File: tsgGpuNull.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (196 lines) | stat: -rw-r--r-- 13,496 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#ifndef __TASMANIAN_CUDA_WRAPPERS_CPP
#define __TASMANIAN_CUDA_WRAPPERS_CPP

#include "tsgGpuWrappers.hpp"

/*!
 * \file tsgGpuNull.cpp
 * \brief Wrappers to no-op functions with GPU signature.
 * \author Miroslav Stoyanov
 * \ingroup TasmanianTPLWrappers
 *
 * Reduces the need for preprocessor macros by providing methods with GPU signature but no-op implementation.
 */

namespace TasGrid{
/*
 * Meta methods
 */
template<typename T> void GpuVector<T>::resize(AccelerationContext const*, size_t){}
template<typename T> void GpuVector<T>::clear(){}
template<typename T> void GpuVector<T>::load(AccelerationContext const*, size_t, const T[]){}
template<typename T> void GpuVector<T>::unload(AccelerationContext const*, size_t, T[]) const{}

template void GpuVector<double>::resize(AccelerationContext const*, size_t);
template void GpuVector<double>::clear();
template void GpuVector<double>::load(AccelerationContext const*, size_t, const double*);
template void GpuVector<double>::unload(AccelerationContext const*, size_t, double*) const;

template void GpuVector<std::complex<double>>::resize(AccelerationContext const*, size_t);
template void GpuVector<std::complex<double>>::clear();
template void GpuVector<std::complex<double>>::load(AccelerationContext const*, size_t, const std::complex<double>*);
template void GpuVector<std::complex<double>>::unload(AccelerationContext const*, size_t, std::complex<double>*) const;

template void GpuVector<float>::resize(AccelerationContext const*, size_t);
template void GpuVector<float>::clear();
template void GpuVector<float>::load(AccelerationContext const*, size_t, const float*);
template void GpuVector<float>::unload(AccelerationContext const*, size_t, float*) const;

template void GpuVector<int>::resize(AccelerationContext const*, size_t);
template void GpuVector<int>::clear();
template void GpuVector<int>::load(AccelerationContext const*, size_t, const int*);
template void GpuVector<int>::unload(AccelerationContext const*, size_t, int*) const;

int AccelerationMeta::getNumGpuDevices(){ return 0; }
void AccelerationMeta::setDefaultGpuDevice(int){}
unsigned long long AccelerationMeta::getTotalGPUMemory(int){ return 0; }
std::string AccelerationMeta::getGpuDeviceName(int){ return std::string(); }
template<typename T> void AccelerationMeta::recvGpuArray(AccelerationContext const*, size_t, const T[], std::vector<T>&){}
template<typename T> void AccelerationMeta::delGpuArray(AccelerationContext const*, T*){}

void* AccelerationMeta::createCublasHandle(){ return nullptr; }
void AccelerationMeta::deleteCublasHandle(void*){}

template void AccelerationMeta::recvGpuArray<double>(AccelerationContext const*, size_t num_entries, const double*, std::vector<double>&);
template void AccelerationMeta::recvGpuArray<float>(AccelerationContext const*, size_t num_entries, const float*, std::vector<float>&);
template void AccelerationMeta::recvGpuArray<int>(AccelerationContext const*, size_t num_entries, const int*, std::vector<int>&);

template void AccelerationMeta::delGpuArray<double>(AccelerationContext const*, double*);
template void AccelerationMeta::delGpuArray<float>(AccelerationContext const*, float*);
template void AccelerationMeta::delGpuArray<int>(AccelerationContext const*, int*);

namespace TasGpu{
/*
 * Algorithm section
 */
void factorizePLU(AccelerationContext const*, int, double[], int[]){}
void solvePLU(AccelerationContext const*, char, int, double const[], int const[], double[]){}
void solvePLU(AccelerationContext const*, char, int, double const[], int const[], int, double[]){}

template<typename scalar_type>
void solveLSmultiGPU(AccelerationContext const*, int, int, scalar_type[], int, scalar_type[]){}

template void solveLSmultiGPU<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiGPU<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);

template<typename scalar_type>
void solveLSmultiOOC(AccelerationContext const*, int, int, scalar_type[], int, scalar_type[]){}

template void solveLSmultiOOC<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void solveLSmultiOOC<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);

template<typename scalar_type>
void denseMultiply(AccelerationContext const*, int, int, int, typename GpuVector<scalar_type>::value_type, GpuVector<scalar_type> const&,
                   GpuVector<scalar_type> const&, typename GpuVector<scalar_type>::value_type, scalar_type[]){}

template void denseMultiply<float>(AccelerationContext const*, int, int, int, float,
                                   GpuVector<float> const&, GpuVector<float> const&, float, float[]);
template void denseMultiply<double>(AccelerationContext const*, int, int, int, double,
                                    GpuVector<double> const&, GpuVector<double> const&, double, double[]);

template<typename scalar_type>
void sparseMultiply(AccelerationContext const*, int, int, int, typename GpuVector<scalar_type>::value_type,
                    GpuVector<scalar_type> const&, GpuVector<int> const&, GpuVector<int> const&,
                    GpuVector<scalar_type> const&, scalar_type[]){}

template void sparseMultiply<float>(AccelerationContext const*, int, int, int, float, GpuVector<float> const &A,
                                    GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<float> const &vals, float C[]);
template void sparseMultiply<double>(AccelerationContext const*, int, int, int, double, GpuVector<double> const &A,
                                     GpuVector<int> const &pntr, GpuVector<int> const &indx, GpuVector<double> const &vals, double C[]);

template<typename T> void dtrans2can(AccelerationContext const*, bool, int, int, int, double const[], double const[], T const[], T[]){}
template<typename T> void devalpwpoly(AccelerationContext const*, int, TypeOneDRule, int, int, int, const T[], const T[], const T[], T[]){}

template<typename T>
void devalpwpoly_sparse(AccelerationContext const*, int, TypeOneDRule, int, int, const T[], GpuVector<T> const&, GpuVector<T> const&,
                                GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, GpuVector<int>&, GpuVector<int>&, GpuVector<T>&){}

template<typename T>
void devalseq(AccelerationContext const*, int, int, std::vector<int> const&, T const[], GpuVector<int> const&, GpuVector<int> const&, GpuVector<T> const&, GpuVector<T> const&, T[]){}
template<typename T>
void devalfor(AccelerationContext const*, int, int, std::vector<int> const&, const T[], GpuVector<int> const&, GpuVector<int> const&, T[], typename GpuVector<T>::value_type[]){}

template<typename T>
void devalglo(AccelerationContext const*, bool, bool, int, int, int, int, T const[],
              GpuVector<T> const&, GpuVector<T> const&, GpuVector<T> const&,
              GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
              GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
              GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, T[]){}

void fillDataGPU(AccelerationContext const*, double, long long, long long, double[]){}

template void dtrans2can<float>(AccelerationContext const*, bool, int, int, int, double const*, double const*, float const*, float*);
template void dtrans2can<double>(AccelerationContext const*, bool, int, int, int, double const*, double const*, double const*, double*);

template void devalpwpoly<float>(AccelerationContext const*, int, TypeOneDRule, int, int, int, float const*, float const*, float const*, float*);
template void devalpwpoly<double>(AccelerationContext const*, int, TypeOneDRule, int, int, int, double const*, double const*, double const*, double*);

template void devalpwpoly_sparse<float>(AccelerationContext const*, int, TypeOneDRule, int, int, float const*,
                                        GpuVector<float> const&, GpuVector<float> const&,
                                        GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
                                        GpuVector<int>&, GpuVector<int>&, GpuVector<float>&);
template void devalpwpoly_sparse<double>(AccelerationContext const*, int, TypeOneDRule, int, int, double const*,
                                         GpuVector<double> const&, GpuVector<double> const&,
                                         GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
                                         GpuVector<int>&, GpuVector<int>&, GpuVector<double>&);

template void devalfor<float>(AccelerationContext const*, int, int, std::vector<int> const&, float const*, GpuVector<int> const&, GpuVector<int> const&, float*, float*);
template void devalfor<double>(AccelerationContext const*, int, int, std::vector<int> const&, double const*, GpuVector<int> const&, GpuVector<int> const&, double*, double*);

template void devalseq<float>(AccelerationContext const*, int, int, std::vector<int> const&, float const*, GpuVector<int> const&,
                              GpuVector<int> const&, GpuVector<float> const&, GpuVector<float> const&, float*);
template void devalseq<double>(AccelerationContext const*, int, int, std::vector<int> const&, double const*, GpuVector<int> const&,
                               GpuVector<int> const&, GpuVector<double> const&, GpuVector<double> const&, double*);

template void devalglo<float>(AccelerationContext const*, bool, bool, int, int, int, int,
                              float const*, GpuVector<float> const&, GpuVector<float> const&, GpuVector<float> const&,
                              GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
                              GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
                              GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, float*);
template void devalglo<double>(AccelerationContext const*, bool, bool, int, int, int, int,
                               double const*, GpuVector<double> const&, GpuVector<double> const&, GpuVector<double> const&,
                               GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
                               GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&,
                               GpuVector<int> const&, GpuVector<int> const&, GpuVector<int> const&, double*);

template<typename T> void load_n(AccelerationContext const*, T const*, size_t, T*){}

template void load_n<int>(AccelerationContext const*, int const*, size_t, int*);
template void load_n<float>(AccelerationContext const*, float const*, size_t, float*);
template void load_n<double>(AccelerationContext const*, double const*, size_t, double*);
template void load_n<std::complex<double>>(AccelerationContext const*, std::complex<double> const*, size_t, std::complex<double>*);

}
}

#endif