File: tsgCudaWrappers.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (600 lines) | stat: -rw-r--r-- 35,254 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#ifndef __TASMANIAN_CUDA_WRAPPERS_CPP
#define __TASMANIAN_CUDA_WRAPPERS_CPP

#include "tsgGpuWrappers.hpp"
#include "tsgCudaWrappers.hpp"

/*!
 * \file tsgCudaWrappers.cpp
 * \brief Wrappers to CUDA functionality.
 * \author Miroslav Stoyanov
 * \ingroup TasmanianTPLWrappers
 *
 * Realizations of the GPU algorithms using the CUDA backend.
 */

namespace TasGrid{
/*
 * Meta methods
 */
template<typename T> void GpuVector<T>::resize(AccelerationContext const*, size_t count){
    if (count != num_entries){ // if the current array is not big enough
        clear(); // resets dynamic_mode
        num_entries = count;
        TasGpu::cucheck( cudaMalloc(((void**) &gpu_data), num_entries * sizeof(T)), "cudaMalloc()");
    }
}
template<typename T> void GpuVector<T>::clear(){
    num_entries = 0;
    if (gpu_data != nullptr) // if I own the data and the data is not null
        TasGpu::cucheck( cudaFree(gpu_data), "cudaFree()");
    gpu_data = nullptr;
}
template<typename T> void GpuVector<T>::load(AccelerationContext const *acc, size_t count, const T* cpu_data){
    resize(acc, count);
    TasGpu::cucheck( cudaMemcpy(gpu_data, cpu_data, num_entries * sizeof(T), cudaMemcpyHostToDevice), "cudaMemcpy() to device");
}
template<typename T> void GpuVector<T>::unload(AccelerationContext const*, size_t num, T* cpu_data) const{
    TasGpu::cucheck( cudaMemcpy(cpu_data, gpu_data, num * sizeof(T), cudaMemcpyDeviceToHost), "cudaMemcpy() from device");
}

template void GpuVector<double>::resize(AccelerationContext const*, size_t);
template void GpuVector<double>::clear();
template void GpuVector<double>::load(AccelerationContext const*, size_t, const double*);
template void GpuVector<double>::unload(AccelerationContext const*, size_t, double*) const;

template void GpuVector<std::complex<double>>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::complex<double>>::clear();
template void GpuVector<std::complex<double>>::load(AccelerationContext const*, size_t, const std::complex<double>*);
template void GpuVector<std::complex<double>>::unload(AccelerationContext const*, size_t, std::complex<double>*) const;

template void GpuVector<float>::resize(AccelerationContext const*, size_t);
template void GpuVector<float>::clear();
template void GpuVector<float>::load(AccelerationContext const*, size_t, const float*);
template void GpuVector<float>::unload(AccelerationContext const*, size_t, float*) const;

template void GpuVector<int>::resize(AccelerationContext const*, size_t);
template void GpuVector<int>::clear();
template void GpuVector<int>::load(AccelerationContext const*, size_t, const int*);
template void GpuVector<int>::unload(AccelerationContext const*, size_t, int*) const;

template<> void deleteHandle<AccHandle::Cublas>(int *p){ cublasDestroy(reinterpret_cast<cublasHandle_t>(p)); }
template<> void deleteHandle<AccHandle::Cusparse>(int *p){ cusparseDestroy(reinterpret_cast<cusparseHandle_t>(p)); }
template<> void deleteHandle<AccHandle::Cusolver>(int *p){ cusolverDnDestroy(reinterpret_cast<cusolverDnHandle_t>(p)); }

void GpuEngine::setCuBlasHandle(void *handle){
    cublas_handle = std::unique_ptr<int, HandleDeleter<AccHandle::Cublas>>
        (reinterpret_cast<int*>(handle), HandleDeleter<AccHandle::Cublas>(false));
}
void GpuEngine::setCuSparseHandle(void *handle){
    cusparse_handle = std::unique_ptr<int, HandleDeleter<AccHandle::Cusparse>>
        (reinterpret_cast<int*>(handle), HandleDeleter<AccHandle::Cusparse>(false));
}
void GpuEngine::setCuSolverDnHandle(void *handle){
    cusolver_handle = std::unique_ptr<int, HandleDeleter<AccHandle::Cusolver>>
        (reinterpret_cast<int*>(handle), HandleDeleter<AccHandle::Cusolver>(false));
}

int AccelerationMeta::getNumGpuDevices(){
    int gpu_count = 0;
    TasGpu::cucheck( cudaGetDeviceCount(&gpu_count), "cudaGetDeviceCount()");
    return gpu_count;
}
void AccelerationMeta::setDefaultGpuDevice(int deviceID){
    cudaSetDevice(deviceID);
}
unsigned long long AccelerationMeta::getTotalGPUMemory(int deviceID){
    cudaDeviceProp prop;
    cudaGetDeviceProperties(&prop, deviceID);
    return prop.totalGlobalMem;
}
std::string AccelerationMeta::getGpuDeviceName(int deviceID){
    if ((deviceID < 0) || (deviceID >= getNumGpuDevices())) return std::string();

    cudaDeviceProp prop;
    cudaGetDeviceProperties(&prop, deviceID);

    return std::string(prop.name);
}
template<typename T> void AccelerationMeta::recvGpuArray(AccelerationContext const*, size_t num_entries, const T *gpu_data, std::vector<T> &cpu_data){
    cpu_data.resize(num_entries);
    TasGpu::cucheck( cudaMemcpy(cpu_data.data(), gpu_data, num_entries * sizeof(T), cudaMemcpyDeviceToHost), "cudaRecv(type, type)");
}
template<typename T> void AccelerationMeta::delGpuArray(AccelerationContext const*, T *x){
    TasGpu::cucheck( cudaFree(x), "cudaFree() in delCudaArray()");
}

void* AccelerationMeta::createCublasHandle(){
    cublasHandle_t handle;
    cublasCreate(&handle);
    return (void*) handle;
}
void AccelerationMeta::deleteCublasHandle(void *handle){
    cublasDestroy(reinterpret_cast<cublasHandle_t>(handle));
}

template void AccelerationMeta::recvGpuArray<double>(AccelerationContext const*, size_t num_entries, const double*, std::vector<double>&);
template void AccelerationMeta::recvGpuArray<float>(AccelerationContext const*, size_t num_entries, const float*, std::vector<float>&);
template void AccelerationMeta::recvGpuArray<int>(AccelerationContext const*, size_t num_entries, const int*, std::vector<int>&);

template void AccelerationMeta::delGpuArray<double>(AccelerationContext const*, double*);
template void AccelerationMeta::delGpuArray<float>(AccelerationContext const*, float*);
template void AccelerationMeta::delGpuArray<int>(AccelerationContext const*, int*);

namespace TasGpu{
/*
 * cuBLAS section
 */
//! \brief Converts character to cublas operation.
constexpr cublasOperation_t cublas_trans(char trans){
    return (trans == 'N') ? CUBLAS_OP_N : ((trans == 'T') ? CUBLAS_OP_T : CUBLAS_OP_C);
}

//! \brief Wrapper around sgeam().
void geam(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
          int m, int n, float alpha, float const A[], int lda,
          float beta, float const B[], int ldb, float C[], int ldc){
    cucheck(cublasSgeam(handle, transa, transb, m, n, &alpha, A, lda, &beta, B, ldb, C, ldc), "cublasSgeam()");
}
//! \brief Wrapper around dgeam().
void geam(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
          int m, int n, double alpha, double const A[], int lda,
          double beta, double const B[], int ldb, double C[], int ldc){
    cucheck(cublasDgeam(handle, transa, transb, m, n, &alpha, A, lda, &beta, B, ldb, C, ldc), "cublasDgeam()");
}
//! \brief Wrapper around zgeam().
void geam(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
          int m, int n, std::complex<double> alpha, std::complex<double> const A[], int lda,
          std::complex<double> beta, std::complex<double> const B[], int ldb, std::complex<double> C[], int ldc){
    cucheck(cublasZgeam(handle, transa, transb, m, n, reinterpret_cast<cuDoubleComplex*>(&alpha),
                        reinterpret_cast<cuDoubleComplex const*>(A), lda, reinterpret_cast<cuDoubleComplex*>(&beta),
                        reinterpret_cast<cuDoubleComplex const*>(B), ldb,
                        reinterpret_cast<cuDoubleComplex*>(C), ldc), "cublasZgeam()");
}

//! \brief Wrapper around sgemv().
inline void gemv(cublasHandle_t handle, cublasOperation_t transa, int M, int N,
                 float alpha, float const A[], int lda, float const x[], int incx, float beta, float y[], int incy){
    cucheck( cublasSgemv(handle, transa, M, N, &alpha, A, lda, x, incx, &beta, y, incy), "cublasSgemv()");
}
//! \brief Wrapper around dgemv().
inline void gemv(cublasHandle_t handle, cublasOperation_t transa, int M, int N,
                 double alpha, double const A[], int lda, double const x[], int incx, double beta, double y[], int incy){
    cucheck( cublasDgemv(handle, transa, M, N, &alpha, A, lda, x, incx, &beta, y, incy), "cublasDgemv()");
}
//! \brief Wrapper around dtrsv().
inline void trsv(cublasHandle_t handle, cublasFillMode_t uplo, cublasOperation_t trans, cublasDiagType_t diag,
                 int n, const double A[], int lda, double x[], int incx){
    cucheck(cublasDtrsv(handle, uplo, trans, diag, n, A, lda, x, incx), "cublasDtrsv()");
}
//! \brief Wrapper around ztrsv().
inline void trsv(cublasHandle_t handle, cublasFillMode_t uplo, cublasOperation_t trans, cublasDiagType_t diag,
                 int n, const std::complex<double> A[], int lda, std::complex<double> x[], int incx){
    cucheck(cublasZtrsv(handle, uplo, trans, diag, n, reinterpret_cast<cuDoubleComplex const*>(A), lda,
                        reinterpret_cast<cuDoubleComplex*>(x), incx), "cublasZtrsv()");
}

//! \brief Wrapper around sgemm().
inline void gemm(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int M, int N, int K,
                 float alpha, float const A[], int lda, float const B[], int ldb, float beta, float C[], int ldc){
    cucheck( cublasSgemm(handle, transa, transb, M, N, K, &alpha, A, lda, B, ldb, &beta, C, ldc), "cublasSgemm()");
}
//! \brief Wrapper around dgemm().
inline void gemm(cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb, int M, int N, int K,
                 double alpha, double const A[], int lda, double const B[], int ldb, double beta, double C[], int ldc){
    cucheck( cublasDgemm(handle, transa, transb, M, N, K, &alpha, A, lda, B, ldb, &beta, C, ldc), "cublasDgemm()");
}
//! \brief Wrapper around dtrsm().
inline void trsm(cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo,
                 cublasOperation_t trans, cublasDiagType_t diag, int m, int n,
                 double alpha, double const A[], int lda, double B[], int ldb){
    cucheck(cublasDtrsm(handle, side, uplo, trans, diag, m, n, &alpha, A, lda, B, ldb), "cublasDtrsm()");
}
//! \brief Wrapper around ztrsm().
inline void trsm(cublasHandle_t handle, cublasSideMode_t side, cublasFillMode_t uplo,
                 cublasOperation_t trans, cublasDiagType_t diag, int m, int n,
                 std::complex<double> alpha, std::complex<double> const A[], int lda, std::complex<double> B[], int ldb){
    cucheck(cublasZtrsm(handle, side, uplo, trans, diag, m, n, reinterpret_cast<cuDoubleComplex*>(&alpha),
                        reinterpret_cast<cuDoubleComplex const*>(A), lda, reinterpret_cast<cuDoubleComplex*>(B), ldb), "cublasZtrsm()");
}

#if (CUDART_VERSION < 13000)
/*
 * cuSparse section
 */
//! \brief Returns the buffer size needed by gemvi.
template<typename T>
size_t size_sparse_gemvi(cusparseHandle_t handle, cusparseOperation_t transa, int M, int N, int nnz){
    static_assert(std::is_same<T, double>::value || std::is_same<T, float>::value, "size_sparse_gemvi() works only with float and double");
    int buff_size = 0;
    if (std::is_same<T, float>::value){
        cucheck( cusparseSgemvi_bufferSize(handle, transa, M, N, nnz, &buff_size), "cusparseSgemvi_bufferSize()");
    }else{
        cucheck( cusparseDgemvi_bufferSize(handle, transa, M, N, nnz, &buff_size), "cusparseDgemvi_bufferSize()");
    }
    return static_cast<size_t>(buff_size);
}
//! \brief Wrapper around sgemvi().
inline void sparse_gemvi(cusparseHandle_t handle, cusparseOperation_t  transa,
               int M, int N, float alpha, float const A[], int lda,
               int nnz, const float x[], int const indx[], float beta, float y[]){
    GpuVector<float> buff(nullptr, size_sparse_gemvi<float>(handle, transa, M, N, nnz) );
    cucheck( cusparseSgemvi(handle, transa, M, N, &alpha, A, lda, nnz, x, indx, &beta, y, CUSPARSE_INDEX_BASE_ZERO, buff.data()), "cusparseSgemvi()");
}
//! \brief Wrapper around dgemvi().
inline void sparse_gemvi(cusparseHandle_t handle, cusparseOperation_t  transa,
               int M, int N, double alpha, double const A[], int lda,
               int nnz, const double x[], int const indx[], double beta, double y[]){
    GpuVector<double> buff(nullptr, size_sparse_gemvi<double>(handle, transa, M, N, nnz) );
    cucheck( cusparseDgemvi(handle, transa, M, N, &alpha, A, lda, nnz, x, indx, &beta, y, CUSPARSE_INDEX_BASE_ZERO, buff.data()), "cusparseDgemvi()");
}
#endif

#if (CUDART_VERSION < 11000)
//! \brief Wrapper around sgemv().
inline void sparse_gemv(cusparseHandle_t handle, cusparseOperation_t transa, int M, int N, int nnz,
                        float alpha, cusparseMatDesc &matdesc, float const vals[], int const pntr[], int const indx[],
                        float const x[], float beta, float y[]){
    cucheck( cusparseScsrmv(handle, transa, M, N, nnz, &alpha, matdesc, vals, pntr, indx, x, &beta, y), "cusparseScsrmv()");
}
//! \brief Wrapper around dgemv().
inline void sparse_gemv(cusparseHandle_t handle, cusparseOperation_t transa, int M, int N, int nnz,
                        double alpha, cusparseMatDesc &matdesc, double const vals[], int const pntr[], int const indx[],
                        double const x[], double beta, double y[]){
    cucheck( cusparseDcsrmv(handle, transa, M, N, nnz, &alpha, matdesc, vals, pntr, indx, x, &beta, y), "cusparseDcsrmv()");
}

//! \brief Wrapper around sgemm().
inline void sparse_gemm(cusparseHandle_t handle, cusparseOperation_t transa, cusparseOperation_t transb,
                        int M, int N, int K, int nnz, float alpha,
                        cusparseMatDesc &matdesc, float const vals[], int const pntr[], int const indx[],
                        float const B[], int ldb, float beta, float C[], int ldc){
    cucheck( cusparseScsrmm2(handle, transa, transb, M, N, K, nnz, &alpha, matdesc, vals, pntr, indx, B, ldb, &beta, C, ldc), "cusparseScsrmm2()");
}
//! \brief Wrapper around dgemm().
inline void sparse_gemm(cusparseHandle_t handle, cusparseOperation_t transa, cusparseOperation_t transb,
                        int M, int N, int K, int nnz, double alpha,
                        cusparseMatDesc &matdesc, double const vals[], int const pntr[], int const indx[],
                        double const B[], int ldb, double beta, double C[], int ldc){
    cucheck( cusparseDcsrmm2(handle, transa, transb, M, N, K, nnz, &alpha, matdesc, vals, pntr, indx, B, ldb, &beta, C, ldc), "cusparseDcsrmm2()");
}
#else
//! \brief Wrapper around sgemv().
template<typename scalar_type>
inline void sparse_gemv(cusparseHandle_t handle, int M, int N, int nnz, typename GpuVector<scalar_type>::value_type alpha,
                        scalar_type const vals[], int const pntr[], int const indx[], scalar_type const x[],
                        typename GpuVector<scalar_type>::value_type beta, scalar_type y[]){
    auto matdesc = makeSparseMatDesc(M, N, nnz, pntr, indx, vals);
    auto xdesc = makeSparseDenseVecDesc(N, x);
    auto ydesc = makeSparseDenseVecDesc(M, y);
    cudaDataType_t cuda_type = (std::is_same<scalar_type, float>::value) ? CUDA_R_32F : CUDA_R_64F;

    size_t bsize = 0;
    #if (CUDART_VERSION < 12000)
    cucheck( cusparseSpMV_bufferSize(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_MV_ALG_DEFAULT, &bsize),
        "cusparseSpMV_bufferSize()"
    );
    #else
    cucheck( cusparseSpMV_bufferSize(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_SPMV_ALG_DEFAULT, &bsize),
        "cusparseSpMV_bufferSize()"
    );
    #endif

    GpuVector<scalar_type> buffer(nullptr, bsize / sizeof(scalar_type));

    #if (CUDART_VERSION < 12000)
    cucheck( cusparseSpMV(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_MV_ALG_DEFAULT, buffer.data()),
        "cusparseSpMV()"
    );
    #else
    cucheck( cusparseSpMV(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matdesc, xdesc, &beta, ydesc, cuda_type, CUSPARSE_SPMV_ALG_DEFAULT, buffer.data()),
        "cusparseSpMV()"
    );
    #endif
}
//! \brief Wrapper around dgemm().
template<typename scalar_type>
inline void sparse_gemm(cusparseHandle_t handle, int M, int N, int K, int nnz, typename GpuVector<scalar_type>::value_type alpha,
                        scalar_type const vals[], int const pntr[], int const indx[],
                        scalar_type const B[], int ldb, typename GpuVector<scalar_type>::value_type beta, scalar_type C[], int ldc){
    auto matdesc = makeSparseMatDesc(M, K, nnz, pntr, indx, vals);
    auto bdesc = makeSparseDenseMatDesc(N, K, ldb, B);
    auto cdesc = makeSparseDenseMatDesc(M, N, ldc, C);
    cudaDataType_t cuda_type = (std::is_same<scalar_type, float>::value) ? CUDA_R_32F : CUDA_R_64F;

    size_t bsize = 0;
    cucheck( cusparseSpMM_bufferSize(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE,
                                     &alpha, matdesc, bdesc, &beta, cdesc, cuda_type, CUSPARSE_SPMM_ALG_DEFAULT, &bsize), "cusparseSpMM_bufferSize()");

    GpuVector<scalar_type> buffer(nullptr, bsize / sizeof(scalar_type));

    cucheck( cusparseSpMM(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE, &alpha, matdesc, bdesc, &beta, cdesc,
                          cuda_type, CUSPARSE_SPMM_ALG_DEFAULT, buffer.data()),
        "cusparseSpMM()"
    );
}
#endif

/*
 * cuSolver section
 */
//! \brief Wrapper around dgeqrf() - get size.
inline size_t size_geqrf(cusolverDnHandle_t handle, int m, int n, double A[], int lda){
    int result = 0;
    cucheck(cusolverDnDgeqrf_bufferSize(handle, m, n, A, lda, &result), "cusolverDnDgeqrf_bufferSize()");
    return static_cast<size_t>(result);
}
//! \brief Wrapper around zgeqrf() - get size.
inline size_t size_geqrf(cusolverDnHandle_t handle, int m, int n, std::complex<double> A[], int lda){
    int result = 0;
    cucheck(cusolverDnZgeqrf_bufferSize(handle, m, n, reinterpret_cast<cuDoubleComplex*>(A), lda, &result), "cusolverDnZgeqrf_bufferSize()");
    return static_cast<size_t>(result);
}

//! \brief Wrapper around dgeqrf().
inline void geqrf(cusolverDnHandle_t handle, int m, int n, double A[], int lda, double tau[]){
    GpuVector<double> workspace(nullptr, size_geqrf(handle, m, n, A, lda) );
    GpuVector<int> info(nullptr, std::vector<int>(1, 0));
    cucheck(cusolverDnDgeqrf(handle, m, n, A, lda, tau, workspace.data(), static_cast<int>(workspace.size()), info.data()), "cusolverDnDgeqrf()");
    if (info.unload(nullptr)[0] != 0)
        throw std::runtime_error("cusolverDnDgeqrf() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around zgeqrf().
inline void geqrf(cusolverDnHandle_t handle, int m, int n, std::complex<double> A[], int lda, std::complex<double> tau[]){
    GpuVector<std::complex<double>> workspace( nullptr, size_geqrf(handle, m, n, A, lda) );
    GpuVector<int> info(nullptr, std::vector<int>(1, 0));
    cucheck(cusolverDnZgeqrf(handle, m, n, reinterpret_cast<cuDoubleComplex*>(A), lda,
                             reinterpret_cast<cuDoubleComplex*>(tau), reinterpret_cast<cuDoubleComplex*>(workspace.data()),
                             static_cast<int>(workspace.size()), info.data()), "cusolverDnZgeqrf()");
    if (info.unload(nullptr)[0] != 0)
        throw std::runtime_error("cusolverDnZgeqrf() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}

//! \brief Wrapper around dormqr() - get size.
inline size_t size_gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
                         int m, int n, int k, double const A[], int lda,
                         double const tau[], double const C[], int ldc){
    int result = 0;
    cucheck(cusolverDnDormqr_bufferSize(handle, side, trans, m, n, k, A, lda, tau, C, ldc, &result), "cusolverDnDormqr_bufferSize()");
    return static_cast<size_t>(result);
}
//! \brief Wrapper around zunmqr() - get size.
inline size_t size_gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
                         int m, int n, int k, std::complex<double> const A[], int lda,
                         std::complex<double> const tau[], std::complex<double> const C[], int ldc){
    int result = 0;
    cucheck(cusolverDnZunmqr_bufferSize(handle, side, trans, m, n, k, reinterpret_cast<cuDoubleComplex const*>(A), lda,
                                        reinterpret_cast<cuDoubleComplex const*>(tau), reinterpret_cast<cuDoubleComplex const*>(C), ldc, &result),
            "cusolverDnZunmqr_bufferSize()");
    return static_cast<size_t>(result);
}

//! \brief Wrapper around dormqr().
inline void gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
                  int m, int n, int k, double const A[], int lda, double const tau[], double C[], int ldc){
    GpuVector<int> info(nullptr, std::vector<int>(1, 0));
    GpuVector<double> workspace( nullptr, size_gemqr(handle, side, trans, m, n, k, A, lda, tau, C, ldc) );
    cucheck(cusolverDnDormqr(handle, side, trans, m, n, k, A, lda, tau, C, ldc,
                             workspace.data(), static_cast<int>(workspace.size()), info.data()), "cusolverDnDormqr()");
    if (info.unload(nullptr)[0] != 0)
        throw std::runtime_error("cusolverDnDormqr() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}
//! \brief Wrapper around zunmqr().
inline void gemqr(cusolverDnHandle_t handle, cublasSideMode_t side, cublasOperation_t trans,
                  int m, int n, int k, std::complex<double> const A[], int lda, std::complex<double> const tau[],
                  std::complex<double> C[], int ldc){
    GpuVector<int> info(nullptr, std::vector<int>(1, 0));
    GpuVector<std::complex<double>> workspace( nullptr, size_gemqr(handle, side, trans, m, n, k, A, lda, tau, C, ldc) );
    cucheck(cusolverDnZunmqr(handle, side, trans, m, n, k, reinterpret_cast<cuDoubleComplex const*>(A), lda,
                             reinterpret_cast<cuDoubleComplex const*>(tau), reinterpret_cast<cuDoubleComplex*>(C), ldc,
                             reinterpret_cast<cuDoubleComplex*>(workspace.data()), static_cast<int>(workspace.size()), info.data()),
            "cusolverDnZunmqr()");
    if (info.unload(nullptr)[0] != 0)
        throw std::runtime_error("cusolverDnZunmqr() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}

//! \brief Wrapper around cusolverDnDgetrs().
void getrs(cusolverDnHandle_t handle, cublasOperation_t trans, int n, int nrhs, double const A[], int lda, int const ipiv[], double B[], int ldb){
    GpuVector<int> info(nullptr, std::vector<int>(1, 0));
    cucheck(cusolverDnDgetrs(handle, trans, n, nrhs, A, lda, ipiv, B, ldb, info.data()), "cusolverDnDgetrs()");
    if (info.unload(nullptr)[0] != 0)
        throw std::runtime_error("cusolverDnDgetrs() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}

//! \brief Wrapper around cusolverDnDgetrf().
void factorizePLU(AccelerationContext const *acceleration, int n, double A[], int ipiv[]){
    cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
    int size = 0;
    cucheck(cusolverDnDgetrf_bufferSize(cusolverdnh, n, n, A, n, &size), "cusolverDnDgetrf_bufferSize()");
    GpuVector<double> workspace(nullptr, static_cast<size_t>(size));
    GpuVector<int> info(nullptr, std::vector<int>(1, 0));
    cucheck(cusolverDnDgetrf(cusolverdnh, n, n, A, n, workspace.data(), ipiv, info.data()), "cusolverDnDgetrf()");
    if (info.unload(nullptr)[0] != 0)
        throw std::runtime_error("cusolverDnDgetrf() returned non-zero status: " + std::to_string(info.unload(nullptr)[0]));
}

void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int const ipiv[], double b[]){
    cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
    getrs(cusolverdnh, (trans == 'T') ? CUBLAS_OP_T: CUBLAS_OP_N, n, 1, A, n, ipiv, b, n);
}
void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int const ipiv[], int nrhs, double B[]){
    cublasHandle_t cublash = getCuBlasHandle(acceleration);
    cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);
    GpuVector<double> BT(nullptr, n, nrhs);
    geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, n, nrhs, 1.0, B, nrhs, 0.0, B, nrhs, BT.data(), n);
    getrs(cusolverdnh, (trans == 'T') ? CUBLAS_OP_T: CUBLAS_OP_N, n, nrhs, A, n, ipiv, BT.data(), n);
    geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, nrhs, n, 1.0, BT.data(), n, 0.0, BT.data(), n, B, nrhs);
}

/*
 * Algorithm section
 */
template<typename scalar_type>
void solveLSmultiGPU(AccelerationContext const *acceleration, int n, int m, scalar_type A[], int nrhs, scalar_type B[]){
    cublasHandle_t cublash = getCuBlasHandle(acceleration);
    cusolverDnHandle_t cusolverdnh = getCuSolverDnHandle(acceleration);

    GpuVector<scalar_type> AT(nullptr, n, m);
    geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, n, m, 1.0, A, m, 0.0, A, m, AT.data(), n);

    GpuVector<scalar_type> T(nullptr, m);
    geqrf(cusolverdnh, n, m, AT.data(), n, T.data());

    cublasOperation_t trans = (std::is_same<scalar_type, double>::value) ? CUBLAS_OP_T : CUBLAS_OP_C;

    if (nrhs == 1){
        gemqr(cusolverdnh, CUBLAS_SIDE_LEFT, trans, n, 1, m, AT.data(), n, T.data(), B, n);
        trsv(cublash, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, m, AT.data(), n, B, 1);
    }else{
        GpuVector<scalar_type> BT(nullptr, n, nrhs);
        geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, n, nrhs, 1.0, B, nrhs, 0.0, B, nrhs, BT.data(), n);

        gemqr(cusolverdnh, CUBLAS_SIDE_LEFT, trans, n, nrhs, m, AT.data(), n, T.data(), BT.data(), n);
        trsm(cublash, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, m, nrhs, 1.0, AT.data(), n, BT.data(), n);

        geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, nrhs, n, 1.0, BT.data(), n, 0.0, BT.data(), n, B, nrhs);
    }
}

template void solveLSmultiGPU<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiGPU<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);

#ifndef Tasmanian_ENABLE_MAGMA
template<typename scalar_type>
void solveLSmultiOOC(AccelerationContext const*, int, int, scalar_type[], int, scalar_type[]){}
#endif

template void solveLSmultiOOC<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiOOC<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);


template<typename scalar_type>
void denseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha, GpuVector<scalar_type> const &A,
                   GpuVector<scalar_type> const &B, typename GpuVector<scalar_type>::value_type beta, scalar_type C[]){
    cublasHandle_t cublash = getCuBlasHandle(acceleration);
    if (M > 1){
        if (N > 1){ // matrix-matrix mode
            gemm(cublash, CUBLAS_OP_N, CUBLAS_OP_N, M, N, K, alpha, A.data(), M, B.data(), K, beta, C, M);
        }else{ // matrix vector, A * v = C
            gemv(cublash, CUBLAS_OP_N, M, K, alpha, A.data(), M, B.data(), 1, beta, C, 1);
        }
    }else{ // matrix vector B^T * v = C
        gemv(cublash, CUBLAS_OP_T, K, N, alpha, B.data(), K, A.data(), 1, beta, C, 1);
    }
}

template void denseMultiply<float>(AccelerationContext const*, int, int, int, float,
                                   GpuVector<float> const&, GpuVector<float> const&, float, float[]);
template void denseMultiply<double>(AccelerationContext const*, int, int, int, double,
                                    GpuVector<double> const&, GpuVector<double> const&, double, double[]);

#if (CUDART_VERSION < 11000)
template<typename scalar_type>
void sparseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha,
                    GpuVector<scalar_type> const &A, GpuVector<int> const &pntr, GpuVector<int> const &indx,
                    GpuVector<scalar_type> const &vals, scalar_type C[]){

    cusparseHandle_t cusparseh = getCuSparseHandle(acceleration);

    if (N > 1){ // dense matrix has many columns
        cusparseMatDesc matdesc;
        if (M > 1){ // dense matrix has many rows, use matrix-matrix algorithm
            GpuVector<scalar_type> tempC(nullptr, M, N);
            sparse_gemm(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, CUSPARSE_OPERATION_TRANSPOSE, N, M, K, (int) indx.size(),
                        alpha, matdesc, vals.data(), pntr.data(), indx.data(), A.data(), M, 0.0, tempC.data(), N);

            cublasHandle_t cublash = getCuBlasHandle(acceleration);
            geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, M, N, 1.0, tempC.data(), N, 0.0, tempC.data(), N, C, M);
        }else{ // dense matrix has only one row, use sparse matrix times dense vector
            sparse_gemv(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, N, K, (int) indx.size(),
                        alpha, matdesc, vals.data(), pntr.data(), indx.data(), A.data(), 0.0, C);
        }
    }else{ // sparse matrix has only one column, use dense matrix times sparse vector
        // quote from Nvidia CUDA cusparse manual at https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-lt-t-gt-gemvi
        // "This function requires no extra storage for the general matrices when operation CUSPARSE_OPERATION_NON_TRANSPOSE is selected."
        // Yet, buffer is required when num_nz exceeds 32 even with CUSPARSE_OPERATION_NON_TRANSPOSE
        sparse_gemvi(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, M, K, alpha, A.data(), M, (int) indx.size(), vals.data(), indx.data(), 0.0, C);
    }
}
#else
template<typename scalar_type>
void sparseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha,
                    GpuVector<scalar_type> const &A, GpuVector<int> const &pntr, GpuVector<int> const &indx,
                    GpuVector<scalar_type> const &vals, scalar_type C[]){

    cusparseHandle_t cusparseh = getCuSparseHandle(acceleration);

    if (N > 1){ // dense matrix has many columns
        if (M > 1){ // dense matrix has many rows, use matrix-matrix algorithm
            GpuVector<scalar_type> tempC(nullptr, M, N);
            sparse_gemm(cusparseh, N, M, K, (int) indx.size(), alpha, vals.data(), pntr.data(), indx.data(), A.data(), M, 0.0, tempC.data(), N);

            cublasHandle_t cublash = getCuBlasHandle(acceleration);
            geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, M, N, 1.0, tempC.data(), N, 0.0, tempC.data(), N, C, M);
        }else{ // dense matrix has only one row, use sparse matrix times dense vector
            sparse_gemv(cusparseh, N, K, (int) indx.size(), alpha, vals.data(), pntr.data(), indx.data(), A.data(), 0.0, C);
        }
    }else{
        #if (CUDART_VERSION < 13000)
        sparse_gemvi(cusparseh, CUSPARSE_OPERATION_NON_TRANSPOSE, M, K, alpha, A.data(), M, (int) indx.size(), vals.data(), indx.data(), 0.0, C);
        #else
        GpuVector<scalar_type> tempC(nullptr, M, N);
        int nnz = static_cast<int>(indx.size());
        GpuVector<int> temp_pntr(nullptr, std::vector<int>{0, nnz});
        sparse_gemm(cusparseh, N, M, K, (int) indx.size(), alpha, vals.data(), temp_pntr.data(), indx.data(), A.data(), M, 0.0, tempC.data(), N);

        cublasHandle_t cublash = getCuBlasHandle(acceleration);
        geam(cublash, CUBLAS_OP_T, CUBLAS_OP_T, M, N, 1.0, tempC.data(), N, 0.0, tempC.data(), N, C, M);
        #endif
    }
}
#endif

template void sparseMultiply<float>(AccelerationContext const*, int, int, int, float, GpuVector<float> const &A,
                                    GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<float> const &vals, float C[]);
template void sparseMultiply<double>(AccelerationContext const*, int, int, int, double, GpuVector<double> const &A,
                                     GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<double> const &vals, double C[]);

template<typename T> void load_n(AccelerationContext const*, T const *cpu_data, size_t num_entries, T *gpu_data){
    TasGpu::cucheck( cudaMemcpy(gpu_data, cpu_data, num_entries * sizeof(T), cudaMemcpyHostToDevice), "cudaMemcpy() load_n to device");
}

template void load_n<int>(AccelerationContext const*, int const*, size_t, int*);
template void load_n<float>(AccelerationContext const*, float const*, size_t, float*);
template void load_n<double>(AccelerationContext const*, double const*, size_t, double*);
template void load_n<std::complex<double>>(AccelerationContext const*, std::complex<double> const*, size_t, std::complex<double>*);

}
}

#endif