename scalar_type>
void denseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha, GpuVector<scalar_type> const &A,
GpuVector<scalar_type> const &B, typename GpuVector<scalar_type>::value_type beta, scalar_type C[]){
cublasHandle_t cublash = getCuBlasHandle(acceleration);
if (M > 1){
if (N > 1){ // matrix-matrix mode
gemm(cublash, CUBLAS_OP_N, CUBLAS_OP_N, M, N, K, alpha, A.data(), M, B.data(), K, beta, C, M);
}else{ // matrix vector, A * v = C
gemv(cublash, CUBLAS_OP_N, M, K, alpha, A.data(), M, B.data(), 1, beta, C, 1);
}
}else{ // matrix vector B^T * v = C
gemv(cublash, CUBLAS_OP_T, K, N, alpha, B.data(), K, A.data(), 1, beta, C, 1);
}
}
template void denseMultiply<float>(AccelerationContext const*, int, int, int, float,
GpuVector<float> const&, GpuVector<float> const&, float, float[]);
template void denseMultiply<double>(AccelerationContext const*, int, int, int, double,
GpuVector<double> const&, GpuVector<double> const&, double, double[]);
#if (CUDART_VERSION < 11000)
template<typename scalar_type>
void sparseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha,
GpuVector<scalar_type> const &A, GpuVector<int> const &pntr, GpuVector<int> const &indx,
GpuVector<scalar_type> const &vals, scalar_type C[]){
cusparseHandle_t cusparseh = getCuSparseHandle(acceleration);
if (N > 1){ // dense matrix has many columns
cusparseMatDesc matdesc;
if (M > 1){ // dense matrix has many rows, use matrix-matrix algorithm
GpuVector<scalar_type> tempC(nullptr, M, N);
sparse_gemm(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE, N, M, K, (int) indx.size(),
alpha, matdesc, vals.data(), pntr.data(), indx.data(), A.data(), M, 0.0, tempC.data(), N);
cublasHandle_t cublash = getCuBlasHandle(acceleration);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, M, N, 1.0, tempC.data(), N, 0.0, tempC.data(), N, C, M);
}else{ // dense matrix has only one row, use sparse matrix times dense vector
sparse_gemv(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, N, K, (int) indx.size(),
alpha, matdesc, vals.data(), pntr.data(), indx.data(), A.data(), 0.0, C);
}
}else{ // sparse matrix has only one column, use dense matrix times sparse vector
// quote from Nvidia CUDA cusparse manual at https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-lt-t-gt-gemvi
// "This function requires no extra storage for the general matrices when operation CUSPARSE_OPERATION_NON_TRANSPOSE is selected."
// Yet, buffer is required when num_nz exceeds 32 even with CUSPARSE_OPERATION_NON_TRANSPOSE
sparse_gemvi(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, M, K, alpha, A.data(), M, (int) indx.size(), vals.data(), indx.data(), 0.0, C);
}
}
#else
template<typename scalar_type>
void sparseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha,
GpuVector<scalar_type> const &A, GpuVector<int> const &pntr, GpuVector<int> const &indx,
GpuVector<scalar_type> const &vals, scalar_type C[]){
cusparseHandle_t cusparseh = getCuSparseHandle(acceleration);
if (N > 1){ // dense matrix has many columns
if (M > 1){ // dense matrix has many rows, use matrix-matrix algorithm
GpuVector<scalar_type> tempC(nullptr, M, N);
sparse_gemm(cusparseh, N, M, K, (int) indx.size(), alpha, vals.data(), pntr.data(), indx.data(), A.data(), M, 0.0, tempC.data(), N);
cublasHandle_t cublash = getCuBlasHandle(acceleration);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, M, N, 1.0, tempC.data(), N, 0.0, tempC.data(), N, C, M);
}else{ // dense matrix has only one row, use sparse matrix times dense vector
sparse_gemv(cusparseh, N, K, (int) indx.size(), alpha, vals.data(), pntr.data(), indx.data(), A.data(), 0.0, C);
}
}else{
#if (CUDART_VERSION < 13000)
sparse_gemvi(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, M, K, alpha, A.data(), M, (int) indx.size(), vals.data(), indx.data(), 0.0, C);
#else
GpuVector<scalar_type> tempC(nullptr, M, N);
int nnz = static_cast<int>(indx.size());
GpuVector<int> temp_pntr(nullptr, std::vector<int>{0, nnz});
sparse_gemm(cusparseh, N, M, K, (int) indx.size(), alpha, vals.data(), temp_pntr.data(), indx.data(), A.data(), M, 0.0, tempC.data(), N);
cublasHandle_t cublash = getCuBlasHandle(acceleration);
geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, M, N, 1.0, tempC.data(), N, 0.0, tempC.data(), N, C, M);
#endif
}
}
#endif
template void sparseMultiply<float>(AccelerationContext const*, int, int, int, float, GpuVector<float> const &A,
GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<float> const &vals, float C[]);
template void sparseMultiply<double>(AccelerationContext const*, int, int, int, double, GpuVector<double> const &A,
GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<double> const &vals, double C[]);
template<typename T> void load_n(AccelerationContext const*, T const *cpu_data, size_t num_entries, T *gpu_data){
TasGpu::cucheck( cudaMemcpy(gpu_data, cpu_data, num_entries * sizeof(T), cudaMemcpyHostToDevice), "cudaMemcpy() load_n to device");
}
template void load_n<int>(AccelerationContext const*, int const*, size_t, int*);
template void load_n<float>(AccelerationContext const*, float const*, size_t, float*);
template void load_n<double>(AccelerationContext const*, double const*, size_t, double*);
template void load_n<std::complex<double>>(AccelerationContext const*, std::complex<double> const*, size_t, std::complex<double>*);
}
}
#endif
|