File: tsgDpcppWrappers.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (336 lines) | stat: -rw-r--r-- 18,800 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#ifndef __TASMANIAN_DPCPP_WRAPPERS_CPP
#define __TASMANIAN_DPCPP_WRAPPERS_CPP

#include "tsgDpcppWrappers.hpp"

/*!
 * \file tsgDpcppWrappers.cpp
 * \brief Wrappers to DPC++ functionality.
 * \author Miroslav Stoyanov
 * \ingroup TasmanianTPLWrappers
 *
 * Realizations of the GPU algorithms using the DPC++/MKL backend.
 */

namespace TasGrid{

void InternalSyclQueue::init_testing(int gpuid){
    use_testing = true;
    test_queue = makeNewQueue(gpuid);
}
InternalSyclQueue test_queue;

template<typename T> void GpuVector<T>::resize(AccelerationContext const *acc, size_t count){
    if (count != num_entries){ // if the current array is not big enoug
        clear(); // resets dynamic_mode
        num_entries = count;
        sycl::queue *q = getSyclQueue(acc);
        sycl_queue = reinterpret_cast<void*>(q);
        gpu_data = sycl::malloc_device<T>(num_entries, *q);
    }
}
template<typename T> void GpuVector<T>::clear(){
    num_entries = 0;
    if (gpu_data != nullptr){
        sycl::queue *q = reinterpret_cast<sycl::queue*>(sycl_queue);
        sycl::free(gpu_data, *q);
        q->wait(); // wait is needed here in case the pointer q gets deleted
    }
    gpu_data = nullptr;
}
template<typename T> void GpuVector<T>::load(AccelerationContext const *acc, size_t count, const T* cpu_data){
    resize(acc, count);
    sycl::queue *q = getSyclQueue(acc);
    q->memcpy(gpu_data, cpu_data, count * sizeof(T)).wait();
}
template<typename T> void GpuVector<T>::unload(AccelerationContext const *acc, size_t num, T* cpu_data) const{
    sycl::queue *q = getSyclQueue(acc);
    q->memcpy(cpu_data, gpu_data, num * sizeof(T)).wait();
}

template void GpuVector<double>::resize(AccelerationContext const*, size_t);
template void GpuVector<double>::clear();
template void GpuVector<double>::load(AccelerationContext const*, size_t, const double*);
template void GpuVector<double>::unload(AccelerationContext const*, size_t, double*) const;

template void GpuVector<std::complex<double>>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::complex<double>>::clear();
template void GpuVector<std::complex<double>>::load(AccelerationContext const*, size_t, const std::complex<double>*);
template void GpuVector<std::complex<double>>::unload(AccelerationContext const*, size_t, std::complex<double>*) const;

template void GpuVector<float>::resize(AccelerationContext const*, size_t);
template void GpuVector<float>::clear();
template void GpuVector<float>::load(AccelerationContext const*, size_t, const float*);
template void GpuVector<float>::unload(AccelerationContext const*, size_t, float*) const;

template void GpuVector<int>::resize(AccelerationContext const*, size_t);
template void GpuVector<int>::clear();
template void GpuVector<int>::load(AccelerationContext const*, size_t, const int*);
template void GpuVector<int>::unload(AccelerationContext const*, size_t, int*) const;

template void GpuVector<std::int64_t>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::int64_t>::clear();
template void GpuVector<std::int64_t>::load(AccelerationContext const*, size_t, const std::int64_t*);
template void GpuVector<std::int64_t>::unload(AccelerationContext const*, size_t, std::int64_t*) const;

template<> void deleteHandle<AccHandle::Syclqueue>(int *p){
    sycl::queue *q = reinterpret_cast<sycl::queue*>(p);
    delete q;
}

void GpuEngine::setSyclQueue(void *queue){
    internal_queue = std::unique_ptr<int, HandleDeleter<AccHandle::Syclqueue>>
        (reinterpret_cast<int*>(queue), HandleDeleter<AccHandle::Syclqueue>(false));
}

int AccelerationMeta::getNumGpuDevices(){
    return readSyclDevices().names.size();
}
void AccelerationMeta::setDefaultGpuDevice(int){}
unsigned long long AccelerationMeta::getTotalGPUMemory(int deviceID){ // int deviceID
    return readSyclDevices().memory[deviceID];
}
std::string AccelerationMeta::getGpuDeviceName(int deviceID){ // int deviceID
    return readSyclDevices().names[deviceID];
}
template<typename T> void AccelerationMeta::recvGpuArray(AccelerationContext const *acc, size_t num_entries, const T *gpu_data, std::vector<T> &cpu_data){
    sycl::queue *q = getSyclQueue(acc);
    cpu_data.resize(num_entries);
    q->memcpy(cpu_data.data(), gpu_data, num_entries * sizeof(T)).wait();
}
template<typename T> void AccelerationMeta::delGpuArray(AccelerationContext const *acc, T *x){
    sycl::queue *q = getSyclQueue(acc);
    sycl::free(x, *q);
    q->wait(); // wait is needed here in case the pointer q gets deleted
}

template void AccelerationMeta::recvGpuArray<double>(AccelerationContext const*, size_t num_entries, const double*, std::vector<double>&);
template void AccelerationMeta::recvGpuArray<float>(AccelerationContext const*, size_t num_entries, const float*, std::vector<float>&);
template void AccelerationMeta::recvGpuArray<int>(AccelerationContext const*, size_t num_entries, const int*, std::vector<int>&);

template void AccelerationMeta::delGpuArray<double>(AccelerationContext const*, double*);
template void AccelerationMeta::delGpuArray<float>(AccelerationContext const*, float*);
template void AccelerationMeta::delGpuArray<int>(AccelerationContext const*, int*);

namespace TasGpu{

template<typename scalar_type> struct tsg_transpose{};

template<typename scalar_type>
void transpose_matrix(sycl::queue *q, int m, int n, scalar_type const A[], scalar_type AT[]){
    q->submit([&](sycl::handler& h){
            h.parallel_for<tsg_transpose<scalar_type>>(sycl::range<2>{static_cast<size_t>(m), static_cast<size_t>(n)}, [=](sycl::id<2> i){
                AT[i[0] * n + i[1]] = A[i[0] + m * i[1]];
            });
        }).wait();
}

//! \brief Wrapper around rocsolver_dgetrf().
void factorizePLU(AccelerationContext const *acceleration, int n, double A[], int_gpu_lapack ipiv[]){
    sycl::queue *q = getSyclQueue(acceleration);
    size_t size = oneapi::mkl::lapack::getrf_scratchpad_size<double>(*q, n, n, n);
    GpuVector<double> workspace(acceleration, size);
    oneapi::mkl::lapack::getrf(*q, n, n, A, n, ipiv, workspace.data(), size).wait();
}

void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int_gpu_lapack const ipiv[], double b[]){
    sycl::queue *q = getSyclQueue(acceleration);
    size_t size = oneapi::mkl::lapack::getrs_scratchpad_size<double>(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, 1, n, n);
    GpuVector<double> workspace(acceleration, size);
    oneapi::mkl::lapack::getrs(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, 1,
                               const_cast<double*>(A), n, const_cast<int_gpu_lapack*>(ipiv), b, n, workspace.data(), size).wait();
}
void solvePLU(AccelerationContext const *acceleration, char trans, int n, double const A[], int_gpu_lapack const ipiv[], int nrhs, double B[]){
    sycl::queue *q = getSyclQueue(acceleration);
    size_t size = oneapi::mkl::lapack::getrs_scratchpad_size<double>(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, nrhs, n, n);
    GpuVector<double> workspace(acceleration, size);
    GpuVector<double> BT(acceleration, n, nrhs);
    transpose_matrix(q, nrhs, n, B, BT.data());
    oneapi::mkl::lapack::getrs(*q, (trans == 'T') ? oneapi::mkl::transpose::T :oneapi::mkl::transpose::N, n, nrhs,
                               const_cast<double*>(A), n, const_cast<int_gpu_lapack*>(ipiv), BT.data(), n,
                               workspace.data(), size).wait();
    transpose_matrix(q, n, nrhs, BT.data(), B);
}

template<typename scalar_type>
void dump_data(sycl::queue *q, size_t m, size_t n, scalar_type *data){
    std::vector<scalar_type> cpu_data(m * n);
    q->memcpy(cpu_data.data(), data, Utils::size_mult(m, n) * sizeof(scalar_type)).wait();
    std::cout << std::scientific; std::cout.precision(4);
    for(size_t i=0; i<m; i++){
        for(size_t j=0; j<n; j++){
            std::cout << std::setw(15) << cpu_data[j * m + i];
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;
}

template<typename scalar_type>
std::int64_t gemqr_workspace(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t ldc){
    return oneapi::mkl::lapack::ormqr_scratchpad_size<scalar_type>(*q, side, trans, m, n, k, lda, ldc);
}

template<>
std::int64_t gemqr_workspace<std::complex<double>>(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t ldc){
    return oneapi::mkl::lapack::unmqr_scratchpad_size<std::complex<double>>(*q, side, trans, m, n, k, lda, ldc);
}

template<typename scalar_type>
inline void gemqr(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, scalar_type* A, std::int64_t lda, scalar_type *T, scalar_type* C, std::int64_t ldc, scalar_type* workspace, std::int64_t worksize){
    oneapi::mkl::lapack::ormqr(*q, side, trans, m, n, k, A, lda, T, C, ldc, workspace, worksize).wait();
}

template<>
void gemqr<std::complex<double>>(cl::sycl::queue *q, oneapi::mkl::side side, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, std::complex<double>* A, std::int64_t lda, std::complex<double> *T, std::complex<double>* C, std::int64_t ldc, std::complex<double>* workspace, std::int64_t worksize){
    oneapi::mkl::lapack::unmqr(*q, side, trans, m, n, k, A, lda, T, C, ldc, workspace, worksize).wait();
}

/*
 * Algorithm section
 */
template<typename scalar_type>
void solveLSmultiGPU(AccelerationContext const *acceleration, int n, int m, scalar_type A[], int nrhs, scalar_type B[]){
    sycl::queue *q = getSyclQueue(acceleration);

    auto side = oneapi::mkl::side::left;
    auto trans = (std::is_same<scalar_type, double>::value) ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::conjtrans;

    std::int64_t worksize = oneapi::mkl::lapack::geqrf_scratchpad_size<scalar_type>(*q, n, m, n);
    worksize = std::max(worksize, gemqr_workspace<scalar_type>(q, side, trans, n, nrhs, m, n, n));

    GpuVector<scalar_type> AT(acceleration, n, m);
    GpuVector<scalar_type> T(acceleration, m); // tau parameter, or the weights of the orthogonal shift
    transpose_matrix(q, m, n, A, AT.data());

    GpuVector<scalar_type> workspace(acceleration, worksize);
    try{
        oneapi::mkl::lapack::geqrf(*q, n, m, AT.data(), n, T.data(), workspace.data(), worksize).wait();
    }catch(oneapi::mkl::lapack::exception &e){
        std::cout << "lapack geqrf() error code:  " << e.info()
                  << "\nlapack geqrf() detail code: " << e.detail() << std::endl;
        throw;
    }

    if (nrhs == 1){
        try{
            gemqr(q, side, trans, n, 1, m, AT.data(), n, T.data(), B, n, workspace.data(), worksize);
        }catch(oneapi::mkl::lapack::exception &e){
            std::cout << "lapack " << ((std::is_same<scalar_type, double>::value) ? "ormqr()" : "unmqr()")
                      << " error code:  " << e.info()
                      << "\nlapack " << ((std::is_same<scalar_type, double>::value) ? "ormqr()" : "unmqr()")
                      << " detail code:  " << e.detail() << std::endl;
            throw;
        }
        oneapi::mkl::blas::column_major::trsv(*q, oneapi::mkl::uplo::U, oneapi::mkl::transpose::N, oneapi::mkl::diag::N, m, AT.data(), n, B, 1).wait();
    }else{
        GpuVector<scalar_type> BT(acceleration, n, nrhs);
        transpose_matrix(q, nrhs, n, B, BT.data());
        gemqr(q, side, trans, n, nrhs, m, AT.data(), n, T.data(), BT.data(), n, workspace.data(), worksize);
        oneapi::mkl::blas::column_major::trsm(*q, oneapi::mkl::side::L, oneapi::mkl::uplo::U, oneapi::mkl::transpose::N, oneapi::mkl::diag::N, m,  nrhs, 1.0, AT.data(), n, BT.data(), n).wait();
        transpose_matrix(q, n, nrhs, BT.data(), B);
    }
}

template void solveLSmultiGPU<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiGPU<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);

#ifndef Tasmanian_ENABLE_MAGMA
template<typename scalar_type>
void solveLSmultiOOC(AccelerationContext const*, int, int, scalar_type[], int, scalar_type[]){}
#endif

template void solveLSmultiOOC<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiOOC<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);

template<typename scalar_type>
void denseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha, GpuVector<scalar_type> const &A,
                   GpuVector<scalar_type> const &B, typename GpuVector<scalar_type>::value_type beta, scalar_type C[]){
    sycl::queue *q = getSyclQueue(acceleration);
    if (M > 1){
        if (N > 1){ // matrix-matrix mode
            oneapi::mkl::blas::column_major::gemm(*q, oneapi::mkl::transpose::N, oneapi::mkl::transpose::N, M, N, K, alpha, A.data(), M, B.data(), K, beta, C, M).wait();
        }else{ // matrix vector, A * v = C
            oneapi::mkl::blas::column_major::gemv(*q, oneapi::mkl::transpose::N, M, K, alpha, A.data(), M, B.data(), 1, beta, C, 1).wait();
        }
    }else{ // matrix vector B^T * v = C
        oneapi::mkl::blas::column_major::gemv(*q, oneapi::mkl::transpose::T, K, N, alpha, B.data(), K, A.data(), 1, beta, C, 1).wait();
    }
}

template void denseMultiply<float>(AccelerationContext const*, int, int, int, float,
                                   GpuVector<float> const&, GpuVector<float> const&, float, float[]);
template void denseMultiply<double>(AccelerationContext const*, int, int, int, double,
                                    GpuVector<double> const&, GpuVector<double> const&, double, double[]);

template<typename scalar_type>
void sparseMultiply(AccelerationContext const *acceleration, int M, int N, int K, typename GpuVector<scalar_type>::value_type alpha,
                    GpuVector<scalar_type> const &A, GpuVector<int> const &pntr, GpuVector<int> const &indx,
                    GpuVector<scalar_type> const &vals, scalar_type C[]){
    sycl::queue *q = getSyclQueue(acceleration);
    oneapi::mkl::sparse::matrix_handle_t mat = nullptr;
    oneapi::mkl::sparse::init_matrix_handle(&mat);

    oneapi::mkl::sparse::set_csr_data(*q, mat, N, K, oneapi::mkl::index_base::zero,
                                      const_cast<int*>(pntr.data()), const_cast<int*>(indx.data()), const_cast<scalar_type*>(vals.data())).wait();

    if (M == 1){ // using sparse-blas level 2
        oneapi::mkl::sparse::gemv(*q, oneapi::mkl::transpose::nontrans, alpha, mat,
                                  const_cast<scalar_type*>(A.data()), 0.0, C).wait();
    }else{ // using sparse-blas level 3
        oneapi::mkl::sparse::gemm(*q, oneapi::mkl::layout::row_major, oneapi::mkl::transpose::nontrans, oneapi::mkl::transpose::nontrans,
                                  alpha, mat, const_cast<scalar_type*>(A.data()), M, M, 0.0, C, M).wait();
    }

    oneapi::mkl::sparse::release_matrix_handle(*q, &mat).wait();
}

template void sparseMultiply<float>(AccelerationContext const*, int, int, int, float, GpuVector<float> const &A,
                                    GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<float> const &vals, float C[]);
template void sparseMultiply<double>(AccelerationContext const*, int, int, int, double, GpuVector<double> const &A,
                                     GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<double> const &vals, double C[]);

template<typename T> void load_n(AccelerationContext const *acc, T const *cpu_data, size_t num_entries, T *gpu_data){
    sycl::queue *q = getSyclQueue(acc);
    q->memcpy(gpu_data, cpu_data, num_entries * sizeof(T)).wait();
}

template void load_n<int>(AccelerationContext const*, int const*, size_t, int*);
template void load_n<float>(AccelerationContext const*, float const*, size_t, float*);
template void load_n<double>(AccelerationContext const*, double const*, size_t, double*);
template void load_n<std::complex<double>>(AccelerationContext const*, std::complex<double> const*, size_t, std::complex<double>*);

}
}

#endif