File: tsgDConstructGridGlobal.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (204 lines) | stat: -rw-r--r-- 9,707 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#ifndef __TASMANIAN_SPARSE_GRID_DYNAMIC_CONST_GLOBAL_CPP
#define __TASMANIAN_SPARSE_GRID_DYNAMIC_CONST_GLOBAL_CPP

#include "tsgDConstructGridGlobal.hpp"

namespace TasGrid{

template<bool use_ascii> void DynamicConstructorDataGlobal::write(std::ostream &os) const{
    if (use_ascii == mode_ascii){ os << std::scientific; os.precision(17); }
    auto tensor_refs =  makeReverseReferenceVector(tensors);

    IO::writeNumbers<use_ascii, IO::pad_line, int>(os, static_cast<int>(tensor_refs.size()));
    for(auto d : tensor_refs){
        IO::writeNumbers<use_ascii, IO::pad_rspace, double>(os, d->weight);
        IO::writeVector<use_ascii, IO::pad_line>(d->tensor, os);
    }
    writeNodeDataList<use_ascii>(data, os);
}

template void DynamicConstructorDataGlobal::write<mode_ascii>(std::ostream &) const; // instantiate for faster build
template void DynamicConstructorDataGlobal::write<mode_binary>(std::ostream &) const;

int DynamicConstructorDataGlobal::getMaxTensor() const{
    int max_tensor = 0;
    for(auto const &t : tensors)
        max_tensor = std::max(max_tensor, *std::max_element(t.tensor.begin(), t.tensor.end()));
    return max_tensor;
}

void DynamicConstructorDataGlobal::reloadPoints(std::function<int(int)> getNumPoints){
    for(auto &t : tensors){
        MultiIndexSet dummy_set(num_dimensions, std::vector<int>(t.tensor));
        t.points = MultiIndexManipulations::generateNestedPoints(dummy_set, getNumPoints);
        t.loaded = std::vector<bool>((size_t) t.points.getNumIndexes(), false);
    }

    for(auto const &p : data){ // rebuild the loaded vectors
        for(auto &t : tensors){
            int i = t.points.getSlot(p.point);
            if (i != -1) t.loaded[i] = true;
        }
    }
}

void DynamicConstructorDataGlobal::clearTesnors(){
    for(auto t = tensors.begin(), p = tensors.before_begin(); t != tensors.end(); t++){
        if (t->weight >= 0.0){
            tensors.erase_after(p);
            t = p;
        }else{
            p++;
        } // at each step, p starts before t, regardless if t is erased, p ends up equal to t, then t++
    }
}

MultiIndexSet DynamicConstructorDataGlobal::getInitialTensors() const{
    Data2D<int> tens(num_dimensions, 0);
    for(auto const &t : tensors){
        if (t.weight < 0.0)
            tens.appendStrip(t.tensor);
    }
    return MultiIndexSet(tens);
}

void DynamicConstructorDataGlobal::addTensor(const int *tensor, std::function<int(int)> getNumPoints, double weight){
    tensors.emplace_front(TensorData{
                          weight,
                          std::vector<int>(tensor, tensor + num_dimensions),
                          MultiIndexManipulations::generateNestedPoints(MultiIndexSet(num_dimensions, std::vector<int>(tensor, tensor + num_dimensions)), getNumPoints),
                          std::vector<bool>(),
                          });

    tensors.front().loaded = std::vector<bool>((size_t) tensors.front().points.getNumIndexes(), false);
    for(auto const &p : data){
        int slot = tensors.front().points.getSlot(p.point);
        if (slot != -1) tensors.front().loaded[slot] = true;
    }
    if (std::all_of(tensors.front().loaded.begin(), tensors.front().loaded.end(), [](bool b)->bool{ return b; })){
        tensors.front().loaded.clear();
    }
}

MultiIndexSet DynamicConstructorDataGlobal::getNodesIndexes(){
    std::vector<int> inodes;
    auto get_weight = [](const TensorData &tensor)->double{
        if (tensor.weight <= 0.0) return tensor.weight;
        if (tensor.loaded.empty()) return 0.0; // should not be happening, should have ejected
        int num_loaded = (int) std::count_if(tensor.loaded.begin(), tensor.loaded.end(), [](bool p)->bool{ return p; });
        return tensor.weight * ((double(tensor.loaded.size()) - double(num_loaded)) / double(tensor.loaded.size()));
    };
    tensors.sort([&](const TensorData &a, const TensorData &b)->bool{ return (get_weight(a) < get_weight(b)); });
    for(auto const &t : tensors){
        if (!t.loaded.empty()){
            for(int i=0; i<t.points.getNumIndexes(); i++){
                if (!t.loaded[i])
                    inodes.insert(inodes.end(), t.points.getIndex(i), t.points.getIndex(i) + num_dimensions);
            }
        }
    }
    return MultiIndexSet(num_dimensions, std::move(inodes));
}

DynamicConstructorDataGlobal::AddPointResult
DynamicConstructorDataGlobal::addNewNode(const std::vector<int> &point, const std::vector<double> &value){
    data.emplace_front(NodeData{point, value});
    for(auto &t : tensors){
        int slot = t.points.getSlot(point);
        if (slot != -1){
            t.loaded[slot] = true;
            if (std::all_of(t.loaded.begin(), t.loaded.end(), [](bool a)-> bool{ return a; })){ // if all entries are true
                t.loaded = std::vector<bool>();
                return AddPointResult::tensor_complete;
                // all points associated with this tensor have been loaded, signal to call ejectCompleteTensor()
            }else{
                return AddPointResult::tensor_incomplete; // point added to the tensor, but the tensor is not complete yet
            }
        }
    }
    // could not find a tensor that contains this node, must add a new tensor
    return AddPointResult::tensor_missing;
}

void DynamicConstructorDataGlobal::ejectCompleteTensor(MultiIndexSet const &current_tensors, MultiIndexSet &new_tensors, MultiIndexSet &new_points, StorageSet &vals){
    new_points = MultiIndexSet(); // reset tensors
    vals = StorageSet();

    Data2D<int> candidate_tensors(num_dimensions, 0); // get a list of completed tensors
    for(auto &t : tensors)
        if (t.loaded.empty())
            candidate_tensors.appendStrip(t.tensor);

    // get the completed tensors that can be added to current_tensors while still preserving lower-completion
    new_tensors = MultiIndexManipulations::getLargestCompletion(current_tensors, MultiIndexSet(candidate_tensors));
    if (new_tensors.empty()) return;

    vals.resize((int) num_outputs, 0);
    auto p = tensors.before_begin(), t = tensors.begin();
    while(t != tensors.end()){
        if (new_tensors.missing(t->tensor)){ // if not using this tensor, advance to the next
            t++;
            p++;
        }else{ // if using the tensor
            int num_searching = t->points.getNumIndexes();
            Data2D<double> wvals(num_outputs, num_searching); // find all the values of the points
            int found = 0;

            auto d = data.before_begin();
            auto v = data.begin();
            while(found < num_searching){ // until all are found
                int slot = t->points.getSlot(v->point);
                if (slot == -1){ // this is not a point that we are looking for
                    d++;
                    v++;
                }else{ // point found, copy the value and extract it from the list
                    std::copy_n(v->value.begin(), num_outputs, wvals.getStrip(slot));
                    data.erase_after(d);
                    v = d;
                    v++;
                    found++;
                }
            }

            vals.addValues(new_points, t->points, wvals.getStrip(0));
            new_points += t->points;
            tensors.erase_after(p);
            t = p;
            t++;
        }
    }
}

}

#endif