1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
#ifndef _TASMANIAN_BENCHMARK_COMMON_HPP
#define _TASMANIAN_BENCHMARK_COMMON_HPP
#include <chrono>
#include "gridtestCLICommon.hpp"
enum BenchFuction{
bench_none,
bench_make,
bench_loadneeded,
bench_evaluate,
bench_evaluate_mixed,
bench_differentiate,
bench_iweights,
bench_refine
};
BenchFuction getTest(std::string const &s){
std::map<std::string, BenchFuction> str_to_test = {
{"evaluate", bench_evaluate},
{"evaluate-mixed", bench_evaluate_mixed},
{"differentiate", bench_differentiate},
{"loadneeded", bench_loadneeded},
{"makegrid", bench_make},
{"iweights", bench_iweights},
{"refine", bench_refine}
};
try{
return str_to_test.at(s);
}catch(std::out_of_range &){
cout << "ERROR: Unknown test: " << s << endl;
return bench_none;
}
}
enum class GridFamily{
none, global, sequence, localp, fourier, wavelet
};
GridFamily getGridFamily(std::string const &s){
std::map<std::string, GridFamily> str_to_rule = {
{"global", GridFamily::global},
{"sequence", GridFamily::sequence},
{"localp", GridFamily::localp},
{"fourier", GridFamily::fourier},
{"wavelet", GridFamily::wavelet},
};
GridFamily grid_family = GridFamily::none;
try{
grid_family = str_to_rule.at(s);
}catch(std::out_of_range &){
cout << "ERROR: Unknown grid type: " << s << endl;
}
return grid_family;
}
//! \brief Convert \b s.front() to a grid type indicated by the canonical rules, then \b s.pop_front() the processed string.
GridFamily getGridFamily(std::deque<std::string> &s){
GridFamily grid_family = getGridFamily(s.front());
s.pop_front();
return grid_family;
}
//! \brief Convert a string to int and advance the iterator.
template<typename StringListIterator>
void readEntry(StringListIterator &iter, int &val){
val = std::stoi(*iter++);
}
//! \brief Convert a string to double and advance the iterator.
template<typename StringListIterator>
void readEntry(StringListIterator &iter, double &val){
val = std::stod(*iter++);
}
//! \brief Convert a string to TypeDepth and advance the iterator.
template<typename StringListIterator>
void readEntry(StringListIterator &iter, TypeDepth &val){
val = IO::getDepthTypeString(*iter++);
}
//! \brief Convert a string to TypeOneDRule and advance the iterator.
template<typename StringListIterator>
void readEntry(StringListIterator &iter, TypeOneDRule &val){
val = IO::getRuleString(*iter++);
}
//! \brief Convert a string to TypeRefinement and advance the iterator.
template<typename StringListIterator>
void readEntry(StringListIterator &iter, TypeRefinement &val){
val = IO::getTypeRefinementString(*iter++);
}
//! \brief Convert a string to TypeAcceleration and advance the iterator.
template<typename StringListIterator>
void readEntry(StringListIterator &iter, TypeAcceleration &val){
val = AccelerationMeta::getIOAccelerationString((*iter++).c_str());
}
//! \brief Template to terminate recursion, read one entry of type \b ValType and return the iterator.
template<typename StringListIterator, typename ValType>
StringListIterator readEntries(StringListIterator iter, ValType &val){
readEntry(iter, val);
return iter;
}
//! \brief Template to read multiple entries from a string list, returns an iterator past the last processed string.
template<typename StringListIterator, typename ValType1, typename ValType2, typename...Other>
StringListIterator readEntries(StringListIterator iter, ValType1 &val1, ValType2 &val2, Other & ...others){
readEntry(iter, val1);
return readEntries(iter, val2, others...);
}
//! \brief If the current iterator is pointing to a string dense/sparse return the string and advance, else return "auto" and do nothing.
template<typename StringListIterator>
std::string checkFlavor(StringListIterator &iter, StringListIterator argend){
if (iter == argend) return "auto";
if (*iter == "sparse"){
iter++;
return "sparse";
}else if (*iter == "dense"){
iter++;
return "dense";
}else{
return "auto";
}
}
template<typename IteratorToList>
std::pair<std::vector<int>, std::vector<int>>
extractWeightsLimits(GridFamily grid_family, int num_dimensions, TypeDepth dtype,
IteratorToList &arg, IteratorToList const &argend){
std::vector<int> anisotropic_weights;
if (grid_family != GridFamily::localp && grid_family != GridFamily::wavelet){
int num_weights = (OneDimensionalMeta::getControurType(dtype) == type_curved) ? 2 * num_dimensions : num_dimensions;
for(int i=0; i<num_weights && arg != argend; i++)
anisotropic_weights.push_back(std::stoi(*arg++));
}
std::vector<int> level_limits;
for(int i=0; i<num_dimensions && arg != argend; i++)
level_limits.push_back(std::stoi(*arg++));
return std::make_pair(anisotropic_weights, level_limits);
}
inline std::function<TasmanianSparseGrid()>
getLambdaMakeGrid(GridFamily grid_family, int const &num_dimensions, const int &num_outputs,
int const &num_depth, TypeDepth const &dtype, TypeOneDRule const &rule, int const &order,
std::pair<std::vector<int>, std::vector<int>> const &extra){
if (grid_family == GridFamily::global){
return [&]()->TasmanianSparseGrid{
return makeGlobalGrid(num_dimensions, num_outputs, num_depth, dtype, rule, extra.first, 0.0, 0.0, nullptr, extra.second);
};
}else if (grid_family == GridFamily::sequence){
return [&]()->TasmanianSparseGrid{
return makeSequenceGrid(num_dimensions, num_outputs, num_depth, dtype, rule, extra.first, extra.second);
};
}else if (grid_family == GridFamily::localp){
return [&]()->TasmanianSparseGrid{
return makeLocalPolynomialGrid(num_dimensions, num_outputs, num_depth, order, rule, extra.second);
};
}else if (grid_family == GridFamily::fourier){
return [&]()->TasmanianSparseGrid{
return makeFourierGrid(num_dimensions, num_outputs, num_depth, dtype, extra.first, extra.second);
};
}else{ // default - wavelet
return [&]()->TasmanianSparseGrid{
return makeWaveletGrid(num_dimensions, num_outputs, num_depth, order, extra.second);
};
}
}
template<typename T = double>
std::vector<T> getRandomVector(int dim1, int dim2, long int seed){
std::vector<T> x(Utils::size_mult(dim1, dim2));
std::minstd_rand park_miller(seed);
std::uniform_real_distribution<T> unif(-1.0, 1.0);
for(auto &v : x) v = unif(park_miller);
return x;
}
template<typename T>
std::vector<std::vector<T>> getRandomVectors(int num_vectors, int dim1, int dim2){
std::vector<std::vector<T>> result((size_t) num_vectors);
long int seed = 44;
for(auto &r : result) r = getRandomVector<T>(dim1, dim2, seed++);
return result;
}
std::vector<double> getGenericModel(size_t num_dimensions, size_t num_outputs,
std::vector<double> const &points){
// model output k = k * exp(sum(x_1 ... x_dims))
size_t num_points = points.size() / num_dimensions;
std::vector<double> values(num_points * num_outputs);
auto ip = points.begin();
auto iv = values.begin();
while(ip != points.end()){
double exponent = std::exp( std::accumulate(ip, ip + num_dimensions, 0.0) );
std::advance(ip, num_dimensions);
for(size_t i = 0; i < num_outputs; i++)
*iv++ = double(i) * exponent;
}
return values;
}
void loadGenericModel(TasmanianSparseGrid &grid){
if (grid.getNumNeeded() == 0) return;
auto values = getGenericModel((size_t) grid.getNumDimensions(),
(size_t) grid.getNumOutputs(),
grid.getNeededPoints());
grid.loadNeededPoints(values);
}
struct DryRun{};
struct NoDryRun{};
struct NormalizedTime{};
struct RawTime{};
template<typename use_dry_run = NoDryRun, typename normalize = NormalizedTime>
int testMethod(int iteratons, std::function<void(int)> test){
if (std::is_same<use_dry_run, DryRun>::value)
test(iteratons-1);
auto time_start = std::chrono::system_clock::now();
for(int i=0; i<iteratons; i++) test(i);
auto time_end = std::chrono::system_clock::now();
long long elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
if (std::is_same<normalize, NormalizedTime>::value){
return static_cast<int>( 0.5 + double(elapsed) / double(iteratons) );
}else{
return static_cast<int>(elapsed);
}
}
#endif
|