1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_SPARSE_GRID_DYNAMIC_CONST_GLOBAL_CPP
#define __TASMANIAN_SPARSE_GRID_DYNAMIC_CONST_GLOBAL_CPP
#include "tsgDConstructGridGlobal.hpp"
namespace TasGrid{
template<bool use_ascii> void DynamicConstructorDataGlobal::write(std::ostream &os) const{
if (use_ascii == mode_ascii){ os << std::scientific; os.precision(17); }
auto tensor_refs = makeReverseReferenceVector(tensors);
IO::writeNumbers<use_ascii, IO::pad_line, int>(os, static_cast<int>(tensor_refs.size()));
for(auto d : tensor_refs){
IO::writeNumbers<use_ascii, IO::pad_rspace, double>(os, d->weight);
IO::writeVector<use_ascii, IO::pad_line>(d->tensor, os);
}
writeNodeDataList<use_ascii>(data, os);
}
template void DynamicConstructorDataGlobal::write<mode_ascii>(std::ostream &) const; // instantiate for faster build
template void DynamicConstructorDataGlobal::write<mode_binary>(std::ostream &) const;
int DynamicConstructorDataGlobal::getMaxTensor() const{
int max_tensor = 0;
for(auto const &t : tensors)
max_tensor = std::max(max_tensor, *std::max_element(t.tensor.begin(), t.tensor.end()));
return max_tensor;
}
void DynamicConstructorDataGlobal::reloadPoints(std::function<int(int)> getNumPoints){
for(auto &t : tensors){
MultiIndexSet dummy_set(num_dimensions, std::vector<int>(t.tensor));
t.points = MultiIndexManipulations::generateNestedPoints(dummy_set, getNumPoints);
t.loaded = std::vector<bool>((size_t) t.points.getNumIndexes(), false);
}
for(auto const &p : data){ // rebuild the loaded vectors
for(auto &t : tensors){
int i = t.points.getSlot(p.point);
if (i != -1) t.loaded[i] = true;
}
}
}
void DynamicConstructorDataGlobal::clearTesnors(){
for(auto t = tensors.begin(), p = tensors.before_begin(); t != tensors.end(); t++){
if (t->weight >= 0.0){
tensors.erase_after(p);
t = p;
}else{
p++;
} // at each step, p starts before t, regardless if t is erased, p ends up equal to t, then t++
}
}
MultiIndexSet DynamicConstructorDataGlobal::getInitialTensors() const{
Data2D<int> tens(num_dimensions, 0);
for(auto const &t : tensors){
if (t.weight < 0.0)
tens.appendStrip(t.tensor);
}
return MultiIndexSet(tens);
}
void DynamicConstructorDataGlobal::addTensor(const int *tensor, std::function<int(int)> getNumPoints, double weight){
tensors.emplace_front(TensorData{
weight,
std::vector<int>(tensor, tensor + num_dimensions),
MultiIndexManipulations::generateNestedPoints(MultiIndexSet(num_dimensions, std::vector<int>(tensor, tensor + num_dimensions)), getNumPoints),
std::vector<bool>(),
});
tensors.front().loaded = std::vector<bool>((size_t) tensors.front().points.getNumIndexes(), false);
for(auto const &p : data){
int slot = tensors.front().points.getSlot(p.point);
if (slot != -1) tensors.front().loaded[slot] = true;
}
if (std::all_of(tensors.front().loaded.begin(), tensors.front().loaded.end(), [](bool b)->bool{ return b; })){
tensors.front().loaded.clear();
}
}
MultiIndexSet DynamicConstructorDataGlobal::getNodesIndexes(){
std::vector<int> inodes;
auto get_weight = [](const TensorData &tensor)->double{
if (tensor.weight <= 0.0) return tensor.weight;
if (tensor.loaded.empty()) return 0.0; // should not be happening, should have ejected
int num_loaded = (int) std::count_if(tensor.loaded.begin(), tensor.loaded.end(), [](bool p)->bool{ return p; });
return tensor.weight * ((double(tensor.loaded.size()) - double(num_loaded)) / double(tensor.loaded.size()));
};
tensors.sort([&](const TensorData &a, const TensorData &b)->bool{ return (get_weight(a) < get_weight(b)); });
for(auto const &t : tensors){
if (!t.loaded.empty()){
for(int i=0; i<t.points.getNumIndexes(); i++){
if (!t.loaded[i])
inodes.insert(inodes.end(), t.points.getIndex(i), t.points.getIndex(i) + num_dimensions);
}
}
}
return MultiIndexSet(num_dimensions, std::move(inodes));
}
DynamicConstructorDataGlobal::AddPointResult
DynamicConstructorDataGlobal::addNewNode(const std::vector<int> &point, const std::vector<double> &value){
data.emplace_front(NodeData{point, value});
for(auto &t : tensors){
int slot = t.points.getSlot(point);
if (slot != -1){
t.loaded[slot] = true;
if (std::all_of(t.loaded.begin(), t.loaded.end(), [](bool a)-> bool{ return a; })){ // if all entries are true
t.loaded = std::vector<bool>();
return AddPointResult::tensor_complete;
// all points associated with this tensor have been loaded, signal to call ejectCompleteTensor()
}else{
return AddPointResult::tensor_incomplete; // point added to the tensor, but the tensor is not complete yet
}
}
}
// could not find a tensor that contains this node, must add a new tensor
return AddPointResult::tensor_missing;
}
void DynamicConstructorDataGlobal::ejectCompleteTensor(MultiIndexSet const ¤t_tensors, MultiIndexSet &new_tensors, MultiIndexSet &new_points, StorageSet &vals){
new_points = MultiIndexSet(); // reset tensors
vals = StorageSet();
Data2D<int> candidate_tensors(num_dimensions, 0); // get a list of completed tensors
for(auto &t : tensors)
if (t.loaded.empty())
candidate_tensors.appendStrip(t.tensor);
// get the completed tensors that can be added to current_tensors while still preserving lower-completion
new_tensors = MultiIndexManipulations::getLargestCompletion(current_tensors, MultiIndexSet(candidate_tensors));
if (new_tensors.empty()) return;
vals.resize((int) num_outputs, 0);
auto p = tensors.before_begin(), t = tensors.begin();
while(t != tensors.end()){
if (new_tensors.missing(t->tensor)){ // if not using this tensor, advance to the next
t++;
p++;
}else{ // if using the tensor
int num_searching = t->points.getNumIndexes();
Data2D<double> wvals(num_outputs, num_searching); // find all the values of the points
int found = 0;
auto d = data.before_begin();
auto v = data.begin();
while(found < num_searching){ // until all are found
int slot = t->points.getSlot(v->point);
if (slot == -1){ // this is not a point that we are looking for
d++;
v++;
}else{ // point found, copy the value and extract it from the list
std::copy_n(v->value.begin(), num_outputs, wvals.getStrip(slot));
data.erase_after(d);
v = d;
v++;
found++;
}
}
vals.addValues(new_points, t->points, wvals.getStrip(0));
new_points += t->points;
tensors.erase_after(p);
t = p;
t++;
}
}
}
}
#endif
|