1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_DPCPP_WRAPPERS_CPP
#define __TASMANIAN_DPCPP_WRAPPERS_CPP
#include "tsgDpcppWrappers.hpp"
/*!
* \file tsgDpcppWrappers.cpp
* \brief Wrappers to DPC++ functionality.
* \author Miroslav Stoyanov
* \ingroup TasmanianTPLWrappers
*
* Realizations of the GPU algorithms using the DPC++/MKL backend.
*/
namespace TasGrid{
void InternalSyclQueue::init_testing(int gpuid){
use_testing = true;
test_queue = makeNewQueue(gpuid);
}
InternalSyclQueue test_queue;
template<typename T> void GpuVector<T>::resize(AccelerationContext const *acc, size_t count){
if (count != num_entries){ // if the current array is not big enoug
clear(); // resets dynamic_mode
num_entries = count;
sycl::queue *q = getSyclQueue(acc);
sycl_queue = reinterpret_cast<void*>(q);
gpu_data = sycl::malloc_device<T>(num_entries, *q);
}
}
template<typename T> void GpuVector<T>::clear(){
num_entries = 0;
if (gpu_data != nullptr){
sycl::queue *q = reinterpret_cast<sycl::queue*>(sycl_queue);
sycl::free(gpu_data, *q);
q->wait(); // wait is needed here in case the pointer q gets deleted
}
gpu_data = nullptr;
}
template<typename T> void GpuVector<T>::load(AccelerationContext const *acc, size_t count, const T* cpu_data){
resize(acc, count);
sycl::queue *q = getSyclQueue(acc);
q->memcpy(gpu_data, cpu_data, count * sizeof(T)).wait();
}
template<typename T> void GpuVector<T>::unload(AccelerationContext const *acc, size_t num, T* cpu_data) const{
sycl::queue *q = getSyclQueue(acc);
q->memcpy(cpu_data, gpu_data, num * sizeof(T)).wait();
}
template void GpuVector<double>::resize(AccelerationContext const*, size_t);
template void GpuVector<double>::clear();
template void GpuVector<double>::load(AccelerationContext const*, size_t, const double*);
template void GpuVector<double>::unload(AccelerationContext const*, size_t, double*) const;
template void GpuVector<std::complex<double>>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::complex<double>>::clear();
template void GpuVector<std::complex<double>>::load(AccelerationContext const*, size_t, const std::complex<double>*);
template void GpuVector<std::complex<double>>::unload(AccelerationContext const*, size_t, std::complex<double>*) const;
template void GpuVector<float>::resize(AccelerationContext const*, size_t);
template void GpuVector<float>::clear();
template void GpuVector<float>::load(AccelerationContext const*, size_t, const float*);
template void GpuVector<float>::unload(AccelerationContext const*, size_t, float*) const;
template void GpuVector<int>::resize(AccelerationContext const*, size_t);
template void GpuVector<int>::clear();
template void GpuVector<int>::load(AccelerationContext const*, size_t, const int*);
template void GpuVector<int>::unload(AccelerationContext const*, size_t, int*) const;
template void GpuVector<std::int64_t>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::int64_t>::clear();
template void GpuVector<std::int64_t>::load(AccelerationContext const*, size_t, const std::int64_t*);
template void GpuVector<std::int64_t>::unload(AccelerationContext const*, size_t, std::int64_t*) const;
template<> void deleteHandle<AccHandle::Syclqueue>(int *p){
sycl::queue *q = reinterpret_cast<sycl::queue*>(p);
delete q;
}
void GpuEngine::setSyclQueue(void *queue){
internal_queue = std::unique_ptr<int, HandleDeleter<AccHandle::Syclqueue>>
(reinterpret_cast<int*>(queue), HandleDeleter<AccHandle::Syclqueue>(false));
}
int AccelerationMeta::getNumGpuDevices(){
return readSyclDevices().names.size();
}
void AccelerationMeta::setDefaultGpuDevice(int){}
unsigned long long AccelerationMeta::getTotalGPUMemory(int deviceID){ // int deviceID
return readSyclDevices().memory[deviceID];
}
std::string AccelerationMeta::getGpuDeviceName(int deviceID){ // int deviceID
return readSyclDevices().names[deviceID];
}
template<typename T> void AccelerationMeta::recvGpuArray(AccelerationContext const *acc, size_t num_entries, const T *gpu_data, std::vector<T> &cpu_data){
sycl::queue *q = getSyclQueue(acc);
cpu_data.resize(num_entries);
q->memcpy(cpu_data.data(), gpu_data, num_entries * sizeof(T)).wait();
}
template<typename T> void AccelerationMeta::delGpuArray(AccelerationContext const *acc, T *x){
sycl::queue *q = getSyclQueue(acc);
sycl::free(x, *q);
q->wait(); // wait is needed here in case the pointer q gets deleted
}
template void AccelerationMeta::recvGpuArray<double>(AccelerationContext const*, size_t num_entries, const double*, std::vector<double>&);
template void AccelerationMeta::recvGpuArray<float>(AccelerationContext const*, size_t num_entries, const float*, std::vector<float>&);
template void AccelerationMeta::recvGpuArray<int>(AccelerationContext const*, size_t num_entries, const int*, std::vector<int>&);
template void AccelerationMeta::delGpuArray<double>(AccelerationContext const*, double*);
template void AccelerationMeta::delGpuArray<float>(AccelerationContext const*, float*);
template void AccelerationMeta::delGpuArray<int>(AccelerationContext const*, int*);
namespace TasGpu{
template<typename scalar_type> struct tsg_transpose{};
template<typename scalar_type>
void transpose_matrix(sycl::queue *q, int m, int n, scalar_type const A[], scalar_type AT[]){
q->submit([&](sycl::handler& h){
h.parallel_for<tsg_transpose<scalar_type>>(sycl::range<2>{static_cast<size_t>(m), static_cast<size_t>(n)}, [=](sycl::id<2> i){
AT[i[0] * n + i[1]] = A[i[0] + m * i[1]];
});
}).wait();
}
//! \brief Wrapper around rocsolver_dgetrf().
void factorizePLU(AccelerationContext const *acceleration, int n, double A[], int_gpu_lapack ipiv[]){
sycl::queue *q = getSyclQueue(acceleration);
size_t size = oneapi::mkl::lapack::getrf_scratchpad_size<double>(*q, n, n, n);
GpuVector<double> workspace(acceleration, size);
oneapi::mkl::lapack::getrf(*q, n, n, A, n, ipiv, workspace.data(), size).wait();
}
void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int_gpu_lapack const ipiv[], double b[]){
sycl::queue *q = getSyclQueue(acceleration);
size_t size = oneapi::mkl::lapack::getrs_scratchpad_size<double>(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, 1, n, n);
GpuVector<double> workspace(acceleration, size);
oneapi::mkl::lapack::getrs(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, 1,
const_cast<double*>(A), n, const_cast<int_gpu_lapack*>(ipiv), b, n, workspace.data(), size).wait();
}
void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int_gpu_lapack const ipiv[], int nrhs, double B[]){
sycl::queue *q = getSyclQueue(acceleration);
size_t size = oneapi::mkl::lapack::getrs_scratchpad_size<double>(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, nrhs, n, n);
GpuVector<double> workspace(acceleration, size);
GpuVector<double> BT(acceleration, n, nrhs);
transpose_matrix(q, nrhs, n, B, BT.data());
oneapi::mkl::lapack::getrs(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, nrhs,
const_cast<double*>(A), n, const_cast<int_gpu_lapack*>(ipiv), BT.data(), n,
workspace.data(), size).wait();
transpose_matrix(q, n, nrhs, BT.data(), B);
}
template<typename scalar_type>
void dump_data(sycl::queue *q, size_t m, size_t n, scalar_type *data){
std::vector<scalar_type> cpu_data(m * n);
q->memcpy(cpu_data.data(), data, Utils::size_mult(m, n) * sizeof(scalar_type)).wait();
std::cout << std::scientific; std::cout.precision(4);
for(size_t i=0; i<m; i++){
for(size_t j=0; j<n; j++){
std::cout << std::setw(15) << cpu_data[j * m + i];
}
std::cout << std::endl;
}
std::cout << std::endl;
}
template<typename scalar_type>
std::int64_t gemqr_workspace(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t ldc){
return oneapi::mkl::lapack::ormqr_scratchpad_size<scalar_type>(*q, side, trans, m, n, k, lda, ldc);
}
template<>
std::int64_t gemqr_workspace<std::complex<double>>(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t ldc){
return oneapi::mkl::lapack::unmqr_scratchpad_size<std::complex<double>>(*q, side, trans, m, n, k, lda, ldc);
}
template<typename scalar_type>
inline void gemqr(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, scalar_type* A, std::int64_t lda, scalar_type *T, scalar_type* C, std::int64_t ldc, scalar_type* workspace, std::int64_t worksize){
oneapi::mkl::lapack::ormqr(*q, side, trans, m, n, k, A, lda, T, C, ldc, workspace, worksize).wait();
}
template<>
void gemqr<std::complex<double>>(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, std::complex<double>* A, std::int64_t lda, std::complex<double> *T, std::complex<double>* C, std::int64_t ldc, std::complex<double>* workspace, std::int64_t worksize){
oneapi::mkl::lapack::unmqr(*q, side, trans, m, n, k, A, lda, T, C, ldc, workspace, worksize).wait();
}
/*
* Algorithm section
*/
template<typename scalar_type>
void solveLSmultiGPU(AccelerationContext const *acceleration, int n, int m, scalar_type A[], int nrhs, scalar_type B[]){
sycl::queue *q = getSyclQueue(acceleration);
auto side = oneapi::mkl::side::left;
auto trans = (std::is_same<scalar_type, double>::value) ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::conjtrans;
std::int64_t worksize = oneapi::mkl::lapack::geqrf_scratchpad_size<scalar_type>(*q, n, m, n);
worksize = std::max(worksize, gemqr_workspace<scalar_type>(q, side, trans, n, nrhs, m, n, n));
GpuVector<scalar_type> AT(acceleration, n, m);
GpuVector<scalar_type> T(acceleration, m); // tau parameter, or the weights of the orthogonal shift
transpose_matrix(q, m, n, A, AT.data());
GpuVector<scalar_type> workspace(acceleration, worksize);
try{
oneapi::mkl::lapack::geqrf(*q, n, m, AT.data(), n, T.data(), workspace.data(), worksize).wait();
}catch(oneapi::mkl::lapack::exception &e){
std::cout << "lapack geqrf() error code: " << e.info()
<< "\nlapack geqrf() detail code: " << e.detail() << std::endl;
throw;
}
if (nrhs == 1){
try{
gemqr(q, side, trans, n, 1, m, AT.data(), n, T.data(), B, n, workspace.data(), worksize);
}catch(oneapi::mkl::lapack::exception &e){
std::cout << "lapack " << ((std::is_same<scalar_type, double>::value) ? "ormqr()" : "unmqr()")
<< " error code: " << e.info()
<< "\nlapack " << ((std::is_same<scalar_type, double>::value) ? "ormqr()" : "unmqr()")
<< " detail code: " << e.detail() << std::endl;
throw;
}
oneapi::mkl::blas::column_major::trsv(*q, oneapi::mkl::uplo::U, oneapi::mkl::transpose::N, oneapi::mkl::diag::N, m, AT.data(), n, B, 1).wait();
}else{
GpuVector<scalar_type> BT(acceleration, n, nrhs);
transpose_matrix(q, nrhs, n, B, BT.data());
gemqr(q, side, trans, n, nrhs, m, AT.data(), n, T.data(), BT.data(), n, workspace.data(), worksize);
oneapi::mkl::blas::column_major::trsm(*q, oneapi::mkl::side::L, oneapi::mkl::uplo::U, oneapi::mkl::transpose::N, oneapi::mkl::diag::N, m, nrhs, 1.0, AT.data(), n, BT.data(), n).wait();
transpose_matrix(q, n, nrhs, BT.data(), B);
}
}
template void solveLSmultiGPU<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiGPU<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);
#ifndef Tasmanian_ENABLE_MAGMA
template<typename scalar_type>
void solveLSmultiOOC(AccelerationContext const*, int, int, scalar_type[], int, scalar_type[]){}
#endif
template void solveLSmultiOOC<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiOOC<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);
template<typename scalar_type>
void denseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha, GpuVector<scalar_type> const &A,
GpuVector<scalar_type> const &B, typename GpuVector<scalar_type>::value_type beta, scalar_type C[]){
sycl::queue *q = getSyclQueue(acceleration);
if (M > 1){
if (N > 1){ // matrix-matrix mode
oneapi::mkl::blas::column_major::gemm(*q, oneapi::mkl::transpose::N, oneapi::mkl::transpose::N, M, N, K, alpha, A.data(), M, B.data(), K, beta, C, M).wait();
}else{ // matrix vector, A * v = C
oneapi::mkl::blas::column_major::gemv(*q, oneapi::mkl::transpose::N, M, K, alpha, A.data(), M, B.data(), 1, beta, C, 1).wait();
}
}else{ // matrix vector B^T * v = C
oneapi::mkl::blas::column_major::gemv(*q, oneapi::mkl::transpose::T, K, N, alpha, B.data(), K, A.data(), 1, beta, C, 1).wait();
}
}
template void denseMultiply<float>(AccelerationContext const*, int, int, int, float,
GpuVector<float> const&, GpuVector<float> const&, float, float[]);
template void denseMultiply<double>(AccelerationContext const*, int, int, int, double,
GpuVector<double> const&, GpuVector<double> const&, double, double[]);
template<typename scalar_type>
void sparseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha,
GpuVector<scalar_type> const &A, GpuVector<int> const &pntr, GpuVector<int> const &indx,
GpuVector<scalar_type> const &vals, scalar_type C[]){
sycl::queue *q = getSyclQueue(acceleration);
oneapi::mkl::sparse::matrix_handle_t mat = nullptr;
oneapi::mkl::sparse::init_matrix_handle(&mat);
oneapi::mkl::sparse::set_csr_data(*q, mat, N, K, oneapi::mkl::index_base::zero,
const_cast<int*>(pntr.data()), const_cast<int*>(indx.data()), const_cast<scalar_type*>(vals.data())).wait();
if (M == 1){ // using sparse-blas level 2
oneapi::mkl::sparse::gemv(*q, oneapi::mkl::transpose::nontrans, alpha, mat,
const_cast<scalar_type*>(A.data()), 0.0, C).wait();
}else{ // using sparse-blas level 3
oneapi::mkl::sparse::gemm(*q, oneapi::mkl::layout::row_major, oneapi::mkl::transpose::nontrans, oneapi::mkl::transpose::nontrans,
alpha, mat, const_cast<scalar_type*>(A.data()), M, M, 0.0, C, M).wait();
}
oneapi::mkl::sparse::release_matrix_handle(*q, &mat).wait();
}
template void sparseMultiply<float>(AccelerationContext const*, int, int, int, float, GpuVector<float> const &A,
GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<float> const &vals, float C[]);
template void sparseMultiply<double>(AccelerationContext const*, int, int, int, double, GpuVector<double> const &A,
GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<double> const &vals, double C[]);
template<typename T> void load_n(AccelerationContext const *acc, T const *cpu_data, size_t num_entries, T *gpu_data){
sycl::queue *q = getSyclQueue(acc);
q->memcpy(gpu_data, cpu_data, num_entries * sizeof(T)).wait();
}
template void load_n<int>(AccelerationContext const*, int const*, size_t, int*);
template void load_n<float>(AccelerationContext const*, float const*, size_t, float*);
template void load_n<double>(AccelerationContext const*, double const*, size_t, double*);
template void load_n<std::complex<double>>(AccelerationContext const*, std::complex<double> const*, size_t, std::complex<double>*);
}
}
#endif
|