1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASGRID_UNIT_TESTS_CPP
#define __TASGRID_UNIT_TESTS_CPP
#include "gridtestUnitTests.hpp"
#include "gridtestExternalTests.hpp"
#include "gridtestTestHelpers.hpp"
#include "tsgTPLWrappers.hpp"
#ifdef Tasmanian_ENABLE_HIP
#ifndef __HIP_PLATFORM_HCC__
#define __HIP_PLATFORM_HCC__
#endif
#include <hip/hip_runtime.h>
#include <rocblas/rocblas.h>
#endif
#ifdef Tasmanian_ENABLE_DPCPP
#include <CL/sycl.hpp>
#endif
void gridLoadEN2(TasmanianSparseGrid *grid){ // load points using model exp( - \| x \|^2 )
std::vector<double> points;
grid->getNeededPoints(points);
int dims = grid->getNumDimensions();
int outs = grid->getNumOutputs();
int nump = grid->getNumNeeded();
std::vector<double> vals(Utils::size_mult(nump, outs));
for(int i=0; i<nump; i++){
double nrm = 0.0;
for(int j=0; j<dims; j++)
nrm += points[i * dims + j] * points[i * dims + j];
nrm = std::exp(-nrm);
std::fill_n(vals.begin() + i * outs, outs, nrm);
}
grid->loadNeededPoints(vals);
}
GridUnitTester::GridUnitTester() : verbose(false){}
GridUnitTester::~GridUnitTester(){}
void GridUnitTester::setVerbose(bool new_verbose){ verbose = new_verbose; }
UnitTests GridUnitTester::hasTest(std::string const &s){
std::map<std::string, UnitTests> string_to_test = {
{"all", unit_all},
{"cover", unit_cover},
{"errors", unit_except},
{"api", unit_api},
{"c", unit_c},
{"lapack", unit_lapack}
};
try{
return string_to_test.at(s);
}catch(std::out_of_range &){
return unit_none;
}
}
bool GridUnitTester::Test(UnitTests test){
cout << endl << endl;
cout << "---------------------------------------------------------------------" << endl;
cout << " Tasmanian Sparse Grids Module: Unit Tests" << endl;
cout << "---------------------------------------------------------------------" << endl << endl;
bool testCover = true;
bool testExceptions = true;
bool testAPI = true;
bool testC = true;
bool testLAPACK = true;
if ((test == unit_all) || (test == unit_cover)) testCover = testCoverUnimportant();
if ((test == unit_all) || (test == unit_except)) testExceptions = testAllException();
if ((test == unit_all) || (test == unit_api)) testAPI = testAPIconsistency();
if ((test == unit_all) || (test == unit_c)) testC = testCInterface();
if ((test == unit_all) || (test == unit_lapack)) testLAPACK = testLAPACKInterface();
bool pass = testCover && testExceptions && testAPI && testC && testLAPACK;
//bool pass = true;
cout << endl;
if (pass){
cout << "---------------------------------------------------------------------" << endl;
cout << " All Unit Tests Completed Successfully" << endl;
cout << "---------------------------------------------------------------------" << endl << endl;
}else{
cout << "FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL" << endl;
cout << " Some Unit Tests Have Failed" << endl;
cout << "FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL" << endl << endl;
}
return pass;
}
bool GridUnitTester::testAllException(){
bool pass = true;
bool passAll = true;
int wfirst = 15, wsecond = 30, wthird = 15;
// perform std::invalid_argument tests
auto tests = getInvalidArgumentCalls();
int test_count = 0;
for(auto &t : tests)
try{
test_count++;
t(); // run the test
cout << "Missed arg exception for test " << test_count << " see GridUnitTester::getInvalidArgumentCalls()" << endl;
pass = false;
break;
}catch(std::invalid_argument &){
//cout << "Got argument error exception on test " << test_count << " with message: " << e.what() << endl;
}
if (verbose)
cout << setw(wfirst) << "Exception" << setw(wsecond) << "std::invalid_argument" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = passAll && pass;
pass = true;
// perform std::runtime_error tests
tests = getRuntimeErrorCalls();
test_count = 0;
for(auto &t : tests)
try{
test_count++;
t();
cout << "Missed runtime exception for test " << test_count << " see GridUnitTester::getRuntimeErrorCalls()" << endl;
pass = false;
break;
}catch(std::runtime_error &){
//cout << "Got runtime error exception on test " << test_count << " with message: " << e.what() << endl;
}
if (verbose)
cout << setw(wfirst) << "Exception" << setw(wsecond) << "std::runtime_error" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = passAll && pass;
cout << setw(wfirst+1) << "Exceptions" << setw(wsecond-1) << "" << setw(wthird) << ((passAll) ? "Pass" : "FAIL") << endl;
return pass;
}
bool GridUnitTester::doesMatch(const std::vector<double> &a, const std::vector<double> &b, double prec) const{
if (a.size() != b.size()) return false;
auto ib = b.begin();
for(auto x : a) if (std::abs(x - *ib++) > prec) return false;
return true;
}
bool GridUnitTester::doesMatch(const std::vector<double> &a, const double b[], double prec) const{
auto ib = b;
for(auto x : a) if (std::abs(x - *ib++) > prec) return false;
return true;
}
bool GridUnitTester::doesMatch(const std::vector<int> &a, const int b[]) const{
auto ib = b;
for(auto x : a) if (x != *ib++) return false;
return true;
}
bool GridUnitTester::doesMatch(size_t n, double a[], const double b[], double prec) const{
for(size_t i=0; i<n; i++) if (std::abs(a[i] - b[i]) > prec) return false;
return true;
}
bool GridUnitTester::testAPIconsistency(){
bool passAll = true;
int wfirst = 15, wsecond = 30, wthird = 15;
// test array and vector consistency between the two versions of the API
bool pass = true;
std::vector<double> vpoints;
#ifdef Tasmanian_ENABLE_DPCPP
sycl::queue q; // the sycl queue must be declared before the grid so it is deleted after the grid
#endif
TasmanianSparseGrid grid;
grid.makeGlobalGrid(2, 1, 4, type_iptotal, rule_clenshawcurtis);
gridLoadEN2(&grid);
grid.setAnisotropicRefinement(type_iptotal, 10, 0);
if (verbose) cout << setw(wfirst) << "API variation" << setw(wsecond) << "getPoints()" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = pass && passAll;
grid.makeGlobalGrid(2, 1, 1, type_iptotal, rule_rleja);
std::vector<int> pindexes(grid.getPointsIndexes(), grid.getPointsIndexes() + 6);
std::vector<int> refindexes = {0, 0, 0, 1, 1, 0};
pass = doesMatch(refindexes, pindexes.data());
if (verbose) cout << setw(wfirst) << "API variation" << setw(wsecond) << "getPointsIndexes()" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = pass && passAll;
grid.makeGlobalGrid(2, 1, 4, type_iptotal, rule_clenshawcurtis);
gridLoadEN2(&grid);
std::vector<double> vy, x = {0.333, -0.333};
double *ay = new double[2];
grid.evaluate(x, vy);
grid.evaluate(x.data(), ay);
pass = pass && doesMatch(vy, ay);
vy.clear();
grid.integrate(vy);
grid.integrate(ay);
pass = pass && doesMatch(vy, ay);
vy.clear();
auto dy = grid.differentiate(x);
grid.differentiate(x, vy);
grid.differentiate(x.data(), ay);
pass = pass && doesMatch(vy, ay);
pass = pass && doesMatch(vy, dy);
delete[] ay;
std::vector<double> vf, vx = {0.333, 0.44, -0.1333, 0.2223};
double *af = new double[grid.getNumPoints() * 2];
grid.evaluateHierarchicalFunctions(vx.data(), 2, af);
grid.evaluateHierarchicalFunctions(vx, vf);
pass = pass && doesMatch(vf, af);
delete[] af;
if (verbose) cout << setw(wfirst) << "API variation" << setw(wsecond) << "evaluate/integrate" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = pass && passAll;
std::vector<double> vtransa = {-2.0, 1.0}, vtransb = {1.0, 2.0};
double atransa[2], atransb[2];
grid.setDomainTransform(vtransa, vtransb);
grid.getDomainTransform(atransa, atransb);
pass = pass && doesMatch(vtransa, atransa) && doesMatch(vtransb, atransb);
grid.clearDomainTransform();
grid.getDomainTransform(vtransa, vtransb);
if (vtransa.size() + vtransb.size() != 0) pass = false;
if (verbose) cout << setw(wfirst) << "API variation" << setw(wsecond) << "domain transform" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = pass && passAll;
int allimits[3] = {1, 2, 3};
grid.makeGlobalGrid(3, 2, 5, type_iptotal, rule_fejer2, 0, 0.0, 0.0, 0, allimits);
auto llimits = grid.getLevelLimits();
pass = pass && doesMatch(llimits, allimits) && (llimits.size() == 3);
grid.clearLevelLimits();
llimits = grid.getLevelLimits();
if (llimits.size() != 0) pass = false;
if (verbose) cout << setw(wfirst) << "API variation" << setw(wsecond) << "level limits" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
passAll = pass && passAll;
// test integer-to-enumerate and string-to-enumerate conversion
pass = true;
std::vector<TypeAcceleration> allacc = {accel_none, accel_cpu_blas, accel_gpu_default, accel_gpu_cublas, accel_gpu_cuda, accel_gpu_magma};
for(auto acc : allacc){
if (acc != AccelerationMeta::getIOAccelerationString(AccelerationMeta::getIOAccelerationString(acc))){
cout << "ERROR: mismatch in string to accel conversion: " << AccelerationMeta::getIOAccelerationString(acc) << endl;
pass = false;
}
if (acc != AccelerationMeta::getIOIntAcceleration(AccelerationMeta::getIOAccelerationInt(acc))){
cout << "ERROR: mismatch in string to accel conversion: " << AccelerationMeta::getIOIntAcceleration(acc) << endl;
pass = false;
}
}
passAll = pass && passAll;
// misc tests
pass = true;
if (makeEmpty().evaluateSparseHierarchicalFunctionsGetNZ(std::vector<double>(10, 0.33).data(), 10) != 0){
cout << "ERROR: did not evaluate sparse nnz to zero." << endl; pass = false;
}
if (makeEmpty().getHierarchicalCoefficients() != nullptr){
cout << "ERROR: the hierarchical coefficients of empty should be null." << endl; pass = false;
}
#ifdef Tasmanian_ENABLE_GPU
grid = makeGlobalGrid(2, 1, 4, type_iptotal, rule_clenshawcurtis); // resets the acceleration mode
gridLoadEN2(&grid);
std::vector<double> baseline_y, test_x = {0.33, 0.33, -0.33, -0.33, -0.66, 0.66};
grid.evaluateBatch(test_x, baseline_y);
TasGrid::AccelerationMeta::setDefaultGpuDevice(0);
grid.enableAcceleration(accel_gpu_cuda, 0);
#ifdef Tasmanian_ENABLE_CUDA
if (not TasmanianSparseGrid::isCudaEnabled()) throw std::runtime_error("Ambiguous is CUDA enabled!");
auto manual_handle = TasGrid::AccelerationMeta::createCublasHandle();
grid.setCuBlasHandle(manual_handle);
#endif
#ifdef Tasmanian_ENABLE_HIP
if (not TasmanianSparseGrid::isHipEnabled()) throw std::runtime_error("Ambiguous is HIP enabled!");
rocblas_handle manual_handle;
rocblas_create_handle(&manual_handle);
grid.setRocBlasHandle(manual_handle);
#endif
#ifdef Tasmanian_ENABLE_DPCPP
if (not TasmanianSparseGrid::isDpcppEnabled()) throw std::runtime_error("Ambiguous is DPC++ enabled!");
grid.setSycleQueue(&q);
#endif
if (!testDenseGPU<double, GridMethodEvalBatchGPU>(test_x, baseline_y, 3, Maths::num_tol, grid, "GPU evaluate with manual handle"))
pass = false;
#ifdef Tasmanian_ENABLE_CUDA
TasGrid::AccelerationMeta::deleteCublasHandle(manual_handle);
#endif
#ifdef Tasmanian_ENABLE_HIP
rocblas_destroy_handle(manual_handle);
#endif
#endif
passAll = pass && passAll;
if ((TasmanianSparseGrid::isCudaEnabled() and TasmanianSparseGrid::isHipEnabled())
or (TasmanianSparseGrid::isCudaEnabled() and TasmanianSparseGrid::isDpcppEnabled())
or (TasmanianSparseGrid::isDpcppEnabled() and TasmanianSparseGrid::isHipEnabled())){
throw std::runtime_error("Ambiguous two GPU backends report as enabled!");
}
TasmanianSparseGrid dummy_grid = TasGrid::makeFourierGrid(2, 1, 3, TasGrid::type_level);
dummy_grid.enableAcceleration(TasGrid::accel_gpu_cuda); // makes an acceleration engine
// the engine is never used and the handles are null, should still destroy properly
cout << setw(wfirst+1) << "API variations" << setw(wsecond-1) << "" << setw(wthird) << ((passAll) ? "Pass" : "FAIL") << endl;
return passAll;
}
bool GridUnitTester::testCInterface(){
bool pass = (testInterfaceC() != 0);
int wfirst = 15, wsecond = 30, wthird = 15;
cout << setw(wfirst+1) << "C interface" << setw(wsecond-1) << "" << setw(wthird) << ((pass) ? "Pass" : "FAIL") << endl;
return pass;
}
bool GridUnitTester::testCoverUnimportant(){
// some code is hard/impractical to test automatically, but untested code shows in coverage reports
// this function gives coverage to such special cases to avoid confusion in the report
const char *str = TasmanianSparseGrid::getGitCommitHash();
const char *str2 = TasmanianSparseGrid::getCmakeCxxFlags();
str = TasmanianSparseGrid::getCmakeCxxFlags();
if (str[0] != str2[0]){
cout << "ERROR: mismatch in strings in testCoverUnimportant()" << endl;
return false;
}
std::vector<TypeOneDRule> rules = {rule_none, rule_clenshawcurtis, rule_clenshawcurtis0, rule_chebyshev, rule_chebyshevodd, rule_gausslegendre, rule_gausslegendreodd, rule_gausspatterson, rule_leja, rule_lejaodd, rule_rleja, rule_rlejadouble2, rule_rlejadouble4, rule_rlejaodd, rule_rlejashifted, rule_rlejashiftedeven, rule_rlejashifteddouble, rule_maxlebesgue, rule_maxlebesgueodd, rule_minlebesgue, rule_minlebesgueodd, rule_mindelta, rule_mindeltaodd, rule_gausschebyshev1, rule_gausschebyshev1odd, rule_gausschebyshev2, rule_gausschebyshev2odd, rule_fejer2, rule_gaussgegenbauer, rule_gaussgegenbauerodd, rule_gaussjacobi, rule_gaussjacobiodd, rule_gausslaguerre, rule_gausslaguerreodd, rule_gausshermite, rule_gausshermiteodd, rule_customtabulated, rule_localp, rule_localp0, rule_semilocalp, rule_localpb, rule_wavelet, rule_fourier};
for(auto r : rules) str = OneDimensionalMeta::getHumanString(r);
if (!AccelerationMeta::isAccTypeGPU(accel_gpu_default)){
cout << "ERROR: mismatch in isAccTypeFullMemoryGPU()" << endl;
return false;
}
RuleWavelet rule(1, 10);
str = rule.getDescription();
rule.updateOrder(3);
str = rule.getDescription();
return true;
}
std::vector<std::function<void(void)>> GridUnitTester::getInvalidArgumentCalls() const{
return std::vector<std::function<void(void)>>{
[](void)->void{
auto grid = makeGlobalGrid(0, 1, 3, type_level, rule_gausslegendre); // dimension is 0
},
[](void)->void{
auto grid = makeGlobalGrid(2, -1, 3, type_level, rule_gausslegendre); // output is -1
},
[](void)->void{
auto grid = makeGlobalGrid(2, 2, -1, type_level, rule_rleja); // depth is -1
},
[](void)->void{
auto grid = makeGlobalGrid(2, 2, 1, type_level, rule_localp); // rule is localp
},
[](void)->void{
auto grid = makeGlobalGrid(2, 2, 2, type_level, rule_rleja, {3}); // aw is too short
},
[](void)->void{
auto grid = makeGlobalGrid(2, 2, 2, type_level, rule_customtabulated); // custom filename is empty
},
[](void)->void{
auto grid = makeGlobalGrid(2, 2, 2, type_level, rule_chebyshev, {}, 0.0, 0.0, nullptr, {3}); // level limits is too short
},
[](void)->void{
auto grid = makeSequenceGrid(0, 1, 3, type_level, rule_rleja); // dimension is 0
},
[](void)->void{
auto grid = makeSequenceGrid(2, -1, 3, type_level, rule_minlebesgue); // output is -1
},
[](void)->void{
auto grid = makeSequenceGrid(2, 2, -1, type_level, rule_rleja); // depth is -1
},
[](void)->void{
auto grid = makeSequenceGrid(2, 1, 3, type_level, rule_localp); // localp is not a sequence rule
},
[](void)->void{
auto grid = makeSequenceGrid(2, 2, 2, type_level, rule_rleja, {3}); // aw is too short
},
[](void)->void{
auto grid = makeSequenceGrid(2, 2, 2, type_level, rule_chebyshev, {}, {3}); // level limits is too short
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(0, 1, 3, 3, rule_localp); // 0 is not valid dimensions
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, -1, 3, 2, rule_localp); // -1 is not valid outputs
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, -1, 2, rule_localp); // -1 is not valid depth
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3, -2, rule_localp); // -2 is not a valid order
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3, 2, rule_mindelta); // mindelta is not a local rule
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3, 1, rule_localp, {3}); // level limits is too short
},
[](void)->void{
auto grid = makeWaveletGrid(0, 1, 3, 1); // 0 is not a valid dimensions
},
[](void)->void{
auto grid = makeWaveletGrid(2, -1, 3, 1); // -1 is not a valid outputs
},
[](void)->void{
auto grid = makeWaveletGrid(2, 1, -3, 1); // -3 is not a valid depth
},
[](void)->void{
auto grid = makeWaveletGrid(2, 1, 3, 2); // 2 is not a valid order for wavelets
},
[](void)->void{
auto grid = makeWaveletGrid(2, 1, 3, 1, {3}); // level limits is too short
},
[](void)->void{
auto grid = makeFourierGrid(0, 1, 3, type_level); // dimension is 0
},
[](void)->void{
auto grid = makeFourierGrid(2, -1, 3, type_level); // output is -1
},
[](void)->void{
auto grid = makeFourierGrid(2, 2, -1, type_level); // depth is -1
},
[](void)->void{
auto grid = makeFourierGrid(2, 2, 2, type_level, {3}); // aw is too short
},
[](void)->void{
auto grid = makeFourierGrid(2, 2, 2, type_level, {}, {3}); // level limits is too short
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.updateGlobalGrid(-1, type_level); // depth is negative
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.updateGlobalGrid(3, type_level, {3}); // aw is too small
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.updateGlobalGrid(3, type_level, {}, {3}); // ll is too small
},
[](void)->void{
auto grid = makeSequenceGrid(2, 1, 3, type_level, rule_rleja);
grid.updateSequenceGrid(-1, type_level); // depth is negative
},
[](void)->void{
auto grid = makeSequenceGrid(2, 1, 3, type_level, rule_rleja);
grid.updateSequenceGrid(3, type_level, {3}); // aw is too small
},
[](void)->void{
auto grid = makeSequenceGrid(2, 1, 3, type_level, rule_rleja);
grid.updateSequenceGrid(3, type_level, {}, {3}); // ll is too small
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.setAnisotropicRefinement(type_iptotal, -1, 0, {1, 2}); // min_growth is negative
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
gridLoadEN2(&grid);
grid.setAnisotropicRefinement(type_iptotal, 1, 2, {}); // output out of range
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
gridLoadEN2(&grid);
grid.setAnisotropicRefinement(type_iptotal, 1, 0, {3}); // ll is too small
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
gridLoadEN2(&grid);
auto w = grid.estimateAnisotropicCoefficients(type_iptotal, 2); // output out of range
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, 2); // output out of range
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, 0, {3}); // ll is too small
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
gridLoadEN2(&grid);
grid.setSurplusRefinement(-0.1, 0); // tolerance is negative
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, refine_classic, 2); // output out of range
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, refine_classic, 0, {3}); // ll is too small
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
grid.setSurplusRefinement(-0.1, refine_classic, 0); // tolerance is negative
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
grid.setSurplusRefinement(-0.1, refine_classic, 0, {3, 2}, {3.0, 3.0}); //scale too small
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
grid.setDomainTransform({1.0}, {3.0, 4.0}); // a is too small
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
grid.setDomainTransform({1.0, 2.0}, {4.0}); // b is too small
},
[](void)->void{
CustomTabulated custom;
custom.read("phantom.file");
},
};
}
std::vector<std::function<void(void)>> GridUnitTester::getRuntimeErrorCalls() const{
return std::vector<std::function<void(void)>>{
[](void)->void{
TasmanianSparseGrid grid;
grid.updateGlobalGrid(2, type_level); // grid not initialized
},
[](void)->void{
TasmanianSparseGrid grid;
grid.updateSequenceGrid(2, type_level); // grid not initialized
},
[](void)->void{
std::vector<double> v;
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.getInterpolationWeights({0.33}, v); // wrong size of x
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 2, type_level, rule_rleja);
grid.loadNeededPoints({0.33, 0.22}); // wrong size of loaded data
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 1, type_level, rule_clenshawcurtis);
grid.loadNeededPoints({0.33, 0.22, 0.22, 0.22, 0.33});
grid.loadNeededPoints({0.33, 0.22}); // wrong size of loaded data (when overwriting)
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 1, type_level, rule_clenshawcurtis);
grid.loadNeededPoints({0.33, 0.22, 0.22, 0.22, 0.33});
std::vector<float> y, x = {0.44f, 0.44f};
grid.evaluateBatch(x, y); // either CUDA not enabled or not available at all
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 0, type_level, rule_fejer2);
double a[2], b[2];
grid.getDomainTransform(a, b); // cannot call getDomainTransform(array overload) without transform
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setAnisotropicRefinement(type_iptotal, 1, 0, 0); // grid not made
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setAnisotropicRefinement(type_iptotal, 1, 0, {}); // grid not made
},
[](void)->void{
auto grid = makeGlobalGrid(2, 0, 3, type_level, rule_rleja);
grid.setAnisotropicRefinement(type_iptotal, 1, 0, {}); // no outputs
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.setAnisotropicRefinement(type_iptotal, 1, 0, {}); // no loaded values
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
gridLoadEN2(&grid);
grid.setAnisotropicRefinement(type_iptotal, 1, 0, {}); // rule non-nested
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
grid.setAnisotropicRefinement(type_iptotal, 1, 0,{}); // grid is localp
},
[](void)->void{
TasmanianSparseGrid grid;
auto w = grid.estimateAnisotropicCoefficients(type_iptotal, 1); // grid not made
},
[](void)->void{
auto grid = makeGlobalGrid(2, 0, 3, type_level, rule_rleja);
auto w = grid.estimateAnisotropicCoefficients(type_iptotal, 0); // no outputs
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
auto w = grid.estimateAnisotropicCoefficients(type_iptotal, 0); // no loaded values
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
gridLoadEN2(&grid);
auto w = grid.estimateAnisotropicCoefficients(type_iptotal, 0); // rule non-nested
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
auto w = grid.estimateAnisotropicCoefficients(type_iptotal, 0); // grid is localp
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setSurplusRefinement(0.01, 0, 0); // grid not init
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setSurplusRefinement(0.01, 0, {}); // grid not init
},
[](void)->void{
auto grid = makeGlobalGrid(2, 0, 3, type_level, rule_rleja);
grid.setSurplusRefinement(0.01, 0, {}); // no outputs
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_rleja);
grid.setSurplusRefinement(0.01, 0, {}); // no loaded values
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, 0, {}); // rule non-nested
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, 0, {}); // grid is localp
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setSurplusRefinement(0.01, refine_classic, 0, 0); // grid not init
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setSurplusRefinement(0.01, refine_classic, 0, {}); // grid not init
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 0, 3);
grid.setSurplusRefinement(0.01, refine_classic, 0); // no outputs
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 3);
grid.setSurplusRefinement(0.01, refine_classic, 0); // no loaded values
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, refine_classic, 0, std::vector<int>()); // rule non-local
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
gridLoadEN2(&grid);
grid.setSurplusRefinement(0.01, refine_classic, 0, 0); // rule non-local
},
[](void)->void{
auto grid = makeEmpty();
grid.beginConstruction(); // cannot init construct on empty
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setDomainTransform({}, {}); // grid is not initialized
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setDomainTransform(nullptr, nullptr); // grid is not initialized
},
[](void)->void{
TasmanianSparseGrid grid;
grid.setConformalTransformASIN({4, 4}); // grid is not initialized
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
auto transform = grid.getConformalTransformASIN(); // transform not initialized
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 3, type_level, rule_chebyshev);
std::vector<int> pntr, indx;
std::vector<double> vals;
std::vector<double> x = {-0.33, 0.33};
grid.evaluateSparseHierarchicalFunctions(x, pntr, indx, vals);
},
[](void)->void{
TasmanianSparseGrid grid;
grid.makeGlobalGrid(1, 1, 10, type_level, rule_gausspatterson); // gauss-patterson rule with very large level
},
[](void)->void{
const char *custom_filename = ExternalTester::findGaussPattersonTable();
auto grid = makeGlobalGrid(1, 1, 10, type_level, rule_customtabulated, {}, 0.0, 0.0, custom_filename); // custom-tabulated rule with very large level
},
[](void)->void{
CustomTabulated custom;
custom.read(ExternalTester::findGaussPattersonTable());
custom.getNumPoints(11); // level too high
},
[](void)->void{
CustomTabulated custom;
custom.read(ExternalTester::findGaussPattersonTable());
custom.getIExact(11); // level too high
},
[](void)->void{
CustomTabulated custom;
custom.read(ExternalTester::findGaussPattersonTable());
custom.getQExact(11); // level too high
},
[](void)->void{
auto grid = makeSequenceGrid(2, 1, 1, type_level, rule_leja);
gridLoadEN2(&grid);
grid.removePointsByHierarchicalCoefficient(0.1, -1, nullptr); // grid is not localp or wavelet
},
[](void)->void{
auto grid = makeEmpty();
auto integ = grid.integrateHierarchicalFunctions();
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 0, type_level, rule_clenshawcurtis);
std::vector<double> x = {0.33, 0.33};
grid.evaluateSparseHierarchicalFunctionsGetNZ(x.data(), 1); // cannot call for Global grid
},
[](void)->void{
auto grid = makeGlobalGrid(2, 1, 0, type_level, rule_clenshawcurtis);
std::vector<double> vals(5), x = {0.33, 0.33};
std::vector<int> pntr(5), indx(5);
grid.evaluateSparseHierarchicalFunctionsStatic(x.data(), 1, pntr.data(), indx.data(), vals.data()); // cannot call for Global grid
},
[](void)->void{
auto grid = makeSequenceGrid(2, 1, 1, type_level, rule_leja);
grid.setHierarchicalCoefficients({1.0, 2.0}); // not enough coefficients
},
[](void)->void{
auto grid = makeLocalPolynomialGrid(2, 1, 1, rule_localp);
std::vector<int> s = grid.getGlobalPolynomialSpace(true); // only available for global, sequence and Fourier
},
[](void)->void{
auto grid = makeEmpty();
grid.getPointsIndexes(); // cannot call on empty
},
};
}
bool GridUnitTester::testLAPACKInterface() {
bool all_matched = true;
#ifdef Tasmanian_ENABLE_BLAS
// Initialize.
const int N = 100;
const double a = TasGrid::Maths::pi / 2;
const double b = TasGrid::Maths::pi / 4;
int M = N;
int nsplit = 1;
std::vector<double> exact_eigs(N);
for (int i=0; i<N; i++) {
exact_eigs[i] =
a + 2.0 * b * std::cos((i+1) * TasGrid::Maths::pi / (N+1));
}
std::sort(exact_eigs.begin(), exact_eigs.end());
std::vector<double> D(N, a), E(N-1, b);
std::vector<double> W(N), Z(N*N), WORK1(2*N-2), WORK2(4*N);
std::vector<int> IBLOCK1(N), ISPLIT1(N), IWORK1(3*N);
ISPLIT1[0] = N;
IBLOCK1[0] = N;
// Test LAPACK's dsterf function.
TasBLAS::sterf(N, D.data(), E.data());
std::sort(D.begin(), D.end());
if (not doesMatch(D, exact_eigs)) {
std::cout << "ERROR: failed LAPACK test at sterf()\n";
all_matched = false;
}
// Test LAPACK's dsteqr function.
std::fill(D.begin(), D.end(), a);
std::fill(E.begin(), E.end(), b);
TasBLAS::steqr('N', N, D.data(), E.data(), Z.data(), 1, WORK1.data());
std::sort(D.begin(), D.end());
if (not doesMatch(D, exact_eigs)) {
std::cout << "ERROR: failed LAPACK test at steqr()\n";
all_matched = false;
}
// Test LAPACK's dstebz function.
std::fill(D.begin(), D.end(), a);
std::fill(E.begin(), E.end(), b);
TasBLAS::stebz('A', 'E', N, 0.0, 0.0, 1, N, 1e-13, D.data(), E.data(), M,
nsplit, W.data(), IBLOCK1.data(), ISPLIT1.data(),
WORK2.data(), IWORK1.data());
if (not doesMatch(W, exact_eigs)) {
std::cout << "ERROR: failed LAPACK test at stebz()\n";
all_matched = false;
}
#endif
return all_matched;
}
#endif
|