1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
#include "Tasmanian.hpp"
#include <random>
using namespace std;
/*!
* \internal
* \file example_sparse_grids_11.cpp
* \brief Examples for the Tasmanian Sparse Grid module.
* \author Miroslav Stoyanov
* \ingroup TasmanianSGExamples
*
* Tasmanian Sparse Grids Example 11.
* \endinternal
*/
/*!
* \ingroup TasmanianSGExamples
* \addtogroup TasmanianSGExamples11 Tasmanian Sparse Grids module, example 11
*
* \par Example 11
* Constructing a grid from unstructured data.
*/
/*!
* \ingroup TasmanianSGExamples11
* \brief Sparse Grids Example 11: Unstructured data
*
* Sparse grid approximation (or surrogates) can be constructed from a set of points
* not necessarily aligned to the points on the grid, using a least-squares fit.
* - the fit will not interpolate the data, i.e., there will be a difference between
* the surrogate and the data at each point
* - the overall accuracy will be lower and more points are needed to reach the same
* accuracy as in the structured case, the fit should be used when the model
* cannot be sampled exactly at the sparse grid points
* - solving the fit requires the solution to a system of linear equations and
* uses significant amount of flops and memory, at the minimum BLAS must be enabled
* but GPU acceleration is preferable with the MAGMA library which provides
* advanced out-of-core methods
*
* \snippet SparseGrids/Examples/example_sparse_grids_11.cpp SG_Example_11 example
*/
void sparse_grids_example_11(){
#ifndef __TASMANIAN_DOXYGEN_SKIP
//! [SG_Example_11 example]
#endif
cout << "\n---------------------------------------------------------------------------------------------------\n";
cout << std::scientific; cout.precision(4);
cout << "Example 11: construction using unstructured data\n\n";
int const num_inputs = 2;
// using random points to test the error
int const num_test_points = 1000;
std::vector<double> test_points(num_test_points * num_inputs);
std::minstd_rand park_miller(42);
std::uniform_real_distribution<double> domain(-1.0, 1.0);
for(auto &t : test_points) t = domain(park_miller);
// computes the error between the gird surrogate model and the actual model
// using the test points, finds the largest absolute error
auto get_error = [&](TasGrid::TasmanianSparseGrid const &grid,
std::function<void(double const x[], double y[], size_t)> model)->
double{
std::vector<double> grid_result;
grid.evaluateBatch(test_points, grid_result);
double err = 0.0;
for(int i=0; i<num_test_points; i++){
double model_result; // using only one output
model(&test_points[i*num_inputs], &model_result, 0);
err = std::max(err, std::abs(grid_result[i] - model_result));
}
return err;
};
// using a simple model
auto model = [](double const x[], double y[], size_t)->
void{ y[0] = std::exp(-x[0]*x[0] -x[1]-x[1]); };
auto grid = TasGrid::makeGlobalGrid(num_inputs, 1, 4, TasGrid::type_level, TasGrid::rule_clenshawcurtis);
// generate random data for the inputs, and compute the corresponding outputs
int const num_data_points = 2000;
std::vector<double> data_input(num_inputs * num_data_points);
std::vector<double> data_output(num_data_points);
for(auto &d : data_input) d = domain(park_miller);
for(int i=0; i<num_data_points; i++) model(&data_input[i * num_inputs], &data_output[i], 0);
// check if capability is available
if (not grid.isAccelerationAvailable(TasGrid::accel_cpu_blas) and
not grid.isAccelerationAvailable(TasGrid::accel_gpu_cuda) and
not grid.isAccelerationAvailable(TasGrid::accel_gpu_magma)){
cout << "Skipping example 11, BLAS, CUDA, or MAGMA acceleration required.\n";
return;
}
// accel_cpu_blas: works on the CPU and can utilize all available RAM
// accel_gpu_cuda: works on the GPU but it is restricted to the case
// where the data can fit in GPU memory
// accel_gpu_magma: works out-of-core, the data is stored in CPU RAM
// while computations are still done on the GPU
grid.enableAcceleration(TasGrid::accel_gpu_magma);
// constructs the grid, depending on the amount of data data,
// the side of the grid and the enabled acceleration
// this can take significant amount of time
TasGrid::loadUnstructuredDataL2(data_input, data_output, 1.E-4, grid);
cout << "Using construction from unstructured (random) data\n";
cout << " approximatino error = " << get_error(grid, model) << "\n\n";
#ifndef __TASMANIAN_DOXYGEN_SKIP
//! [SG_Example_11 example]
#endif
}
|