1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_TASGRID_FUNCTIONS_CPP
#define __TASMANIAN_TASGRID_FUNCTIONS_CPP
#include "gridtestTestFunctions.hpp"
#include "TasmanianSparseGrid.hpp"
using TasGrid::Maths::pi;
BaseFunction::BaseFunction(){}
BaseFunction::~BaseFunction(){}
OneOneP0::OneOneP0(){} OneOneP0::~OneOneP0(){} int OneOneP0::getNumInputs() const{ return 1; } int OneOneP0::getNumOutputs() const{ return 1; }
const char* OneOneP0::getDescription() const{ return "f(x) = 1"; }
void OneOneP0::eval(const double*, double y[]) const{ y[0] = 1.0; } void OneOneP0::getIntegral(double y[]) const{ y[0] = 2.0; }
void OneOneP0::getDerivative(const double*, double y[]) const{ y[0] = 0.0; }
OneOneP3::OneOneP3(){} OneOneP3::~OneOneP3(){} int OneOneP3::getNumInputs() const{ return 1; } int OneOneP3::getNumOutputs() const{ return 1; }
const char* OneOneP3::getDescription() const{ return "f(x) = x^3 + 2 x^2 + x + 3"; }
void OneOneP3::eval(const double x[], double y[]) const{ y[0] = x[0]*x[0]*x[0] + 2.0*x[0]*x[0] + x[0] + 3.0; } void OneOneP3::getIntegral(double y[]) const{ y[0] = 22.0/3.0; }
void OneOneP3::getDerivative(const double x[], double y[]) const{ y[0] = 3.0*x[0]*x[0] + 4.0*x[0] + 1.0; }
OneOneP4::OneOneP4(){} OneOneP4::~OneOneP4(){} int OneOneP4::getNumInputs() const{ return 1; } int OneOneP4::getNumOutputs() const{ return 1; }
const char* OneOneP4::getDescription() const{ return "f(x) = 0.5 x^4 + x^3 + 2 x^2 + x + 3"; }
void OneOneP4::eval(const double x[], double y[]) const{ y[0] = 0.5*x[0]*x[0]*x[0]*x[0] + x[0]*x[0]*x[0] + 2.0*x[0]*x[0] + x[0] + 3.0; } void OneOneP4::getIntegral(double y[]) const{ y[0] = 226.0/30.0; }
void OneOneP4::getDerivative(const double x[], double y[]) const{ y[0] = 2.0*x[0]*x[0]*x[0] + 3.0*x[0]*x[0] + 4.0*x[0] + 1.0; }
OneOneExpMX::OneOneExpMX(){} OneOneExpMX::~OneOneExpMX(){} int OneOneExpMX::getNumInputs() const{ return 1; } int OneOneExpMX::getNumOutputs() const{ return 1; }
const char* OneOneExpMX::getDescription() const{ return "f(x) = exp(-x^2)"; }
void OneOneExpMX::eval(const double x[], double y[]) const{ y[0] = std::exp(- x[0] * x[0]); } void OneOneExpMX::getIntegral(double y[]) const{ y[0] = 1.493648265624854; }
void OneOneExpMX::getDerivative(const double x[], double y[]) const{ y[0] = -2.0*x[0]*std::exp(-x[0]*x[0]); }
TwoOneP4::TwoOneP4(){} TwoOneP4::~TwoOneP4(){} int TwoOneP4::getNumInputs() const{ return 2; } int TwoOneP4::getNumOutputs() const{ return 1; }
const char* TwoOneP4::getDescription() const{ return "f(x,y) = x^4 + x^3 y + x^2 y^2 + x^1 y^3 + y^4"; }
void TwoOneP4::eval(const double x[], double y[]) const{ y[0] = x[0]*x[0]*x[0]*x[0] + x[0]*x[0]*x[0]*x[1] + x[0]*x[0]*x[1]*x[1] + x[0]*x[1]*x[1]*x[1] + x[1]*x[1]*x[1]*x[1]; } void TwoOneP4::getIntegral(double y[]) const{ y[0] = 92.0/45.0; }
void TwoOneP4::getDerivative(const double x[], double y[]) const{
y[0] = 4.0*x[0]*x[0]*x[0] + 3.0*x[0]*x[0]*x[1] + 2.0*x[0]*x[1]*x[1] + x[1]*x[1]*x[1];
y[1] = x[0]*x[0]*x[0] + 2.0*x[0]*x[0]*x[1] + 3.0*x[0]*x[1]*x[1] + 4.0*x[1]*x[1]*x[1];
}
TwoOneP5::TwoOneP5(){} TwoOneP5::~TwoOneP5(){} int TwoOneP5::getNumInputs() const{ return 2; } int TwoOneP5::getNumOutputs() const{ return 1; }
const char* TwoOneP5::getDescription() const{ return "f(x,y) = x^5 + x^4 y + x^3 y^2 + x^2 y^3 + x y^4 + y^5"; }
void TwoOneP5::eval(const double x[], double y[]) const{ y[0] = x[0]*x[0]*x[0]*x[0]*x[0] + x[0]*x[0]*x[0]*x[0]*x[1] + x[0]*x[0]*x[0]*x[1]*x[1] + x[0]*x[0]*x[1]*x[1]*x[1] + x[0]*x[1]*x[1]*x[1]*x[1] + x[1]*x[1]*x[1]*x[1]*x[1]; } void TwoOneP5::getIntegral(double y[]) const{ y[0] = 0.0; }
void TwoOneP5::getDerivative(const double x[], double y[]) const{
y[0] = 5.0*x[0]*x[0]*x[0]*x[0] + 4.0*x[0]*x[0]*x[0]*x[1] + 3.0*x[0]*x[0]*x[1]*x[1] + 2.0*x[0]*x[1]*x[1]*x[1] + x[1]*x[1]*x[1]*x[1];
y[1] = x[0]*x[0]*x[0]*x[0] + 2.0*x[0]*x[0]*x[0]*x[1] + 3.0*x[0]*x[0]*x[1]*x[1] + 4.0*x[0]*x[1]*x[1]*x[1] + 5.0*x[1]*x[1]*x[1]*x[1];
}
TwoOneExpNX2::TwoOneExpNX2(){} TwoOneExpNX2::~TwoOneExpNX2(){} int TwoOneExpNX2::getNumInputs() const{ return 2; } int TwoOneExpNX2::getNumOutputs() const{ return 1; }
const char* TwoOneExpNX2::getDescription() const{ return "f(x,y) = exp(-x^2 - y^2)"; }
void TwoOneExpNX2::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]*x[0] - x[1]*x[1]); } void TwoOneExpNX2::getIntegral(double y[]) const{ y[0] = 2.230985141404134; }
void TwoOneExpNX2::getDerivative(const double x[], double y[]) const{
y[0] = -2.0*x[0]*std::exp(-x[0]*x[0] - x[1]*x[1]);
y[1] = -2.0*x[1]*std::exp(-x[0]*x[0] - x[1]*x[1]);
}
ThreeOneExpNX2::ThreeOneExpNX2(){} ThreeOneExpNX2::~ThreeOneExpNX2(){} int ThreeOneExpNX2::getNumInputs() const{ return 3; } int ThreeOneExpNX2::getNumOutputs() const{ return 1; }
const char* ThreeOneExpNX2::getDescription() const{ return "f(x,y,z) = exp(-x^2 - y^2 - z^2)"; }
void ThreeOneExpNX2::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]); } void ThreeOneExpNX2::getIntegral(double y[]) const{ y[0] = 3.332307087; }
void ThreeOneExpNX2::getDerivative(const double x[], double y[]) const{
y[0] = -2.0*x[0]*std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]);
y[1] = -2.0*x[1]*std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]);
y[2] = -2.0*x[2]*std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]);
}
TwoOneCos::TwoOneCos(){} TwoOneCos::~TwoOneCos(){} int TwoOneCos::getNumInputs() const{ return 2; } int TwoOneCos::getNumOutputs() const{ return 1; }
const char* TwoOneCos::getDescription() const{ return "f(x,y) = cos(-x^2 - y^2 + xy)"; }
void TwoOneCos::eval(const double x[], double y[]) const{ y[0] = std::cos(-x[0]*x[0] - x[1]*x[1] + x[0]*x[1]); } void TwoOneCos::getIntegral(double y[]) const{ y[0] = 2.8137178748032379; }
void TwoOneCos::getDerivative(const double x[], double y[]) const{
y[0] = -(-2.0*x[0]+x[1]) * std::sin(-x[0]*x[0] - x[1]*x[1] + x[0]*x[1]);
y[1] = -(-2.0*x[1]+x[0]) * std::sin(-x[0]*x[0] - x[1]*x[1] + x[0]*x[1]);
}
TwoOneSinSin::TwoOneSinSin(){} TwoOneSinSin::~TwoOneSinSin(){} int TwoOneSinSin::getNumInputs() const{ return 2; } int TwoOneSinSin::getNumOutputs() const{ return 1; }
const char* TwoOneSinSin::getDescription() const{ return "f(x,y) = sin(pi * x) sin(pi * y)"; }
void TwoOneSinSin::eval(const double x[], double y[]) const{ y[0] = std::sin(pi * x[0]) * std::sin(pi * x[1]); } void TwoOneSinSin::getIntegral(double y[]) const{ y[0] = 0.0; }
void TwoOneSinSin::getDerivative(const double x[], double y[]) const{
y[0] = pi * std::cos(pi * x[0]) * std::sin(pi * x[1]);
y[1] = pi * std::sin(pi * x[0]) * std::cos(pi * x[1]);
}
TwoOneCosCos::TwoOneCosCos(){} TwoOneCosCos::~TwoOneCosCos(){} int TwoOneCosCos::getNumInputs() const{ return 2; } int TwoOneCosCos::getNumOutputs() const{ return 1; }
const char* TwoOneCosCos::getDescription() const{ return "f(x,y) = cos(pi/2 * x) cos(pi/2 * y)"; }
void TwoOneCosCos::eval(const double x[], double y[]) const{ y[0] = std::cos(0.5 * pi * x[0]) * std::cos(0.5 * pi * x[1]); } void TwoOneCosCos::getIntegral(double y[]) const{ y[0] = 16.0 / (pi * pi); }
void TwoOneCosCos::getDerivative(const double x[], double y[]) const{
y[0] = -0.5*pi * std::sin(0.5 * pi * x[0]) * std::cos(0.5 * pi * x[1]);
y[1] = -0.5*pi * std::cos(0.5 * pi * x[0]) * std::sin(0.5 * pi * x[1]);
}
TwoOneExpSinCos::TwoOneExpSinCos() {} TwoOneExpSinCos::~TwoOneExpSinCos() {} int TwoOneExpSinCos::getNumInputs() const{ return 2; } int TwoOneExpSinCos::getNumOutputs() const{ return 1; }
const char* TwoOneExpSinCos::getDescription() const{ return "f(x,y) = exp(sin(2*pi*x) + cos(2*pi*y)) on [0,1]^2 "; }
void TwoOneExpSinCos::eval(const double x[], double y[]) const{ y[0] = std::exp(std::sin(2*pi*x[0])+std::cos(2*pi*x[1])); } void TwoOneExpSinCos::getIntegral(double y[]) const{ y[0] = 1.6029228068079633 * 4.0; }
void TwoOneExpSinCos::getDerivative(const double x[], double y[]) const{
y[0] = 2*pi * std::cos(2*pi*x[0]) * std::exp(std::sin(2*pi*x[0])+std::cos(2*pi*x[1]));
y[1] = -2*pi * std::sin(2*pi*x[1]) * std::exp(std::sin(2*pi*x[0])+std::cos(2*pi*x[1]));
}
TwoOneSinCosAxis::TwoOneSinCosAxis() {} TwoOneSinCosAxis::~TwoOneSinCosAxis() {} int TwoOneSinCosAxis::getNumInputs() const{ return 2; } int TwoOneSinCosAxis::getNumOutputs() const{ return 1; }
const char* TwoOneSinCosAxis::getDescription() const{ return "f(x,y) = 1.0 + sin(pi * (x + y)) * cos(pi * (x - y)) on [-1,1]^2 "; }
void TwoOneSinCosAxis::eval(const double x[], double y[]) const{ y[0] = 1.0 + std::sin(pi*(x[0] + x[1])) * std::cos(pi*(x[0] - x[1])); } void TwoOneSinCosAxis::getIntegral(double y[]) const{ y[0] = 4.0; }
void TwoOneSinCosAxis::getDerivative(const double x[], double y[]) const{
y[0] = pi * std::cos(pi*(x[0] + x[1])) * std::cos(pi*(x[0] - x[1])) - pi * std::sin(pi*(x[0] + x[1])) * std::sin(pi*(x[0] - x[1]));
y[1] = pi * std::cos(pi*(x[0] + x[1])) * std::cos(pi*(x[0] - x[1])) + pi * std::sin(pi*(x[0] + x[1])) * std::sin(pi*(x[0] - x[1]));
}
TwoTwoSinCos::TwoTwoSinCos() {} TwoTwoSinCos::~TwoTwoSinCos() {} int TwoTwoSinCos::getNumInputs() const{ return 2; } int TwoTwoSinCos::getNumOutputs() const{ return 2; }
const char* TwoTwoSinCos::getDescription() const{ return "f(x,y) = [sin(2*pi*x)cos(4*pi*y), x^2*cos(2*pi*x)]"; }
void TwoTwoSinCos::eval(const double x[], double y[]) const{ y[0] = std::sin(2*pi*x[0])*std::cos(4*pi*x[1]); y[1] = x[0]*x[0]*cos(2*pi*x[0]); } void TwoTwoSinCos::getIntegral(double y[]) const{ y[0] = 0.0; y[1] = 1.0 / (2.0 * pi * pi); }
void TwoTwoSinCos::getDerivative(const double x[], double y[]) const{
y[0] = 2.0*pi * std::cos(2.0*pi*x[0])*std::cos(4*pi*x[1]);
y[1] = -4.0*pi * std::sin(2*pi*x[0])*std::sin(4*pi*x[1]);
y[2] = 2.0*x[0]*std::cos(2*pi*x[0]) - 2.0*pi*x[0]*x[0]*std::sin(2*pi*x[0]);
y[3] = 0.0;
}
TwoOneExpm40::TwoOneExpm40(){} TwoOneExpm40::~TwoOneExpm40(){} int TwoOneExpm40::getNumInputs() const{ return 2; } int TwoOneExpm40::getNumOutputs() const{ return 1; }
const char* TwoOneExpm40::getDescription() const{ return "f(x,y) = 1.0 / (1.0 + exp(-40.0 * (sqrt(x^2 + y^2) - 0.4)))"; }
void TwoOneExpm40::eval(const double x[], double y[]) const{ y[0] = 1.0 / (1.0 + exp(-40.0 * (std::sqrt(x[0]*x[0] + x[1]*x[1]) - 0.4))); } void TwoOneExpm40::getIntegral(double y[]) const{ y[0] = 0.0; }
void TwoOneExpm40::getDerivative(const double x[], double y[]) const{
double nrm = std::sqrt(x[0]*x[0] + x[1]*x[1]);
double a0 = -40.0 * nrm - 0.4;
double a1 = 40 * exp(a0) / ((exp(a0) + 1) * (exp(a0) + 1) * nrm);
y[0] = x[0] * a1;
y[1] = x[1] * a1;
}
FiveOneExpSum::FiveOneExpSum(){} FiveOneExpSum::~FiveOneExpSum(){} int FiveOneExpSum::getNumInputs() const{ return 5; } int FiveOneExpSum::getNumOutputs() const{ return 1; }
const char* FiveOneExpSum::getDescription() const{ return "f(y_i) = 1 + exp(-2 - 0.4 * sum(x_i))"; }
void FiveOneExpSum::eval(const double x[], double y[]) const{ y[0] = 1.0 + std::exp(-2.0 -0.4 * (x[0]+x[1]+x[2]+x[3]+x[4])); } void FiveOneExpSum::getIntegral(double y[]) const{ y[0] = 32.0 + std::exp(-2.0) * pow((1.0/0.4) * (exp(0.4) - std::exp(-0.4)), 5.0); }
void FiveOneExpSum::getDerivative(const double x[], double y[]) const{
double a0 = std::exp(-2.0 -0.4 * (x[0]+x[1]+x[2]+x[3]+x[4]));
for (int i=0; i<5; i++)
y[i] = -0.4 * a0;
}
SixOneExpSum::SixOneExpSum(){} SixOneExpSum::~SixOneExpSum(){} int SixOneExpSum::getNumInputs() const{ return 6; } int SixOneExpSum::getNumOutputs() const{ return 1; }
const char* SixOneExpSum::getDescription() const{ return "f(y_i) = exp(-sum(x_i^2))"; }
void SixOneExpSum::eval(const double x[], double y[]) const{ y[0] = exp(-x[0]*x[0]-x[1]*x[1]-x[2]*x[2]-x[3]*x[3]-x[4]*x[4]-x[5]*x[5]); } void SixOneExpSum::getIntegral(double y[]) const{ y[0] = 1.110427052269093e+01; }
void SixOneExpSum::getDerivative(const double x[], double y[]) const{
double a0 = exp(-x[0]*x[0]-x[1]*x[1]-x[2]*x[2]-x[3]*x[3]-x[4]*x[4]-x[5]*x[5]);
for (int i=0; i<6; i++)
y[i] = -2.0 * x[i] * a0;
}
EightOneCosSum::EightOneCosSum(){} EightOneCosSum::~EightOneCosSum(){} int EightOneCosSum::getNumInputs() const{ return 8; } int EightOneCosSum::getNumOutputs() const{ return 1; }
const char* EightOneCosSum::getDescription() const{ return "f(y_i) = cos(sum(x_i))"; }
void EightOneCosSum::eval(const double x[], double y[]) const{ y[0] = std::cos(x[0]+x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]); } void EightOneCosSum::getIntegral(double y[]) const{ y[0] = 6.435067827089459e+01; }
void EightOneCosSum::getDerivative(const double x[], double y[]) const{
double a0 = -std::sin(x[0]+x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]);
for (int i=0; i<8; i++)
y[i] = a0;
}
ThreeOneUnitBall::ThreeOneUnitBall(){} ThreeOneUnitBall::~ThreeOneUnitBall(){} int ThreeOneUnitBall::getNumInputs() const{ return 3; } int ThreeOneUnitBall::getNumOutputs() const{ return 1; }
const char* ThreeOneUnitBall::getDescription() const{ return "f(x_i) = 1 if ||x||_{2} < 1, 0 otherwise"; }
void ThreeOneUnitBall::eval(const double x[], double y[]) const{ if ((x[0]*x[0]+x[1]*x[1]+x[2]*x[2]) <= 1.0){ y[0] = 1.0; }else{ y[0] = 0.0; } } void ThreeOneUnitBall::getIntegral(double y[]) const{ y[0] = (4.0/3.0) * pi; }
void ThreeOneUnitBall::getDerivative(const double*, double y[]) const { y[0] = 0.0; y[1] = 0.0; y[2] = 0.0; }
TwoOneConstGC1::TwoOneConstGC1(){} TwoOneConstGC1::~TwoOneConstGC1(){} int TwoOneConstGC1::getNumInputs() const{ return 2; } int TwoOneConstGC1::getNumOutputs() const{ return 1; }
const char* TwoOneConstGC1::getDescription() const{ return "f(x,y) = exp(x+y), integrated against 1.0 / (sqrt(1 - x*x) * sqrt(1 - y*y))"; }
void TwoOneConstGC1::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); } void TwoOneConstGC1::getIntegral(double y[]) const{ y[0] = 15.820213988678377; }
void TwoOneConstGC1::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }
TwoOneConstGC2::TwoOneConstGC2(){} TwoOneConstGC2::~TwoOneConstGC2(){} int TwoOneConstGC2::getNumInputs() const{ return 2; } int TwoOneConstGC2::getNumOutputs() const{ return 1; }
const char* TwoOneConstGC2::getDescription() const{ return "f(x,y) = exp(x+y), integrated against (sqrt(1 - x*x) * sqrt(1 - y*y))"; }
void TwoOneConstGC2::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0] + x[1]); } void TwoOneConstGC2::getIntegral(double y[]) const{ y[0] = 3.152399146392550; }
void TwoOneConstGC2::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }
TwoOneConstGG::TwoOneConstGG(){} TwoOneConstGG::~TwoOneConstGG(){} int TwoOneConstGG::getNumInputs() const{ return 2; } int TwoOneConstGG::getNumOutputs() const{ return 1; }
const char* TwoOneConstGG::getDescription() const{ return "f(x,y) = exp(x+y), integrated against (1 - x*x)^0.3 * (1 - y*y)^0.3"; }
void TwoOneConstGG::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0] + x[1]); } void TwoOneConstGG::getIntegral(double y[]) const{ y[0] = 1.955951775017494*1.955951775017494; }
void TwoOneConstGG::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }
TwoOneConstGJ::TwoOneConstGJ(){} TwoOneConstGJ::~TwoOneConstGJ(){} int TwoOneConstGJ::getNumInputs() const{ return 2; } int TwoOneConstGJ::getNumOutputs() const{ return 1; }
const char* TwoOneConstGJ::getDescription() const{ return "f(x,y) = exp(x+y), integrated against (1 - x)^0.3 * (1 - x)^0.7 * (1 - y)^0.3 * (1 - y)^0.7"; }
void TwoOneConstGJ::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0] + x[1]); } void TwoOneConstGJ::getIntegral(double y[]) const{ y[0] = 2.093562254087821*2.093562254087821; }
void TwoOneConstGJ::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }
TwoOneConstGGL::TwoOneConstGGL(){} TwoOneConstGGL::~TwoOneConstGGL(){} int TwoOneConstGGL::getNumInputs() const{ return 2; } int TwoOneConstGGL::getNumOutputs() const{ return 1; }
const char* TwoOneConstGGL::getDescription() const{ return "f(x,y) = exp(-x-y), integrated against (x)^0.3 * exp(-x) * (y)^0.3 * exp(-y)"; }
void TwoOneConstGGL::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]-x[1]); } void TwoOneConstGGL::getIntegral(double y[]) const{ y[0] = 0.364486361867136*0.364486361867136; }
void TwoOneConstGGL::getDerivative(const double x[], double y[]) const{ y[0] = -std::exp(-x[0]-x[1]); y[1] = -std::exp(-x[0]-x[1]); }
TwoOneConstGH::TwoOneConstGH(){} TwoOneConstGH::~TwoOneConstGH(){} int TwoOneConstGH::getNumInputs() const{ return 2; } int TwoOneConstGH::getNumOutputs() const{ return 1; }
const char* TwoOneConstGH::getDescription() const{ return "f(x,y) = exp(-x-y), integrated against |x|^0.3 * exp(-x^2) * |y|^0.3 * exp(-y^2)"; }
void TwoOneConstGH::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]-x[1]); } void TwoOneConstGH::getIntegral(double y[]) const{ y[0] = 1.902578389458335*1.902578389458335; }
void TwoOneConstGH::getDerivative(const double x[], double y[]) const{ y[0] = -std::exp(-x[0]-x[1]); y[1] = -std::exp(-x[0]-x[1]); }
TwoOneENX2aniso::TwoOneENX2aniso(){} TwoOneENX2aniso::~TwoOneENX2aniso(){} int TwoOneENX2aniso::getNumInputs() const{ return 2; } int TwoOneENX2aniso::getNumOutputs() const{ return 1; }
const char* TwoOneENX2aniso::getDescription() const{ return "f(x,y) = exp(-x^2 -0.1*y^2)"; }
void TwoOneENX2aniso::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]*x[0] -0.1*x[1]*x[1]); } void TwoOneENX2aniso::getIntegral(double y[]) const{ y[0] = 2.890637511323280e+00; }
void TwoOneENX2aniso::getDerivative(const double x[], double y[]) const{
y[0] = -2.0*x[0] * std::exp(-x[0]*x[0] -0.1*x[1]*x[1]);
y[1] = -0.2*x[1] * std::exp(-x[0]*x[0] -0.1*x[1]*x[1]);
}
TwoTwoExpAsym::TwoTwoExpAsym(){} TwoTwoExpAsym::~TwoTwoExpAsym(){}
int TwoTwoExpAsym::getNumInputs() const{ return 2; } int TwoTwoExpAsym::getNumOutputs() const{ return 2; }
const char* TwoTwoExpAsym::getDescription() const{ return "f(x,y) = {exp(-(x-0.1)^2 - (y-0.2)^2), exp(-(x-0.3)^2 - (y-0.4)^2)}"; }
void TwoTwoExpAsym::eval(const double x[], double y[]) const{
y[0] = std::exp(-(x[0] - 0.1) * (x[0] - 0.1) - (x[1] - 0.2) * (x[1] - 0.2));
y[1] = std::exp(-(x[0] - 0.3) * (x[0] - 0.3) - (x[1] - 0.4) * (x[1] - 0.4));
}
void TwoTwoExpAsym::getIntegral(double y[]) const{ y[0] = 2.1765637578800963e+00; y[1] = 1.9699377347041238e+00; }
void TwoTwoExpAsym::getDerivative(const double x[], double y[]) const{
double a0 = std::exp(-(x[0] - 0.1) * (x[0] - 0.1) - (x[1] - 0.2) * (x[1] - 0.2));
y[0] = -2.0 * (x[0] - 0.1) * a0;
y[1] = -2.0 * (x[1] - 0.2) * a0;
double a1 = std::exp(-(x[0] - 0.3) * (x[0] - 0.3) - (x[1] - 0.4) * (x[1] - 0.4));
y[2] = -2.0 * (x[0] - 0.3) * a1;
y[3] = -2.0 * (x[1] - 0.4) * a1;
}
SixteenOneActive3::SixteenOneActive3(){} SixteenOneActive3::~SixteenOneActive3(){} int SixteenOneActive3::getNumInputs() const{ return 16; } int SixteenOneActive3::getNumOutputs() const{ return 1; }
const char* SixteenOneActive3::getDescription() const{ return "f(x,y) = x[2] * sin(x[3] + x[15])"; }
void SixteenOneActive3::eval(const double x[], double y[]) const{ y[0] = x[2] * std::sin(x[3] + x[15]); } void SixteenOneActive3::getIntegral(double y[]) const{ y[0] = 0.0; }
void SixteenOneActive3::getDerivative(const double x[], double y[]) const{
for (int i=0; i<16; i++)
y[i] = 0.0;
y[2] = std::sin(x[3] + x[15]);
y[3] = x[2] * std::cos(x[3] + x[15]);
y[15] = x[2] * std::cos(x[3] + x[15]);
}
TwoOneDivisionAnisotropic::TwoOneDivisionAnisotropic(){} TwoOneDivisionAnisotropic::~TwoOneDivisionAnisotropic(){} int TwoOneDivisionAnisotropic::getNumInputs() const{ return 2; } int TwoOneDivisionAnisotropic::getNumOutputs() const{ return 1; }
const char* TwoOneDivisionAnisotropic::getDescription() const{ return "f(x,y) = 1.0 / ((x[0] - 1.1) * (x[0] + 1.1) * (x[1] - 2) * (x[1] + 2))"; }
void TwoOneDivisionAnisotropic::eval(const double x[], double y[]) const{ y[0] = 1.0 / ((x[0] - 1.1) * (x[0] + 1.1) * (x[1] - 2) * (x[1] + 2)); } void TwoOneDivisionAnisotropic::getIntegral(double y[]) const{ y[0] = 1.520340801458519; }
void TwoOneDivisionAnisotropic::getDerivative(const double x[], double y[]) const{
double a0 = ((x[0] - 1.1) * (x[0] + 1.1) * (x[1] - 2.0) * (x[1] + 2.0));
y[0] = -2.0 * x[0] * (x[1] - 2.0) * (x[1] + 2.0) / (a0 * a0);
y[1] = -2.0 * x[1] * (x[0] - 1.1) * (x[0] + 1.1) / (a0 * a0);
}
TwoOne1DCurved::TwoOne1DCurved(){} TwoOne1DCurved::~TwoOne1DCurved(){} int TwoOne1DCurved::getNumInputs() const{ return 2; } int TwoOne1DCurved::getNumOutputs() const{ return 1; }
const char* TwoOne1DCurved::getDescription() const{ return "f(x,y) = exp(-x[0]) + exp(x[1])"; }
void TwoOne1DCurved::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]) + std::exp(x[1]); } void TwoOne1DCurved::getIntegral(double y[]) const{ y[0] = 5.524391382167265; }
void TwoOne1DCurved::getDerivative(const double x[], double y[]) const{ y[0] = -std::exp(-x[0]); y[1] = std::exp(x[1]); }
TwoOneExpShiftedDomain::TwoOneExpShiftedDomain(){} TwoOneExpShiftedDomain::~TwoOneExpShiftedDomain(){} int TwoOneExpShiftedDomain::getNumInputs() const{ return 2; } int TwoOneExpShiftedDomain::getNumOutputs() const{ return 1; }
const char* TwoOneExpShiftedDomain::getDescription() const{ return "f(x,y) = exp(x[0] / 3.0 + x[1] / 5.0)"; }
void TwoOneExpShiftedDomain::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0]/3.0 + x[1]/5.0); } void TwoOneExpShiftedDomain::getIntegral(double y[]) const{ y[0] = 15.0*(std::exp(26.0/15.0) - std::exp(11.0/15.0) - std::exp(7.0/5.0) + std::exp(2.0/5.0)); }
void TwoOneExpShiftedDomain::getDerivative(const double x[], double y[]) const{
double a0 = std::exp(x[0]/3.0 + x[1]/5.0);
y[0] = 1/3.0 * a0;
y[1] = 1/5.0 * a0;
}
OneOneConformalOne::OneOneConformalOne(){} OneOneConformalOne::~OneOneConformalOne(){} int OneOneConformalOne::getNumInputs() const{ return 1; } int OneOneConformalOne::getNumOutputs() const{ return 1; }
const char* OneOneConformalOne::getDescription() const{ return "f(x) = 1 / (1 + 5x^2)"; }
void OneOneConformalOne::eval(const double x[], double y[]) const{ y[0] = 1.0 / (1.0 + 5.0 * x[0]*x[0]); } void OneOneConformalOne::getIntegral(double y[]) const{ y[0] = 1.028825601981092; }
void OneOneConformalOne::getDerivative(const double x[], double y[]) const{
double a0 = 1.0 + 5.0 * x[0]*x[0];
y[0] = -10.0 * x[0] / (a0 * a0);
}
TwoOneConformalOne::TwoOneConformalOne(){} TwoOneConformalOne::~TwoOneConformalOne(){} int TwoOneConformalOne::getNumInputs() const{ return 2; } int TwoOneConformalOne::getNumOutputs() const{ return 1; }
const char* TwoOneConformalOne::getDescription() const{ return "f(x) = 1 / ((1 + 5x^2)*(1 + 5y^2))"; }
void TwoOneConformalOne::eval(const double x[], double y[]) const{ y[0] = 1.0 / ((1.0 + 5.0*x[0]*x[0]) * (1.0 + 5.0*x[1]*x[1])); } void TwoOneConformalOne::getIntegral(double y[]) const{ y[0] = 1.028825601981092*1.028825601981092; }
void TwoOneConformalOne::getDerivative(const double x[], double y[]) const{
double a0 = (1.0 + 5.0*x[0]*x[0]) * (1.0 + 5.0*x[1]*x[1]);
y[0] = -10.0 * x[0] * (1.0 + 5.0 * x[1] * x[1]) / (a0 * a0);
y[1] = -10.0 * x[1] * (1.0 + 5.0 * x[0] * x[0]) / (a0 * a0);
}
Two3KExpSinCos::Two3KExpSinCos(){} Two3KExpSinCos::~Two3KExpSinCos(){} int Two3KExpSinCos::getNumInputs() const{ return 2; } int Two3KExpSinCos::getNumOutputs() const{ return 3072; }
const char* Two3KExpSinCos::getDescription() const{ return "f(x) = exp(x+y), 1+sin(x+y), cos(3*x+y)"; }
void Two3KExpSinCos::eval(const double x[], double y[]) const{
for(int i=0; i<1025; i++){
y[i] = std::exp(x[0] + x[1]);
}
for(int i=1025; i<2055; i++){
y[i] = std::sin(x[0] + x[1]) + 1.0;
}
for(int i=2055; i<3072; i++){
y[i] = std::cos(3.0*x[0] + x[1]);
}
}
void Two3KExpSinCos::getIntegral(double y[]) const{
for(int i=0; i<1025; i++){
y[i] = 1.902578389458335*1.902578389458335;
}
for(int i=1025; i<2055; i++){
y[i] = 4.0;
}
for(int i=2055; i<3072; i++){
y[i] = 0.158331189544313;
}
}
void Two3KExpSinCos::getDerivative(const double x[], double y[]) const{
// Row 1
for(int i=0; i<1025; i++){
y[i] = std::exp(x[0] + x[1]);
}
for(int i=1025; i<2055; i++){
y[i] = std::cos(x[0] + x[1]);
}
for(int i=2055; i<3072; i++){
y[i] = -3.0 * std::sin(3.0*x[0] + x[1]);
}
// Row 2
int base = 3072;
for(int i=base; i<base+1025; i++){
y[i] = std::exp(x[0] + x[1]);
}
for(int i=base+1025; i<base+2055; i++){
y[i] = std::cos(x[0] + x[1]);
}
for(int i=base+2055; i<base+3072; i++){
y[i] = -std::sin(3.0*x[0] + x[1]);
}
}
TwoOneC1C2Periodic::TwoOneC1C2Periodic(){} TwoOneC1C2Periodic::~TwoOneC1C2Periodic(){} int TwoOneC1C2Periodic::getNumInputs() const{ return 2; } int TwoOneC1C2Periodic::getNumOutputs() const { return 1; }
const char* TwoOneC1C2Periodic::getDescription() const{ return "f(x,y) = (x^3-x) + (y^4-2y^2)"; }
void TwoOneC1C2Periodic::eval(const double x[], double y[]) const { y[0] = x[0] * (x[0] * x[0] - 1.0) + x[1] * x[1] * (x[1] * x[1] - 2.0); } void TwoOneC1C2Periodic::getIntegral(double y[]) const{ y[0] = -28.0 / 15.0; }
void TwoOneC1C2Periodic::getDerivative(const double x[], double y[]) const {
y[0] = 3.0 * x[0] * x[0] - 1.0;
y[1] = 4.0 * x[1] * x[1] * x[1] - 4.0 * x[1];
}
#endif
|