File: example_sparse_grids_03.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (105 lines) | stat: -rw-r--r-- 4,599 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

#include "Tasmanian.hpp"

using namespace std;

/*!
 * \internal
 * \file example_sparse_grids_03.cpp
 * \brief Examples for the Tasmanian Sparse Grid module.
 * \author Miroslav Stoyanov
 * \ingroup TasmanianSGExamples
 *
 * Tasmanian Sparse Grids Example 3.
 * \endinternal
 */

/*!
 * \ingroup TasmanianSGExamples
 * \addtogroup TasmanianSGExamples3 Tasmanian Sparse Grids module, example 3
 *
 * \par Example 3
 * Compute \f$ \int_{-5}^{+5} \int_{-5}^{+5} \int_{-2}^{+3} \int_{-2}^{+3} \exp(-x_1^2 -x_2^2) \cos(x_3) \cos(x_4) dx_4 dx_3 dx_2 dx_1 \f$
 * using different rules and precision.
 */

/*!
 * \ingroup TasmanianSGExamples3
 * \brief Sparse Grids Example 3: compare different quadrature rules
 *
 * The example considers a 4D function that is well approximated in a total degree polynomial space.
 * In one and two dimensions, the Gauss-Legendre rule with tensor type gives creates an approximation
 * with the largest total degree space per number of points.
 * In higher dimensions (4 in this case), the sparse (level and qptotal) types have an advantage
 * but the sparse grid construction suffers because the rule is non-nested.
 * The nested Clenshaw-Curtis rule generates about the same total degree space per number of points,
 * but unlike the non-nested rule the extra points are not wasted and hence the approximation is better.
 * The Gauss-Patterson rule, which combines the higher exactness with forced nested structure,
 * outperforms all other methods in precision per number of points.
 *
 * \snippet SparseGrids/Examples/example_sparse_grids_03.cpp SG_Example_03 example
 */
void sparse_grids_example_03(){
#ifndef __TASMANIAN_DOXYGEN_SKIP
//! [SG_Example_03 example]
#endif

    cout << "\n---------------------------------------------------------------------------------------------------\n";
    cout << std::scientific; cout.precision(2);
    cout << "Example 3: integrate exp(-x1^2 - x2^2) * cos(x3) * cos(x4)\n"
         << "           for x1, x2 in [-5,5]; x3, x4 in [-2,3];\n"
         << "           using different rules and total degree polynomial space\n\n";

    int dimensions = 4;
    double exact = 1.861816427518323e+00 * 1.861816427518323e+00; // exact solution

    // creates a grid over the desired domain with specified precision and rule
    auto make_grid = [&](int precision, TasGrid::TypeOneDRule rule)->
        TasGrid::TasmanianSparseGrid{
            auto grid = TasGrid::makeGlobalGrid(dimensions, 0, precision,
                                                TasGrid::type_qptotal, rule);
            grid.setDomainTransform({-5.0, -5.0, -2.0, -2.0}, {5.0, 5.0, 3.0, 3.0});
            return grid;
        };

    // computes the integral using the quadrature provided by the grid
    // then prints the number of points and the error
    auto print_error = [&](TasGrid::TasmanianSparseGrid const &grid)->
        void{
            auto points = grid.getPoints();
            auto weights = grid.getQuadratureWeights();
            double integral = 0.0;
            for(size_t i=0; i<weights.size(); i++){
                double x1 = points[4*i + 0];
                double x2 = points[4*i + 1];
                double x3 = points[4*i + 2];
                double x4 = points[4*i + 3];
                integral += weights[i] * std::exp(-x1*x1 - x2*x2) * std::cos(x3) * std::cos(x4);
            }
            cout << setw(10) << grid.getNumPoints() << setw(10) << std::abs(integral - exact);
        };

    cout << setw(10) << " " << setw(20) << "Clenshaw-Curtis"
         << setw(20) << "Gauss-Legendre" << setw(20) << "Gauss-Patterson\n";
    cout << setw(10) << "precision" << setw(10) << "points" << setw(10) << "error"
         << setw(10) << "points" << setw(10) << "error"
         << setw(10) << "points" << setw(10) << "error\n";

    // print the error for different precision
    for(int precision=5; precision<=40; precision += 5){
        cout << setw(10) << precision;
        print_error( make_grid(precision, TasGrid::rule_clenshawcurtis) );
        print_error( make_grid(precision, TasGrid::rule_gausslegendreodd) );
        print_error( make_grid(precision, TasGrid::rule_gausspatterson) );
        cout << "\n";
    }

    cout << "\nAt 311K points the Gauss-Legendre error is O(1.E-1),\n"
         <<   "                   Clenshaw-Curtis error is O(1.E-7) at 320K points.\n";
    cout << "At 70K points the Gauss-Patterson error is O(1.E-4),\n"
         << "                  Clenshaw-Curtis needs 158K points to achieve the same." << endl;

#ifndef __TASMANIAN_DOXYGEN_SKIP
//! [SG_Example_03 example]
#endif
}