File: tsgLinearSolvers.cpp

package info (click to toggle)
tasmanian 8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,852 kB
  • sloc: cpp: 34,523; python: 7,039; f90: 5,080; makefile: 224; sh: 64; ansic: 8
file content (873 lines) | stat: -rw-r--r-- 36,519 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/*
 * Copyright (c) 2017, Miroslav Stoyanov
 *
 * This file is part of
 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
 *    or promote products derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
 */

#ifndef __TASMANIAN_LINEAR_SOLVERS_CPP
#define __TASMANIAN_LINEAR_SOLVERS_CPP

#include "tsgLinearSolvers.hpp"
#include "tsgTPLWrappers.hpp"

namespace TasGrid{

void TasmanianDenseSolver::solveLeastSquares(int n, int m, const double A[], double b[], double *x){
    // form Ar = A' * A
    // form x = A' * b
    std::vector<double> Ar(m * m);
    #pragma omp parallel for
    for(int i=0; i<m; i++){
        for(int j=0; j<m; j++){
            double sum = 0.0;
            for(int k=0; k<n; k++){
                sum += A[i*n + k] * A[j*n + k];
            }
            Ar[i*m + j] = sum;
        }
        x[i] = 0.0;
        for(int k=0; k<n; k++){
            x[i] += A[i*n+k] * b[k];
        }
    }

    // factorize Ar
    for(int i=0; i<m; i++){
        Ar[i*m + i] = std::sqrt(Ar[i*m + i]);

        for(int j=i+1; j<m; j++){
            Ar[i*m + j] /= Ar[i*m + i];
        }

        for(int k=i+1; k<m; k++){
            for(int j=i+1; j <= k; j++){
                Ar[j*m + k] -= Ar[i*m + j] * Ar[i*m + k];
            }
        }
    }

    // solve L^(-1) x
    for(int i=0; i<m; i++){
        x[i] /= Ar[i*m + i];
        for(int j=i+1; j<m; j++){
            x[j] -= x[i] * Ar[i*m + j];
        }
    }

    // solve L^(-T) x
    for(int i=m-1; i>=0; i--){
        for(int j=i+1; j<m; j++){
            x[i] -= x[j] * Ar[i*m + j];
        }
        x[i] /= Ar[i*m + i];
    }
}

void TasmanianDenseSolver::solveLeastSquares(AccelerationContext const *acceleration, int n, int m, double A[], double b[], double *x){
    if (acceleration->blasCompatible()){
        TasBLAS::solveLS('N', n, m, A, b);
        std::copy_n(b, m, x);
        return;
    }else{
        solveLeastSquares(n, m, A, b, x);
    }
}

template<typename scalar_type>
void TasmanianDenseSolver::solvesLeastSquares(AccelerationContext const *acceleration, int n, int m, scalar_type A[], int nrhs, scalar_type B[]){
    switch(acceleration->mode){
        case accel_gpu_magma:
            TasGpu::solveLSmultiOOC(acceleration, n, m, A, nrhs, B);
            break;
        case accel_gpu_cuda:
        case accel_gpu_cublas:
            acceleration->setDevice();
            TasGpu::solveLSmulti(acceleration, n, m, A, nrhs, B);
            break;
        case accel_cpu_blas:
            TasBLAS::solveLSmulti(n, m, A, nrhs, B);
            break;
        default:
            throw std::runtime_error("Dense least-squares solve attempted without BLAS or CUDA acceleration enabled.");
    };
}
template<typename scalar_type>
void TasmanianDenseSolver::solvesLeastSquaresGPU(AccelerationContext const *acceleration, int n, int m, scalar_type A[], int nrhs, scalar_type B[]){
    if (not acceleration->on_gpu())
        throw std::runtime_error("solvesLeastSquaresGPU() requires a GPU mode to be enabled.");
    TasGpu::solveLSmultiGPU(acceleration, n, m, A, nrhs, B);
}

template void TasmanianDenseSolver::solvesLeastSquares<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void TasmanianDenseSolver::solvesLeastSquares<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);
template void TasmanianDenseSolver::solvesLeastSquaresGPU<double>(AccelerationContext const*, int, int, double[], int, double[]);
template void TasmanianDenseSolver::solvesLeastSquaresGPU<std::complex<double>>(AccelerationContext const*, int, int, std::complex<double>[], int, std::complex<double>[]);

namespace Utils{ // implements block transpose method
template<typename scalar_type>
inline void copy_transpose(long long M, long long N, scalar_type const A[], long long lda, scalar_type B[], long long ldb){
    for(int i=0; i<M; i++)
        for(int j=0; j<N; j++)
            B[i * ldb + j] = A[j * lda + i];
}
template<typename scalar_type>
void transpose(long long M, long long N, scalar_type const A[], scalar_type B[]){
    constexpr long long bsize = 64;
    long long bM = (M / bsize) + ((M % bsize == 0) ? 0 : 1); // number of blocks in M and N
    long long bN = (N / bsize) + ((N % bsize == 0) ? 0 : 1);
    #pragma omp parallel for
    for(long long t =0; t < bM * bN; t++){
        long long i = t / bN;
        long long j = t % bN;
        copy_transpose(std::min(bsize, M - i * bsize), std::min(bsize, N - j * bsize),
                        A + i * bsize + j * bsize * M, M,
                        B + i * bsize * N + j * bsize, N);
    }
}

template void transpose(long long, long long, float const[], float[]);
template void transpose(long long, long long, double const[], double[]);
template void transpose(long long, long long, std::complex<double> const[], std::complex<double>[]);
}

std::vector<double> TasmanianTridiagonalSolver::getSymmetricEigenvalues(int n, std::vector<double> const &diag, std::vector<double> const &offdiag){
    #ifndef Tasmanian_ENABLE_BLAS
    throw std::runtime_error("getSymmetricEigenvalues() requires BLAS acceleration to be enabled!");
    #endif
    std::vector<double> result = diag;
    std::vector<double> dummy = offdiag;
    TasBLAS::sterf(n, result.data(), dummy.data());
    return result;
}

void TasmanianTridiagonalSolver::decompose(std::vector<double> &diag, std::vector<double> &off_diag, const double mu0,
                                           std::vector<double> &nodes, std::vector<double> &weights) {
    switch(TasmanianTridiagonalSolver::decompose_version) {
        case 1 :
            weights = std::vector<double>(diag.size(), 0.0);
            weights[0] = sqrt(mu0);
            nodes = diag;
            off_diag.push_back(0.0);
            decompose1(static_cast<int>(diag.size()), nodes, off_diag, weights);
            break;
        case 2 :
            decompose2(diag, off_diag, mu0, nodes, weights);
            break;
        default :
            throw std::invalid_argument("ERROR: decompose_version must be a valid number!");
    }
}

void TasmanianTridiagonalSolver::decompose1(int n, std::vector<double> &d, std::vector<double> &e, std::vector<double> &z){
    const double tol = Maths::num_tol;
    if (n == 1){ z[0] = z[0]*z[0]; return; }

    for(int l=0; l<n-1; l++){
        int m = l;
        while((m < n-1) && (std::abs(e[m]) > tol)) m++;

        while (m != l){
            double p = d[l];
            double g = (d[l+1] - p) / (2.0 * e[l]);
            double r = std::sqrt(g*g + 1.0);

            g = d[m] - p + e[l] / (g + Maths::sign(g) * r); // sign function here may be unstable

            double s = 1.0;
            double c = 1.0;
            p = 0.0;

            for(int i=m-1; i>=l; i--){
                double f = s * e[i];
                double b = c * e[i];

                if (std::abs(f) >= std::abs(g)){
                    c = g / f;
                    r = std::sqrt(c*c + 1.0);
                    e[i+1] = f*r;
                    s = 1.0 / r;
                    c *= s;
                }else{
                    s = f / g;
                    r =  std::sqrt(s*s + 1.0);
                    e[i+1] = g * r;
                    c = 1.0 / r;
                    s *= c;
                }

                g = d[i+1] - p;
                r = (d[i] - g) * s + 2.0 * c * b;
                p = s * r;
                d[i+1] = g + p;
                g = c * r - b;
                f = z[i+1];
                z[i+1] = s * z[i] + c * f;
                z[i] = c * z[i] - s * f;
            }

            d[l] -= p;
            e[l] = g;
            e[m] = 0.0;

            m = l;
            while((m < n-1) && (std::abs(e[m]) > tol)) m++;
        }
    }

    for(int i=1; i<n; i++){
        for(int j=0; j<n-1; j++){
            if (d[j] > d[j+1]){
                double p = d[j];
                d[j] = d[j+1];
                d[j+1] = p;
                p = z[j];
                z[j] = z[j+1];
                z[j+1] = p;
            }
        }
    }
    for(int i=0; i<n; i++){
           z[i] = z[i]*z[i];
    }
}

void TasmanianTridiagonalSolver::decompose2(std::vector<double> &diag, std::vector<double> &off_diag, const double mu0,
                                            std::vector<double> &nodes, std::vector<double> &weights) {

    // Ensure compatibility with the ALGOL implementation.
    // NOTE: diag and off_diag are 1-indexed, while nodes and weights are 0-indexed after this step.
    size_t n = diag.size();
    assert(off_diag.size() == n-1);
    nodes.resize(n);
    weights.resize(n);
    diag.insert(diag.begin(), 0.0);
    off_diag.insert(off_diag.begin(), 0.0);

    // SETUP block from ALGOL code.
    // ALGOL COMMENT: Find the maximum row sum norm and initialize weights.
    off_diag[0] = 0.0;
    double norm = 0.0;
    for (size_t i=1; i<=n-1; i++) {
        norm = std::max(norm, std::fabs(off_diag[i-1]) + std::fabs(diag[i]) + std::fabs(off_diag[i-1]));
        weights[i-1] = 0.0;
    }
    norm = std::max(norm, std::fabs(diag[n]) + std::fabs(off_diag[n-1]));
    weights[n-1] = 0.0;
    weights[0] = 1.0; // Fix the bug in the ALGOL code.
    double eps = norm * std::numeric_limits<double>::epsilon();
    size_t m = n;
    double lambda{norm}, lambda1{norm}, lambda2{norm}, rho{norm};

    // INSPECT block from ALGOL code.
    // ALGOL COMMENT: Look for convergence of lower diagonal element.
    while (m > 0) {
        if (std::fabs(off_diag[m-1]) <= eps) {
            nodes[m-1] = diag[m];
            weights[m-1] = mu0 * weights[m-1] * weights[m-1];
            rho = lambda1 < lambda1 ? lambda1 : lambda2;
            m--;
            continue;
        }
        // ALGOL COMMENT: Small off diagonal element means matrix can be split.
        size_t k = m-1;
        while (std::fabs(off_diag[k-1]) > eps) k--;
        // ALGOL COMMENT: Find eigenvalues of lower 2-by-2 and select accelerating shift.
        double b2 = off_diag[m-1] * off_diag[m-1];
        double det = std::sqrt((diag[m-1] - diag[m]) * (diag[m-1] - diag[m]) + 4.0 * b2);
        double aa = diag[m-1] + diag[m];
        lambda2 = 0.5 * (aa >= 0 ? aa + det : aa - det);
        lambda1 = (diag[m-1] * diag[m] - b2) / lambda2;
        double eigmax = std::max(lambda1, lambda2);
        if (std::fabs(eigmax - rho) <= 0.125 * std::fabs(eigmax)) {
            lambda = eigmax;
        }
        rho = eigmax;
        // ALGOL COMMENT: Transform block from k to m.
        double cj = off_diag[k];
        off_diag[k-1] = diag[k] - lambda;
        for (size_t j=k; j<=m-1; j++) {
            double r = std::sqrt(cj * cj + off_diag[j-1] * off_diag[j-1]);
            double st = cj / r;            double st2 = st * st;
            double ct = off_diag[j-1] / r; double ct2 = ct * ct;
            double sc = st * ct;           double aj = diag[j];
            double bj = off_diag[j];       double wj = weights[j-1];
            // Order below is important!
            diag[j] = aj * ct2 + 2.0 * bj * sc + diag[j+1] * st2;
            off_diag[j] = (aj - diag[j+1]) * sc + bj * (st2 - ct2);
            diag[j+1] = aj * st2 - 2.0 * bj * sc + diag[j+1] * ct2;
            cj = off_diag[j+1] * st;
            off_diag[j+1] = -off_diag[j+1] * ct;
            off_diag[j-1] = r;
            // Account for the offset of the indices.
            weights[j-1] = wj * ct + weights[j] * st;
            weights[j] = wj * st - weights[j] * ct;
        }
        off_diag[k-1] = 0.0;
    }

    // SORT block from ALGOL code.
    // ALGOL COMMENT: Arrange abscissas in ascending order.
    // NOTE: the original code used an exchange sort, which is O(n^2).
    std::vector<size_t> I(n);
    for (size_t i=0; i<n; i++) I[i] = i;
    std::sort(I.begin(), I.end(), [&nodes](size_t i, size_t j){return nodes[i] < nodes[j];});
    for (size_t i=0; i<n; i++) {
        while (I[i] != i) {
            std::swap(nodes[i], nodes[I[i]]);
            std::swap(weights[i], weights[I[i]]);
            std::swap(I[i], I[I[i]]);
        }
    }
}

void TasmanianFourierTransform::fast_fourier_transform(std::vector<std::vector<std::complex<double>>> &data, std::vector<int> &num_points){
    int num_dimensions = (int) num_points.size();
    int num_total = 1;
    for(auto n: num_points) num_total *= n;
    std::vector<int> cumulative_points(num_dimensions);
    for(int k=0; k<num_dimensions; k++){
        // split the data into vectors of 1-D transforms
        std::vector<std::vector<int>> maps1d(num_total / num_points[k]); // total number of 1-D transforms
        for(auto &v: maps1d) v.reserve(num_points[k]); // each 1-D transform will have size num_points[k]

        std::fill(cumulative_points.begin(), cumulative_points.end(), 1);
        for(int j=num_dimensions-2; j>=0; j--) cumulative_points[j] = cumulative_points[j+1] * ((j+1 != k) ? num_points[j+1] : 1);

        // convert i to tuple, i.e., i -> p0, p1, p2 .. pd, where d = num_dimensions
        // all tuples that differ only in the k-th entry will belong to the same 1-D transform
        // the index of the 1D transform is i1d = \sum_{j \neq k} pj * cumulative_points[j]
        for(int i=0; i<num_total; i++){
            int t = i; // used to construct the tensor index
            int i1d = 0; // index of the corresponding 1D transform
            for(int j=num_dimensions-1; j>=0; j--){
                int pj = t % num_points[j]; // tensor index j
                if (j != k) i1d += cumulative_points[j] * pj;
                t /= num_points[j];
            }
            maps1d[i1d].push_back(i);
        }

        #pragma omp parallel for // perform the 1D transforms
        for(int i=0; i<(int) maps1d.size(); i++){
            fast_fourier_transform1D(data, maps1d[i]);
        }
    }
}

void TasmanianFourierTransform::fast_fourier_transform1D(std::vector<std::vector<std::complex<double>>> &data, std::vector<int> &indexes){
    //
    // Given vector x_n with size N, the Fourier transform F_k is defined as: F_k = \sum_{n=0}^{N-1} \exp(- 2 \pi k n / N) x_n
    // Assuming that N = 3^l for some l, we can sub-divide the transform into strips of 3
    // let j = 0, 1, 2; let k = 0, .., N/3; let x_{0,m} = x_{3m}; let x_{1,m} = x_{3m+1}; and let x_{2,m} = x_{3m+2}
    // F_{k + j N / 3} =                                         \sum_{m=0}^{N/3 - 1} x_{0,m} \exp(-2 \pi k m / (N / 3))
    //                   + \exp(-2 \pi k / N) \exp(-2 \pi j / 3) \sum_{m=0}^{N/3 - 1} x_{1,m} \exp(-2 \pi k m / (N / 3))
    //                   + \exp(-4 \pi k / N) \exp(-4 \pi j / 3) \sum_{m=0}^{N/3 - 1} x_{2,m} \exp(-2 \pi k m / (N / 3))
    // The three sums are the Fourier coefficients of x_{0, m}, x_{1, m}, and x_{2, m}
    // The terms \exp(-2 \pi k / N) \exp(-2 \pi j / 3), and \exp(-4 \pi k / N) \exp(-4 \pi j / 3) are the twiddle factors
    // The procedure is recursive splitting the transform into small sets, all the way to size 3
    //
    int num_outputs = (int) data[0].size(); // get the problem dimensions, num outputs and num entries for the 1D transform
    int num_entries = (int) indexes.size(); // the size of the 1D problem, i.e., N
    if (num_entries == 1) return; // nothing to do for size 1
    // a copy of the data is needed to swap back and forth, thus we make two copies and swap between them
    std::vector<std::vector<std::complex<double>>> V(num_entries);
    auto v = V.begin();
    for(auto i: indexes) *v++ = data[i]; // copy from the data only the indexes needed for the 1D transform
    std::vector<std::vector<std::complex<double>>> W(num_entries);
    for(auto &w : W) w.resize(num_outputs); // allocate storage for the second data set

    // the radix-3 FFT algorithm uses two common twiddle factors from known angles +/- 2 pi/3
    std::complex<double> twidlep(-0.5, -std::sqrt(3.0) / 2.0); // angle of -2 pi/3
    std::complex<double> twidlem(-0.5,  std::sqrt(3.0) / 2.0); // angle of  2 pi/3 = -4 pi/3

    int stride = num_entries / 3; // the jump between entries, e.g., in one level of split stride is 3, split again and stride is 9 ... up to N / 3
    int length = 3;               // the number of entries in the sub-sequences, i.e., how large k can be (see above), smallest sub-sequence uses length 3

    for(int i=0; i<stride; i++){ // do the 3 transform, multiply by 3 by 3 matrix
        auto x1 = V[i].begin();
        auto x2 = V[i + stride].begin();
        auto x3 = V[i + 2 * stride].begin(); // x1, x2, x3 are the three entries of a sub-sequence

        auto y1 = W[i].begin();
        auto y2 = W[i + stride].begin();
        auto y3 = W[i + 2 * stride].begin(); // y1, y2, y3 are the resulting Fourier coefficients

        for(int k=0; k<num_outputs; k++){
            *y1++ = *x1 + *x2 + *x3;
            *y2++ = *x1 + twidlep * *x2 + twidlem * *x3;
            *y3++ = *x1 + twidlem * *x2 + twidlep * *x3;
            x1++; x2++; x3++;
        }
    }

    std::swap(V, W); // swap, now V contains the computed transform of the sub-sequences with size 3, W will be used for scratch space

    // merge smaller sequences, do the recursion
    while(stride / 3 > 0){ // when the stride that we just computed is equal to 1, then stop the recursion
        int biglength = 3 * length; // big sequence, i.e., F_k has this total length
        int bigstride = stride / 3;

        double theta = -2.0 * Maths::pi / ((double) biglength);
        std::complex<double> expstep(std::cos(theta), std::sin(theta)); // initialize the twiddle factors common for this level of sub-sequences
        std::complex<double> expstep2 = expstep * expstep;

        // merge sets of 3 sub-sequences (coefficients of x_{i,m}) into 3 pieces of one sequence F_{k + j N / 3}
        for(int i=0; i<bigstride; i++){ // total number of triples of sequences is bigstride
            std::complex<double> t01(1.0, 0.0);
            std::complex<double> t02(1.0, 0.0);

            std::complex<double> t11 = twidlep;
            std::complex<double> t12 = twidlem;

            std::complex<double> t21 = twidlem;
            std::complex<double> t22 = twidlep; // the twiddle factors form a 3 by 3 matrix [1, 1, 1; 1, t11, t12; 1, t21, t22;]

            for(int k=0; k<length; k++){ // number of entries in the sub-sequences
                auto x1 = V[i + k * stride].begin();
                auto x2 = V[i + k * stride + bigstride].begin();
                auto x3 = V[i + k * stride + 2 * bigstride].begin(); // x1, x2, x3 are the next entries of the sub-sequence (i.e., the sums)

                auto y1 = W[i + k * bigstride].begin();
                auto y2 = W[i + (k + length) * bigstride].begin();
                auto y3 = W[i + (k + 2 * length) * bigstride].begin(); // y1, y2, y3 are the F_{k + j N / 3}

                for(int o=0; o<num_outputs; o++){ // traverse through all the outputs
                    *y1++ = *x1 + t01 * *x2 + t02 * *x3;
                    *y2++ = *x1 + t11 * *x2 + t12 * *x3;
                    *y3++ = *x1 + t21 * *x2 + t22 * *x3;
                    x1++; x2++; x3++;
                }

                // update the twiddle factors for the next index k
                t01 *= expstep;
                t11 *= expstep;
                t21 *= expstep;
                t02 *= expstep2;
                t12 *= expstep2;
                t22 *= expstep2;
            }
        }

        std::swap(V, W); // swap the data, V holds the current set of indexes and W is the next set

        stride = bigstride;
        length = biglength;
    }

    // copy back the solution into the data structure
    v = V.begin();
    for(auto i : indexes) data[i] = *v++;
}

namespace TasSparse{

WaveletBasisMatrix::WaveletBasisMatrix(AccelerationContext const *acceleration,
                                       const std::vector<int> &lpntr, const std::vector<std::vector<int>> &lindx, const std::vector<std::vector<double>> &lvals) : tol(Maths::num_tol), num_rows(static_cast<int>(lpntr.size())){

    if (num_rows == 0) return; // make an empty matrix

    // hip doesn't have rocsolver yet, so BLAS is required for dense operations
    if (acceleration->mode != accel_none and useDense(acceleration, num_rows)){ // dense mode
        dense = std::vector<double>(Utils::size_mult(num_rows, num_rows));
        Utils::Wrapper2D<double> dense_rows(num_rows, dense.data());

        auto idx = lindx.begin();
        auto vls = lvals.begin();
        auto ii = idx->begin();
        auto vv = vls->begin();
        for(int i=0; i<num_rows; i++){
            if (ii == idx->end()){
                idx++;
                vls++;
                if (idx != lindx.end()){
                    ii = idx->begin();
                    vv = vls->begin();
                }
            }

            double *r = dense_rows.getStrip(i);
            for(int j=0; j<lpntr[i]; j++)
                r[*ii++] = *vv++;
        }

        if (acceleration->mode != accel_cpu_blas){ // using GPU
            acceleration->setDevice();
            gpu_dense = GpuVector<double>(acceleration, dense);
            dense = std::vector<double>();
        }
    }else{ // sparse mode
        pntr = std::vector<int>(num_rows+1, 0);
        for(int i=0; i<num_rows; i++)
            pntr[i+1] = pntr[i] + lpntr[i];

        int num_nz = pntr.back();
        indx.reserve(num_nz);
        vals.reserve(num_nz);

        for(const auto &idx1 : lindx)
            indx.insert(indx.end(), idx1.begin(), idx1.end());
        for(const auto &vls1 : lvals)
            vals.insert(vals.end(), vls1.begin(), vls1.end());
    }
    factorize(acceleration);
}

void WaveletBasisMatrix::factorize(AccelerationContext const *acceleration){
    if (not gpu_dense.empty()){
        gpu_ipiv = GpuVector<int_gpu_lapack>(acceleration, num_rows);
        TasGpu::factorizePLU(acceleration, num_rows, gpu_dense.data(), gpu_ipiv.data());
    }else if (not dense.empty()){
        ipiv = std::vector<int>(num_rows);
        TasBLAS::getrf(num_rows, num_rows, dense.data(), num_rows, ipiv.data());
    }else{
        computeILU();
    }
}

void WaveletBasisMatrix::computeILU(){
    indxD.resize(num_rows);
    ilu.resize(pntr[num_rows]);
    for(int i=0; i<num_rows; i++){
        int j = pntr[i];
        while(indx[j] < i){ j++; };
        indxD[i] = j;
    }

    ilu = vals;

    for(int i=0; i<num_rows-1; i++){
        double u = ilu[indxD[i]];
        #pragma omp parallel for
        for(int j=i+1; j<num_rows; j++){ // update the rest of the matrix, each row can be done in parallel
            int jc = pntr[j];
            while(indx[jc] < i){ jc++; }
            if (indx[jc] == i){
                ilu[jc] /= u;
                double l = ilu[jc];
                int ik = indxD[i]+1;
                int jk = jc+1;
                while((ik<pntr[i+1]) && (jk<pntr[j+1])){
                    if (indx[ik] == indx[jk]){
                        ilu[jk] -= l * ilu[ik];
                        ik++; jk++;
                    }else if (indx[ik] < indx[jk]){
                        ik++;
                    }else{
                        jk++;
                    }
                }
            }
        }
    }
}

void WaveletBasisMatrix::invertTransposed(AccelerationContext const *acceleration, double b[]) const{
    if (not gpu_dense.empty()){
        GpuVector<double> gpu_b(acceleration, num_rows, 1, b);
        TasGpu::solvePLU(acceleration, 'N', num_rows, gpu_dense.data(), gpu_ipiv.data(), gpu_b.data());
        gpu_b.unload(acceleration, b);
    }else if (not dense.empty()){
        TasBLAS::getrs('N', num_rows, 1, dense.data(), num_rows, ipiv.data(), b, num_rows);
    }else{
        // using sparse algorithm
        if (acceleration->blasCompatible())
            solve<use_transpose, use_blas>(std::vector<double>(b, b + num_rows).data(), b);
        else
            solve<use_transpose, no_blas>(std::vector<double>(b, b + num_rows).data(), b);
    }
}

void WaveletBasisMatrix::invert(AccelerationContext const *acceleration, int num_colums, double B[]){
    if (not gpu_dense.empty()){
        GpuVector<double> gpu_b(acceleration, num_rows, num_colums, B);
        if (num_colums == 1){
            TasGpu::solvePLU(acceleration, 'T', num_rows, gpu_dense.data(), gpu_ipiv.data(), gpu_b.data());
        }else{
            TasGpu::solvePLU(acceleration, 'T', num_rows, gpu_dense.data(), gpu_ipiv.data(), num_colums, gpu_b.data());
        }
        gpu_b.unload(acceleration, B);
    }else if (not dense.empty()){
        if (num_colums == 1){
            TasBLAS::getrs('T', num_rows, 1, dense.data(), num_rows, ipiv.data(), B, num_rows);
        }else{
            TasBLAS::trsm('R', 'U', 'N', 'N', num_colums, num_rows, 1.0, dense.data(), num_rows, B, num_colums);
            TasBLAS::trsm('R', 'L', 'N', 'U', num_colums, num_rows, 1.0, dense.data(), num_rows, B, num_colums);
            // permute
            Utils::Wrapper2D<double> rows(num_colums, B);
            for(int i=0; i<num_rows; i++){
                if (ipiv[i] - 1 != i){
                    TasBLAS::vswap(num_colums, rows.getStrip(i), 1, rows.getStrip(ipiv[i] - 1), 1);
                }
            }
        }
    }else{
        if (num_colums == 1){
            std::vector<double> b(B, B + num_rows);
            if (acceleration->blasCompatible())
                solve<no_transpose, use_blas>(b.data(), B);
            else
                solve<no_transpose, no_blas>(b.data(), B);
            return;
        }
        Utils::Wrapper2D<double> wrapb(num_colums, B);
        std::vector<double> b(num_rows);
        std::vector<double> x(num_rows);
        for(int k=0; k<num_colums; k++){
            for(int i=0; i<num_rows; i++){
                b[i] = wrapb.getStrip(i)[k];
                x[i] = b[i];
            }

            if (acceleration->blasCompatible())
                solve<no_transpose, use_blas>(b.data(), x.data());
            else
                solve<no_transpose, no_blas>(b.data(), x.data());
            for(int i=0; i<num_rows; i++)
                wrapb.getStrip(i)[k] = x[i];
        }
    }
}

template<bool transpose> void WaveletBasisMatrix::applyILU(double x[]) const{
    if (transpose){
        for(int i=0; i<num_rows; i++){
            x[i] /= ilu[indxD[i]];
            for(int j=indxD[i]+1; j<pntr[i+1]; j++)
                x[indx[j]] -= ilu[j] * x[i];
        }
        for(int i=num_rows-2; i>=0; i--)
            for(int j=pntr[i]; j<indxD[i]; j++)
                x[indx[j]] -= ilu[j] * x[i];
    }else{
        for(int i=1; i<num_rows; i++){
            for(int j=pntr[i]; j<indxD[i]; j++){
                x[i] -= ilu[j] * x[indx[j]];
            }
        }
        for(int i=num_rows-1; i>=0; i--){
            for(int j=indxD[i]+1; j<pntr[i+1]; j++){
                x[i] -= ilu[j] * x[indx[j]];
            }
            x[i] /= ilu[indxD[i]];
        }
    }
}
template<bool transpose> void WaveletBasisMatrix::apply(double const x[], double r[]) const{
    if (transpose){
        std::fill_n(r, num_rows, 0.0);
        for(int i=0; i<num_rows; i++){
            for(int j=pntr[i]; j<pntr[i+1]; j++)
                r[indx[j]] += vals[j] * x[i];
        }
    }else{
        for(int i=0; i<num_rows; i++){
            double sum = 0.0;
            for(int j=pntr[i]; j<pntr[i+1]; j++)
                sum += vals[j] * x[indx[j]];
            r[i] = sum;
        }
    }
}

void WaveletBasisMatrix::residual(double const x[], double const b[], double r[]) const{
    for(int i=0; i<num_rows; i++){
        double sum = 0.0;
        for(int j=pntr[i]; j<pntr[i+1]; j++)
            sum += vals[j] * x[indx[j]];
        r[i] = b[i] - sum;
    }
}

// compute the norm, scale x by 1 / norm, return the norm
inline double rescale(int num_entries, double x[]){
    double nrm = 0.0;
    for(int i=0; i<num_entries; i++) nrm += x[i] * x[i];
    nrm = std::sqrt(nrm);
    double s = 1.0 / nrm;
    if (nrm > 0.0) for(int i=0; i<num_entries; i++) x[i] *= s;
    return nrm;
}
inline double rescale_blas(int num_entries, double x[]){
    if (AccelerationMeta::isAvailable(accel_cpu_blas)){
        double nrm = TasBLAS::norm2(num_entries, x, 1);
        if (nrm > 0.0) TasBLAS::scal(num_entries, 1.0 / nrm, x, 1);
        return nrm;
    }else{
        return rescale(num_entries, x);
    }
}

// project the krylov basis
inline void projectKrylov(int inner_itr, int max_inner, int num_rows, std::vector<double> &W, std::vector<double> &H){
    #pragma omp parallel for
    for(int i=0; i<inner_itr; i++){
        H[i*max_inner + inner_itr-1] = 0.0; for(int j=0; j<num_rows; j++){  H[i*max_inner + inner_itr-1] += W[inner_itr*num_rows+j] * W[i*num_rows+j];  };
    }

    #pragma omp parallel for
    for(int j=0; j<num_rows; j++){
        for(int i=0; i<inner_itr; i++){
            W[inner_itr*num_rows+j] -= H[i*max_inner + inner_itr-1] * W[i*num_rows+j];
        }
    }
}
inline void projectKrylov_blas(int inner_itr, int max_inner, int num_rows, std::vector<double> &W, std::vector<double> &H){
    if (AccelerationMeta::isAvailable(accel_cpu_blas)){
        TasBLAS::gemv('T', num_rows, inner_itr,  1.0, W.data(), num_rows, &W[inner_itr * num_rows], 1, 0.0, &H[inner_itr-1], max_inner);
        TasBLAS::gemv('N', num_rows, inner_itr, -1.0, W.data(), num_rows, &H[inner_itr-1], max_inner, 1.0, &W[inner_itr * num_rows], 1);
    }else{
        projectKrylov(inner_itr, max_inner, num_rows, W, H);
    }
}
// reconstruct the krylov solution from the basis
inline void reconstructKrylov(int inner_itr, int max_inner, int num_rows, std::vector<double> const &W, std::vector<double> const &H,
                              std::vector<double> &Z, double x[]){
    Z[inner_itr] /= H[inner_itr * max_inner + inner_itr];
    for(int i=inner_itr-1; i>-1; i--){
        double beta = 0.0;
        for(int j=i+1; j<=inner_itr; j++){
            beta += H[i*max_inner + j] * Z[j];
        };
        Z[i] = (Z[i] - beta) / H[i * max_inner + i];
    }

    for(int i=0; i<=inner_itr; i++){
        for(int j=0; j<num_rows; j++){
            x[j] += Z[i] * W[i*num_rows+j];
        }
    }
}
inline void reconstructKrylov_blas(int inner_itr, int max_inner, int num_rows, std::vector<double> const &W, std::vector<double> const &H,
                                   std::vector<double> &Z, double x[]){
    if (AccelerationMeta::isAvailable(accel_cpu_blas)){
        TasBLAS::trsv('L', 'T', 'N', inner_itr, H.data(), max_inner, Z.data(), 1);
        TasBLAS::gemv('N', num_rows, inner_itr, 1.0, W.data(), num_rows, Z.data(), 1, 1.0, x, 1);
    }else{
        reconstructKrylov(inner_itr, max_inner, num_rows, W, H, Z, x);
    }
}

template<bool transpose, bool blas>
void WaveletBasisMatrix::solve(const double b[], double x[]) const{
    int max_inner = 30;
    int max_outer = 80;
    std::vector<double> W((max_inner+1) * num_rows); // Krylov basis

    std::vector<double> H(max_inner * (max_inner+1)); // holds the transformation for the normalized basis
    std::vector<double> S(max_inner); // std::sin and std::cos of the Givens rotations
    std::vector<double> C(max_inner+1);
    std::vector<double> Z(max_inner); // holds the coefficients of the solution

    double alpha, beta; // temp variables

    double outer_res = tol + 1.0; // outer and inner residual
    int outer_itr = 0; // counts the inner and outer iterations

    std::vector<double> temp;

    std::fill_n(x, num_rows, 0.0); // zero initial guess, I wonder if we can improve this

    while (outer_res > tol and outer_itr < max_outer){
        if (transpose){
            temp = std::vector<double>(x, x + num_rows);
            applyILU<transpose>(temp.data());
            apply<transpose>(temp.data(), W.data());
            for(int i=0; i<num_rows; i++){
                W[i] = b[i] - W[i];
            }
        }else{
            residual(x, b, W.data());
            applyILU<transpose>(W.data());
        }

        double inner_res = (blas) ? rescale_blas(num_rows, W.data()) : rescale(num_rows, W.data());
        Z[0] = inner_res;

        int inner_itr = 0; // counts the size of the basis

        while ((inner_res > tol) && (inner_itr < max_inner-1)){
            inner_itr++;

            if (transpose){
                std::copy_n(&(W[num_rows*(inner_itr-1)]), num_rows, temp.data());
                applyILU<transpose>(temp.data());
                apply<transpose>(temp.data(), &W[inner_itr*num_rows]);
            }else{
                apply<transpose>(&W[num_rows*(inner_itr-1)], &W[inner_itr*num_rows]);
                applyILU<transpose>(&W[inner_itr*num_rows]);
            }

            if (blas)
                projectKrylov_blas(inner_itr, max_inner, num_rows, W, H);
            else
                projectKrylov(inner_itr, max_inner, num_rows, W, H);

            beta = (blas) ? rescale_blas(num_rows, &W[inner_itr*num_rows]) : rescale(num_rows, &W[inner_itr*num_rows]);

            for (int i=0; i<inner_itr-1; i++){ // form the next row of the transformation
                alpha = H[i*max_inner + inner_itr-1];
                H[   i*max_inner + inner_itr-1] = C[i] * alpha + S[i] * H[(i+1)*max_inner + inner_itr-1];
                H[(i+1)*max_inner + inner_itr-1] = S[i] * alpha - C[i] * H[(i+1)*max_inner + inner_itr-1];
            };

            alpha = std::sqrt(beta * beta  +  H[(inner_itr-1)*max_inner + inner_itr-1] * H[(inner_itr-1)*max_inner + inner_itr-1]);

            // set the next set of Givens rotations
            S[inner_itr-1] = beta / alpha;
            C[inner_itr-1] = H[(inner_itr-1)*max_inner + inner_itr-1] / alpha;

            H[(inner_itr-1) * max_inner + inner_itr-1] = alpha;

            // Z is used to reconstruct the solution in the end
            Z[inner_itr] = S[inner_itr-1]*Z[inner_itr-1];
            Z[inner_itr-1] = C[inner_itr-1]*Z[inner_itr-1]; // apply it on z

            inner_res = std::abs(Z[inner_itr]);
        }

        inner_itr--;

        if (inner_itr > -1){ // if the first guess was not within TOL of the true solution
            if (blas)
                reconstructKrylov_blas(inner_itr, max_inner, num_rows, W, H, Z, x);
            else
                reconstructKrylov(inner_itr, max_inner, num_rows, W, H, Z, x);

            if (transpose)
                applyILU<transpose>(x);

        }

        outer_res = inner_res;
        outer_itr++;
    }
}

} /* namespace TasSparse */

}
#endif