File: gridtestTestFunctions.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (353 lines) | stat: -rw-r--r-- 27,756 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#ifndef __TASMANIAN_TASGRID_FUNCTIONS_CPP
#define __TASMANIAN_TASGRID_FUNCTIONS_CPP

#include "gridtestTestFunctions.hpp"

#include "TasmanianSparseGrid.hpp"

using TasGrid::Maths::pi;

BaseFunction::BaseFunction(){}
BaseFunction::~BaseFunction(){}

OneOneP0::OneOneP0(){} OneOneP0::~OneOneP0(){} int OneOneP0::getNumInputs() const{ return 1; } int OneOneP0::getNumOutputs() const{ return 1; }
const char* OneOneP0::getDescription() const{ return "f(x) = 1"; }
void OneOneP0::eval(const double*, double y[]) const{ y[0] = 1.0; } void OneOneP0::getIntegral(double y[]) const{ y[0] = 2.0; }
void OneOneP0::getDerivative(const double*, double y[]) const{ y[0] = 0.0; }

OneOneP3::OneOneP3(){} OneOneP3::~OneOneP3(){} int OneOneP3::getNumInputs() const{ return 1; } int OneOneP3::getNumOutputs() const{ return 1; }
const char* OneOneP3::getDescription() const{ return "f(x) = x^3 + 2 x^2 + x + 3"; }
void OneOneP3::eval(const double x[], double y[]) const{ y[0] = x[0]*x[0]*x[0] + 2.0*x[0]*x[0] + x[0] + 3.0; } void OneOneP3::getIntegral(double y[]) const{ y[0] = 22.0/3.0; }
void OneOneP3::getDerivative(const double x[], double y[]) const{ y[0] = 3.0*x[0]*x[0] + 4.0*x[0] + 1.0; }

OneOneP4::OneOneP4(){} OneOneP4::~OneOneP4(){} int OneOneP4::getNumInputs() const{ return 1; } int OneOneP4::getNumOutputs() const{ return 1; }
const char* OneOneP4::getDescription() const{ return "f(x) = 0.5 x^4 + x^3 + 2 x^2 + x + 3"; }
void OneOneP4::eval(const double x[], double y[]) const{ y[0] = 0.5*x[0]*x[0]*x[0]*x[0] + x[0]*x[0]*x[0] + 2.0*x[0]*x[0] + x[0] + 3.0; } void OneOneP4::getIntegral(double y[]) const{ y[0] = 226.0/30.0; }
void OneOneP4::getDerivative(const double x[], double y[]) const{ y[0] = 2.0*x[0]*x[0]*x[0] + 3.0*x[0]*x[0] + 4.0*x[0] + 1.0; }

OneOneExpMX::OneOneExpMX(){} OneOneExpMX::~OneOneExpMX(){} int OneOneExpMX::getNumInputs() const{ return 1; } int OneOneExpMX::getNumOutputs() const{ return 1; }
const char* OneOneExpMX::getDescription() const{ return "f(x) = exp(-x^2)"; }
void OneOneExpMX::eval(const double x[], double y[]) const{ y[0] = std::exp(- x[0] * x[0]); } void OneOneExpMX::getIntegral(double y[]) const{ y[0] = 1.493648265624854; }
void OneOneExpMX::getDerivative(const double x[], double y[]) const{ y[0] = -2.0*x[0]*std::exp(-x[0]*x[0]); }

TwoOneP4::TwoOneP4(){} TwoOneP4::~TwoOneP4(){} int TwoOneP4::getNumInputs() const{ return 2; } int TwoOneP4::getNumOutputs() const{ return 1; }
const char* TwoOneP4::getDescription() const{ return "f(x,y) = x^4 + x^3 y + x^2 y^2 + x^1 y^3 + y^4"; }
void TwoOneP4::eval(const double x[], double y[]) const{ y[0] = x[0]*x[0]*x[0]*x[0] + x[0]*x[0]*x[0]*x[1] + x[0]*x[0]*x[1]*x[1] + x[0]*x[1]*x[1]*x[1] + x[1]*x[1]*x[1]*x[1]; } void TwoOneP4::getIntegral(double y[]) const{ y[0] = 92.0/45.0; }
void TwoOneP4::getDerivative(const double x[], double y[]) const{
    y[0] = 4.0*x[0]*x[0]*x[0] + 3.0*x[0]*x[0]*x[1] + 2.0*x[0]*x[1]*x[1] + x[1]*x[1]*x[1];
    y[1] = x[0]*x[0]*x[0]     + 2.0*x[0]*x[0]*x[1] + 3.0*x[0]*x[1]*x[1] + 4.0*x[1]*x[1]*x[1];
}

TwoOneP5::TwoOneP5(){} TwoOneP5::~TwoOneP5(){} int TwoOneP5::getNumInputs() const{ return 2; } int TwoOneP5::getNumOutputs() const{ return 1; }
const char* TwoOneP5::getDescription() const{ return "f(x,y) = x^5 + x^4 y + x^3 y^2 + x^2 y^3 + x y^4 + y^5"; }
void TwoOneP5::eval(const double x[], double y[]) const{ y[0] = x[0]*x[0]*x[0]*x[0]*x[0] + x[0]*x[0]*x[0]*x[0]*x[1] + x[0]*x[0]*x[0]*x[1]*x[1] + x[0]*x[0]*x[1]*x[1]*x[1] + x[0]*x[1]*x[1]*x[1]*x[1] + x[1]*x[1]*x[1]*x[1]*x[1]; } void TwoOneP5::getIntegral(double y[]) const{ y[0] = 0.0; }
void TwoOneP5::getDerivative(const double x[], double y[]) const{
    y[0] = 5.0*x[0]*x[0]*x[0]*x[0] + 4.0*x[0]*x[0]*x[0]*x[1] + 3.0*x[0]*x[0]*x[1]*x[1] + 2.0*x[0]*x[1]*x[1]*x[1] + x[1]*x[1]*x[1]*x[1];
    y[1] = x[0]*x[0]*x[0]*x[0]     + 2.0*x[0]*x[0]*x[0]*x[1] + 3.0*x[0]*x[0]*x[1]*x[1] + 4.0*x[0]*x[1]*x[1]*x[1] + 5.0*x[1]*x[1]*x[1]*x[1];
}

TwoOneExpNX2::TwoOneExpNX2(){} TwoOneExpNX2::~TwoOneExpNX2(){} int TwoOneExpNX2::getNumInputs() const{ return 2; } int TwoOneExpNX2::getNumOutputs() const{ return 1; }
const char* TwoOneExpNX2::getDescription() const{ return "f(x,y) = exp(-x^2 - y^2)"; }
void TwoOneExpNX2::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]*x[0] - x[1]*x[1]); } void TwoOneExpNX2::getIntegral(double y[]) const{ y[0] = 2.230985141404134; }
void TwoOneExpNX2::getDerivative(const double x[], double y[]) const{
    y[0] = -2.0*x[0]*std::exp(-x[0]*x[0] - x[1]*x[1]);
    y[1] = -2.0*x[1]*std::exp(-x[0]*x[0] - x[1]*x[1]);
}

ThreeOneExpNX2::ThreeOneExpNX2(){} ThreeOneExpNX2::~ThreeOneExpNX2(){} int ThreeOneExpNX2::getNumInputs() const{ return 3; } int ThreeOneExpNX2::getNumOutputs() const{ return 1; }
const char* ThreeOneExpNX2::getDescription() const{ return "f(x,y,z) = exp(-x^2 - y^2 - z^2)"; }
void ThreeOneExpNX2::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]); } void ThreeOneExpNX2::getIntegral(double y[]) const{ y[0] = 3.332307087; }
void ThreeOneExpNX2::getDerivative(const double x[], double y[]) const{
    y[0] = -2.0*x[0]*std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]);
    y[1] = -2.0*x[1]*std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]);
    y[2] = -2.0*x[2]*std::exp(-x[0]*x[0] - x[1]*x[1] - x[2]*x[2]);
}

TwoOneCos::TwoOneCos(){} TwoOneCos::~TwoOneCos(){} int TwoOneCos::getNumInputs() const{ return 2; } int TwoOneCos::getNumOutputs() const{ return 1; }
const char* TwoOneCos::getDescription() const{ return "f(x,y) = cos(-x^2 - y^2 + xy)"; }
void TwoOneCos::eval(const double x[], double y[]) const{ y[0] = std::cos(-x[0]*x[0] - x[1]*x[1] + x[0]*x[1]); } void TwoOneCos::getIntegral(double y[]) const{ y[0] = 2.8137178748032379; }
void TwoOneCos::getDerivative(const double x[], double y[]) const{
    y[0] = -(-2.0*x[0]+x[1]) * std::sin(-x[0]*x[0] - x[1]*x[1] + x[0]*x[1]);
    y[1] = -(-2.0*x[1]+x[0]) * std::sin(-x[0]*x[0] - x[1]*x[1] + x[0]*x[1]);
}

TwoOneSinSin::TwoOneSinSin(){} TwoOneSinSin::~TwoOneSinSin(){} int TwoOneSinSin::getNumInputs() const{ return 2; } int TwoOneSinSin::getNumOutputs() const{ return 1; }
const char* TwoOneSinSin::getDescription() const{ return "f(x,y) = sin(pi * x) sin(pi * y)"; }
void TwoOneSinSin::eval(const double x[], double y[]) const{ y[0] = std::sin(pi * x[0]) * std::sin(pi * x[1]); } void TwoOneSinSin::getIntegral(double y[]) const{ y[0] = 0.0; }
void TwoOneSinSin::getDerivative(const double x[], double y[]) const{
    y[0] = pi * std::cos(pi * x[0]) * std::sin(pi * x[1]);
    y[1] = pi * std::sin(pi * x[0]) * std::cos(pi * x[1]);
}

TwoOneCosCos::TwoOneCosCos(){} TwoOneCosCos::~TwoOneCosCos(){} int TwoOneCosCos::getNumInputs() const{ return 2; } int TwoOneCosCos::getNumOutputs() const{ return 1; }
const char* TwoOneCosCos::getDescription() const{ return "f(x,y) = cos(pi/2 * x) cos(pi/2 * y)"; }
void TwoOneCosCos::eval(const double x[], double y[]) const{ y[0] = std::cos(0.5 * pi * x[0]) * std::cos(0.5 * pi * x[1]); } void TwoOneCosCos::getIntegral(double y[]) const{ y[0] = 16.0 / (pi * pi); }
void TwoOneCosCos::getDerivative(const double x[], double y[]) const{
    y[0] = -0.5*pi * std::sin(0.5 * pi * x[0]) * std::cos(0.5 * pi * x[1]);
    y[1] = -0.5*pi * std::cos(0.5 * pi * x[0]) * std::sin(0.5 * pi * x[1]);
}

TwoOneExpSinCos::TwoOneExpSinCos() {} TwoOneExpSinCos::~TwoOneExpSinCos() {} int TwoOneExpSinCos::getNumInputs() const{ return 2; } int TwoOneExpSinCos::getNumOutputs() const{ return 1; }
const char* TwoOneExpSinCos::getDescription() const{ return "f(x,y) = exp(sin(2*pi*x) + cos(2*pi*y)) on [0,1]^2 "; }
void TwoOneExpSinCos::eval(const double x[], double y[]) const{ y[0] = std::exp(std::sin(2*pi*x[0])+std::cos(2*pi*x[1])); } void TwoOneExpSinCos::getIntegral(double y[]) const{ y[0] = 1.6029228068079633 * 4.0; }
void TwoOneExpSinCos::getDerivative(const double x[], double y[]) const{
    y[0] = 2*pi * std::cos(2*pi*x[0]) * std::exp(std::sin(2*pi*x[0])+std::cos(2*pi*x[1]));
    y[1] = -2*pi * std::sin(2*pi*x[1]) * std::exp(std::sin(2*pi*x[0])+std::cos(2*pi*x[1]));
}

TwoOneSinCosAxis::TwoOneSinCosAxis() {} TwoOneSinCosAxis::~TwoOneSinCosAxis() {} int TwoOneSinCosAxis::getNumInputs() const{ return 2; } int TwoOneSinCosAxis::getNumOutputs() const{ return 1; }
const char* TwoOneSinCosAxis::getDescription() const{ return "f(x,y) = 1.0 + sin(pi * (x + y)) * cos(pi * (x - y)) on [-1,1]^2 "; }
void TwoOneSinCosAxis::eval(const double x[], double y[]) const{ y[0] = 1.0 + std::sin(pi*(x[0] + x[1])) * std::cos(pi*(x[0] - x[1])); } void TwoOneSinCosAxis::getIntegral(double y[]) const{ y[0] = 4.0; }
void TwoOneSinCosAxis::getDerivative(const double x[], double y[]) const{
    y[0] = pi * std::cos(pi*(x[0] + x[1])) * std::cos(pi*(x[0] - x[1])) - pi * std::sin(pi*(x[0] + x[1])) * std::sin(pi*(x[0] - x[1]));
    y[1] = pi * std::cos(pi*(x[0] + x[1])) * std::cos(pi*(x[0] - x[1])) + pi * std::sin(pi*(x[0] + x[1])) * std::sin(pi*(x[0] - x[1]));
}

TwoTwoSinCos::TwoTwoSinCos() {} TwoTwoSinCos::~TwoTwoSinCos() {} int TwoTwoSinCos::getNumInputs() const{ return 2; } int TwoTwoSinCos::getNumOutputs() const{ return 2; }
const char* TwoTwoSinCos::getDescription() const{ return "f(x,y) = [sin(2*pi*x)cos(4*pi*y), x^2*cos(2*pi*x)]"; }
void TwoTwoSinCos::eval(const double x[], double y[]) const{ y[0] = std::sin(2*pi*x[0])*std::cos(4*pi*x[1]); y[1] = x[0]*x[0]*cos(2*pi*x[0]); } void TwoTwoSinCos::getIntegral(double y[]) const{ y[0] = 0.0; y[1] = 1.0 / (2.0 * pi * pi); }
void TwoTwoSinCos::getDerivative(const double x[], double y[]) const{
    y[0] = 2.0*pi * std::cos(2.0*pi*x[0])*std::cos(4*pi*x[1]);
    y[1] = -4.0*pi * std::sin(2*pi*x[0])*std::sin(4*pi*x[1]);
    y[2] = 2.0*x[0]*std::cos(2*pi*x[0]) - 2.0*pi*x[0]*x[0]*std::sin(2*pi*x[0]);
    y[3] = 0.0;
}

TwoOneExpm40::TwoOneExpm40(){} TwoOneExpm40::~TwoOneExpm40(){} int TwoOneExpm40::getNumInputs() const{ return 2; } int TwoOneExpm40::getNumOutputs() const{ return 1; }
const char* TwoOneExpm40::getDescription() const{ return "f(x,y) = 1.0 / (1.0 + exp(-40.0 * (sqrt(x^2 + y^2) - 0.4)))"; }
void TwoOneExpm40::eval(const double x[], double y[]) const{ y[0] = 1.0 / (1.0 + exp(-40.0 * (std::sqrt(x[0]*x[0] + x[1]*x[1]) - 0.4))); } void TwoOneExpm40::getIntegral(double y[]) const{ y[0] = 0.0; }
void TwoOneExpm40::getDerivative(const double x[], double y[]) const{
    double nrm = std::sqrt(x[0]*x[0] + x[1]*x[1]);
    double a0 = -40.0 * nrm - 0.4;
    double a1 = 40 * exp(a0) / ((exp(a0) + 1) * (exp(a0) + 1) * nrm);
    y[0] = x[0] * a1;
    y[1] = x[1] * a1;
}

FiveOneExpSum::FiveOneExpSum(){} FiveOneExpSum::~FiveOneExpSum(){} int FiveOneExpSum::getNumInputs() const{ return 5; } int FiveOneExpSum::getNumOutputs() const{ return 1; }
const char* FiveOneExpSum::getDescription() const{ return "f(y_i) = 1 + exp(-2 - 0.4 * sum(x_i))"; }
void FiveOneExpSum::eval(const double x[], double y[]) const{ y[0] = 1.0 + std::exp(-2.0 -0.4 * (x[0]+x[1]+x[2]+x[3]+x[4])); } void FiveOneExpSum::getIntegral(double y[]) const{ y[0] = 32.0 + std::exp(-2.0) * pow((1.0/0.4) * (exp(0.4) - std::exp(-0.4)), 5.0); }
void FiveOneExpSum::getDerivative(const double x[], double y[]) const{
    double a0 = std::exp(-2.0 -0.4 * (x[0]+x[1]+x[2]+x[3]+x[4]));
    for (int i=0; i<5; i++)
        y[i] = -0.4 * a0;
}

SixOneExpSum::SixOneExpSum(){} SixOneExpSum::~SixOneExpSum(){} int SixOneExpSum::getNumInputs() const{ return 6; } int SixOneExpSum::getNumOutputs() const{ return 1; }
const char* SixOneExpSum::getDescription() const{ return "f(y_i) = exp(-sum(x_i^2))"; }
void SixOneExpSum::eval(const double x[], double y[]) const{ y[0] = exp(-x[0]*x[0]-x[1]*x[1]-x[2]*x[2]-x[3]*x[3]-x[4]*x[4]-x[5]*x[5]); } void SixOneExpSum::getIntegral(double y[]) const{ y[0] = 1.110427052269093e+01; }
void SixOneExpSum::getDerivative(const double x[], double y[]) const{
    double a0 = exp(-x[0]*x[0]-x[1]*x[1]-x[2]*x[2]-x[3]*x[3]-x[4]*x[4]-x[5]*x[5]);
    for (int i=0; i<6; i++)
        y[i] = -2.0 * x[i] * a0;
}

EightOneCosSum::EightOneCosSum(){} EightOneCosSum::~EightOneCosSum(){} int EightOneCosSum::getNumInputs() const{ return 8; } int EightOneCosSum::getNumOutputs() const{ return 1; }
const char* EightOneCosSum::getDescription() const{ return "f(y_i) = cos(sum(x_i))"; }
void EightOneCosSum::eval(const double x[], double y[]) const{ y[0] = std::cos(x[0]+x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]); } void EightOneCosSum::getIntegral(double y[]) const{ y[0] = 6.435067827089459e+01; }
void EightOneCosSum::getDerivative(const double x[], double y[]) const{
    double a0 = -std::sin(x[0]+x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]);
    for (int i=0; i<8; i++)
        y[i] = a0;
}


ThreeOneUnitBall::ThreeOneUnitBall(){} ThreeOneUnitBall::~ThreeOneUnitBall(){} int ThreeOneUnitBall::getNumInputs() const{ return 3; } int ThreeOneUnitBall::getNumOutputs() const{ return 1; }
const char* ThreeOneUnitBall::getDescription() const{ return "f(x_i) = 1 if ||x||_{2} < 1, 0 otherwise"; }
void ThreeOneUnitBall::eval(const double x[], double y[]) const{ if ((x[0]*x[0]+x[1]*x[1]+x[2]*x[2]) <= 1.0){ y[0] = 1.0; }else{ y[0] = 0.0; } } void ThreeOneUnitBall::getIntegral(double y[]) const{ y[0] = (4.0/3.0) * pi; }
void ThreeOneUnitBall::getDerivative(const double*, double y[]) const { y[0] = 0.0; y[1] = 0.0; y[2] = 0.0; }

TwoOneConstGC1::TwoOneConstGC1(){} TwoOneConstGC1::~TwoOneConstGC1(){} int TwoOneConstGC1::getNumInputs() const{ return 2; } int TwoOneConstGC1::getNumOutputs() const{ return 1; }
const char* TwoOneConstGC1::getDescription() const{ return "f(x,y) = exp(x+y), integrated against 1.0 / (sqrt(1 - x*x) * sqrt(1 - y*y))"; }
void TwoOneConstGC1::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); } void TwoOneConstGC1::getIntegral(double y[]) const{ y[0] = 15.820213988678377; }
void TwoOneConstGC1::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }

TwoOneConstGC2::TwoOneConstGC2(){} TwoOneConstGC2::~TwoOneConstGC2(){} int TwoOneConstGC2::getNumInputs() const{ return 2; } int TwoOneConstGC2::getNumOutputs() const{ return 1; }
const char* TwoOneConstGC2::getDescription() const{ return "f(x,y) = exp(x+y), integrated against (sqrt(1 - x*x) * sqrt(1 - y*y))"; }
void TwoOneConstGC2::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0] + x[1]); } void TwoOneConstGC2::getIntegral(double y[]) const{ y[0] = 3.152399146392550; }
void TwoOneConstGC2::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }

TwoOneConstGG::TwoOneConstGG(){} TwoOneConstGG::~TwoOneConstGG(){} int TwoOneConstGG::getNumInputs() const{ return 2; } int TwoOneConstGG::getNumOutputs() const{ return 1; }
const char* TwoOneConstGG::getDescription() const{ return "f(x,y) = exp(x+y), integrated against (1 - x*x)^0.3 * (1 - y*y)^0.3"; }
void TwoOneConstGG::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0] + x[1]); } void TwoOneConstGG::getIntegral(double y[]) const{ y[0] = 1.955951775017494*1.955951775017494; }
void TwoOneConstGG::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }

TwoOneConstGJ::TwoOneConstGJ(){} TwoOneConstGJ::~TwoOneConstGJ(){} int TwoOneConstGJ::getNumInputs() const{ return 2; } int TwoOneConstGJ::getNumOutputs() const{ return 1; }
const char* TwoOneConstGJ::getDescription() const{ return "f(x,y) = exp(x+y), integrated against (1 - x)^0.3 * (1 - x)^0.7 * (1 - y)^0.3 * (1 - y)^0.7"; }
void TwoOneConstGJ::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0] + x[1]); } void TwoOneConstGJ::getIntegral(double y[]) const{ y[0] = 2.093562254087821*2.093562254087821; }
void TwoOneConstGJ::getDerivative(const double x[], double y[]) const{ y[0] = std::exp(x[0]+x[1]); y[1] = std::exp(x[0]+x[1]); }

TwoOneConstGGL::TwoOneConstGGL(){} TwoOneConstGGL::~TwoOneConstGGL(){} int TwoOneConstGGL::getNumInputs() const{ return 2; } int TwoOneConstGGL::getNumOutputs() const{ return 1; }
const char* TwoOneConstGGL::getDescription() const{ return "f(x,y) = exp(-x-y), integrated against (x)^0.3 * exp(-x) * (y)^0.3 * exp(-y)"; }
void TwoOneConstGGL::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]-x[1]); } void TwoOneConstGGL::getIntegral(double y[]) const{ y[0] = 0.364486361867136*0.364486361867136; }
void TwoOneConstGGL::getDerivative(const double x[], double y[]) const{ y[0] = -std::exp(-x[0]-x[1]); y[1] = -std::exp(-x[0]-x[1]); }

TwoOneConstGH::TwoOneConstGH(){} TwoOneConstGH::~TwoOneConstGH(){} int TwoOneConstGH::getNumInputs() const{ return 2; } int TwoOneConstGH::getNumOutputs() const{ return 1; }
const char* TwoOneConstGH::getDescription() const{ return "f(x,y) = exp(-x-y), integrated against |x|^0.3 * exp(-x^2) * |y|^0.3 * exp(-y^2)"; }
void TwoOneConstGH::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]-x[1]); } void TwoOneConstGH::getIntegral(double y[]) const{ y[0] = 1.902578389458335*1.902578389458335; }
void TwoOneConstGH::getDerivative(const double x[], double y[]) const{ y[0] = -std::exp(-x[0]-x[1]); y[1] = -std::exp(-x[0]-x[1]); }

TwoOneENX2aniso::TwoOneENX2aniso(){} TwoOneENX2aniso::~TwoOneENX2aniso(){} int TwoOneENX2aniso::getNumInputs() const{ return 2; } int TwoOneENX2aniso::getNumOutputs() const{ return 1; }
const char* TwoOneENX2aniso::getDescription() const{ return "f(x,y) = exp(-x^2 -0.1*y^2)"; }
void TwoOneENX2aniso::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]*x[0] -0.1*x[1]*x[1]); } void TwoOneENX2aniso::getIntegral(double y[]) const{ y[0] = 2.890637511323280e+00; }
void TwoOneENX2aniso::getDerivative(const double x[], double y[]) const{
    y[0] = -2.0*x[0] * std::exp(-x[0]*x[0] -0.1*x[1]*x[1]);
    y[1] = -0.2*x[1] * std::exp(-x[0]*x[0] -0.1*x[1]*x[1]);
}

TwoTwoExpAsym::TwoTwoExpAsym(){} TwoTwoExpAsym::~TwoTwoExpAsym(){}
int TwoTwoExpAsym::getNumInputs() const{ return 2; } int TwoTwoExpAsym::getNumOutputs() const{ return 2; }
const char* TwoTwoExpAsym::getDescription() const{ return "f(x,y) = {exp(-(x-0.1)^2 - (y-0.2)^2), exp(-(x-0.3)^2 - (y-0.4)^2)}"; }
void TwoTwoExpAsym::eval(const double x[], double y[]) const{
    y[0] = std::exp(-(x[0] - 0.1) * (x[0] - 0.1) - (x[1] - 0.2) * (x[1] - 0.2));
    y[1] = std::exp(-(x[0] - 0.3) * (x[0] - 0.3) - (x[1] - 0.4) * (x[1] - 0.4));
}
void TwoTwoExpAsym::getIntegral(double y[]) const{ y[0] = 2.1765637578800963e+00; y[1] = 1.9699377347041238e+00; }
void TwoTwoExpAsym::getDerivative(const double x[], double y[]) const{
    double a0 = std::exp(-(x[0] - 0.1) * (x[0] - 0.1) - (x[1] - 0.2) * (x[1] - 0.2));
    y[0] = -2.0 * (x[0] - 0.1) * a0;
    y[1] = -2.0 * (x[1] - 0.2) * a0;
    double a1 = std::exp(-(x[0] - 0.3) * (x[0] - 0.3) - (x[1] - 0.4) * (x[1] - 0.4));
    y[2] = -2.0 * (x[0] - 0.3) * a1;
    y[3] = -2.0 * (x[1] - 0.4) * a1;
}

SixteenOneActive3::SixteenOneActive3(){} SixteenOneActive3::~SixteenOneActive3(){} int SixteenOneActive3::getNumInputs() const{ return 16; } int SixteenOneActive3::getNumOutputs() const{ return 1; }
const char* SixteenOneActive3::getDescription() const{ return "f(x,y) = x[2] * sin(x[3] + x[15])"; }
void SixteenOneActive3::eval(const double x[], double y[]) const{ y[0] = x[2] * std::sin(x[3] + x[15]); } void SixteenOneActive3::getIntegral(double y[]) const{ y[0] = 0.0; }
void SixteenOneActive3::getDerivative(const double x[], double y[]) const{
    for (int i=0; i<16; i++)
        y[i] = 0.0;
    y[2] = std::sin(x[3] + x[15]);
    y[3] = x[2] * std::cos(x[3] + x[15]);
    y[15] = x[2] * std::cos(x[3] + x[15]);
}

TwoOneDivisionAnisotropic::TwoOneDivisionAnisotropic(){} TwoOneDivisionAnisotropic::~TwoOneDivisionAnisotropic(){} int TwoOneDivisionAnisotropic::getNumInputs() const{ return 2; } int TwoOneDivisionAnisotropic::getNumOutputs() const{ return 1; }
const char* TwoOneDivisionAnisotropic::getDescription() const{ return "f(x,y) = 1.0 / ((x[0] - 1.1) * (x[0] + 1.1) * (x[1] - 2) * (x[1] + 2))"; }
void TwoOneDivisionAnisotropic::eval(const double x[], double y[]) const{ y[0] = 1.0 / ((x[0] - 1.1) * (x[0] + 1.1) * (x[1] - 2) * (x[1] + 2)); } void TwoOneDivisionAnisotropic::getIntegral(double y[]) const{ y[0] = 1.520340801458519; }
void TwoOneDivisionAnisotropic::getDerivative(const double x[], double y[]) const{
    double a0 = ((x[0] - 1.1) * (x[0] + 1.1) * (x[1] - 2.0) * (x[1] + 2.0));
    y[0] = -2.0 * x[0] * (x[1] - 2.0) * (x[1] + 2.0) / (a0 * a0);
    y[1] = -2.0 * x[1] * (x[0] - 1.1) * (x[0] + 1.1) / (a0 * a0);
}

TwoOne1DCurved::TwoOne1DCurved(){} TwoOne1DCurved::~TwoOne1DCurved(){} int TwoOne1DCurved::getNumInputs() const{ return 2; } int TwoOne1DCurved::getNumOutputs() const{ return 1; }
const char* TwoOne1DCurved::getDescription() const{ return "f(x,y) = exp(-x[0]) + exp(x[1])"; }
void TwoOne1DCurved::eval(const double x[], double y[]) const{ y[0] = std::exp(-x[0]) + std::exp(x[1]); } void TwoOne1DCurved::getIntegral(double y[]) const{ y[0] = 5.524391382167265; }
void TwoOne1DCurved::getDerivative(const double x[], double y[]) const{ y[0] = -std::exp(-x[0]); y[1] = std::exp(x[1]); }

TwoOneExpShiftedDomain::TwoOneExpShiftedDomain(){} TwoOneExpShiftedDomain::~TwoOneExpShiftedDomain(){} int TwoOneExpShiftedDomain::getNumInputs() const{ return 2; } int TwoOneExpShiftedDomain::getNumOutputs() const{ return 1; }
const char* TwoOneExpShiftedDomain::getDescription() const{ return "f(x,y) = exp(x[0] / 3.0 + x[1] / 5.0)"; }
void TwoOneExpShiftedDomain::eval(const double x[], double y[]) const{ y[0] = std::exp(x[0]/3.0  + x[1]/5.0); } void TwoOneExpShiftedDomain::getIntegral(double y[]) const{ y[0] = 15.0*(std::exp(26.0/15.0) - std::exp(11.0/15.0) - std::exp(7.0/5.0) + std::exp(2.0/5.0)); }
void TwoOneExpShiftedDomain::getDerivative(const double x[], double y[]) const{
    double a0 = std::exp(x[0]/3.0  + x[1]/5.0);
    y[0] = 1/3.0 * a0;
    y[1] = 1/5.0 * a0;
}

OneOneConformalOne::OneOneConformalOne(){} OneOneConformalOne::~OneOneConformalOne(){} int OneOneConformalOne::getNumInputs() const{ return 1; } int OneOneConformalOne::getNumOutputs() const{ return 1; }
const char* OneOneConformalOne::getDescription() const{ return "f(x) = 1 / (1 + 5x^2)"; }
void OneOneConformalOne::eval(const double x[], double y[]) const{ y[0] = 1.0 / (1.0 + 5.0 * x[0]*x[0]); } void OneOneConformalOne::getIntegral(double y[]) const{ y[0] = 1.028825601981092; }
void OneOneConformalOne::getDerivative(const double x[], double y[]) const{
    double a0 = 1.0 + 5.0 * x[0]*x[0];
    y[0] = -10.0 * x[0] / (a0 * a0);
}

TwoOneConformalOne::TwoOneConformalOne(){} TwoOneConformalOne::~TwoOneConformalOne(){} int TwoOneConformalOne::getNumInputs() const{ return 2; } int TwoOneConformalOne::getNumOutputs() const{ return 1; }
const char* TwoOneConformalOne::getDescription() const{ return "f(x) = 1 / ((1 + 5x^2)*(1 + 5y^2))"; }
void TwoOneConformalOne::eval(const double x[], double y[]) const{ y[0] = 1.0 / ((1.0 + 5.0*x[0]*x[0]) * (1.0 + 5.0*x[1]*x[1])); } void TwoOneConformalOne::getIntegral(double y[]) const{ y[0] = 1.028825601981092*1.028825601981092; }
void TwoOneConformalOne::getDerivative(const double x[], double y[]) const{
    double a0 = (1.0 + 5.0*x[0]*x[0]) * (1.0 + 5.0*x[1]*x[1]);
    y[0] = -10.0 * x[0] * (1.0 + 5.0 * x[1] * x[1]) / (a0 * a0);
    y[1] = -10.0 * x[1] * (1.0 + 5.0 * x[0] * x[0]) / (a0 * a0);
}

Two3KExpSinCos::Two3KExpSinCos(){} Two3KExpSinCos::~Two3KExpSinCos(){} int Two3KExpSinCos::getNumInputs() const{ return 2; } int Two3KExpSinCos::getNumOutputs() const{ return 3072; }
const char* Two3KExpSinCos::getDescription() const{ return "f(x) = exp(x+y), 1+sin(x+y), cos(3*x+y)"; }
void Two3KExpSinCos::eval(const double x[], double y[]) const{
    for(int i=0; i<1025; i++){
        y[i] = std::exp(x[0] + x[1]);
    }
    for(int i=1025; i<2055; i++){
        y[i] = std::sin(x[0] + x[1]) + 1.0;
    }
    for(int i=2055; i<3072; i++){
        y[i] = std::cos(3.0*x[0] + x[1]);
    }
}
void Two3KExpSinCos::getIntegral(double y[]) const{
    for(int i=0; i<1025; i++){
        y[i] = 1.902578389458335*1.902578389458335;
    }
    for(int i=1025; i<2055; i++){
        y[i] = 4.0;
    }
    for(int i=2055; i<3072; i++){
        y[i] = 0.158331189544313;
    }
}
void Two3KExpSinCos::getDerivative(const double x[], double y[]) const{
    // Row 1
    for(int i=0; i<1025; i++){
        y[i] = std::exp(x[0] + x[1]);
    }
    for(int i=1025; i<2055; i++){
        y[i] = std::cos(x[0] + x[1]);
    }
    for(int i=2055; i<3072; i++){
        y[i] = -3.0 * std::sin(3.0*x[0] + x[1]);
    }
    // Row 2
    int base = 3072;
    for(int i=base; i<base+1025; i++){
        y[i] = std::exp(x[0] + x[1]);
    }
    for(int i=base+1025; i<base+2055; i++){
        y[i] = std::cos(x[0] + x[1]);
    }
    for(int i=base+2055; i<base+3072; i++){
        y[i] = -std::sin(3.0*x[0] + x[1]);
    }
}

TwoOneC1C2Periodic::TwoOneC1C2Periodic(){} TwoOneC1C2Periodic::~TwoOneC1C2Periodic(){} int TwoOneC1C2Periodic::getNumInputs() const{ return 2; } int TwoOneC1C2Periodic::getNumOutputs() const { return 1; }
const char* TwoOneC1C2Periodic::getDescription() const{ return "f(x,y) = (x^3-x) + (y^4-2y^2)"; }
void TwoOneC1C2Periodic::eval(const double x[], double y[]) const { y[0] = x[0] * (x[0] * x[0] - 1.0) + x[1] * x[1] * (x[1] * x[1] - 2.0); } void TwoOneC1C2Periodic::getIntegral(double y[]) const{ y[0] = -28.0 / 15.0; }
void TwoOneC1C2Periodic::getDerivative(const double x[], double y[]) const {
    y[0] = 3.0 * x[0] * x[0] - 1.0;
    y[1] = 4.0 * x[1] * x[1] * x[1] - 4.0 * x[1];
}


#endif