1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#include "tsgRuleWavelet.hpp"
namespace TasGrid{
inline int ACCESS_FINE(int i, int level, int depth){ return ((1 << (depth - level - 1)) * (2 * i + 1)); }
inline int ACCESS_COARSE(int i, int level, int depth){ return i * (1 << (depth - level)); }
void RuleWavelet::updateOrder(int ord){
// Changes the order of the rule to the specified order. If order other than 1 is
// specified, then the approximation to the wavelets will be recalculated.
if(order == ord) return;
// clear is practically free, call it every time
data = std::vector<std::vector<double>>();
cachexs = std::vector<double>();
order = ord;
if(order == 3){
data.resize(5); // (xs, level1 (scaling), level2, level3, level4)
data[0].resize(num_data_points);
double *xs = data[0].data();
for(int i = 0; i < num_data_points; i++){
xs[i] = -1. + 2*(double (i)) / (double (num_data_points - 1));
}
cachexs = std::vector<double>((size_t) 4 * (num_data_points - 3));
for(int i = 0; i < num_data_points - 3; i++){
double const *s = &(xs[i]);
double *c = &(cachexs[4*i]);
double alpha = 1.0 / ((s[0] - s[3]) * (s[0] - s[2]));
double beta = 1.0 / ((s[0] - s[3]) * (s[1] - s[3]));
c[0] = alpha / (s[0] - s[1]);
c[1] = - alpha / (s[0] - s[1]) - alpha / (s[1] - s[2]) - beta / (s[1] - s[2]);
c[2] = alpha / (s[1] - s[2]) + beta / (s[1] - s[2]) + beta / (s[2] - s[3]);
c[3] = - beta / (s[2] - s[3]);
}
// Coefficients derived by solving linear system involving scaling function
// integrals and moments.
std::vector<std::vector<double>> coeffs(3);
coeffs[0] = {0.95958116146167449, 0.27778015867946454, -0.042754937296610125, -0.014317145809288835, // Second level
-0.34358723961941895, 0.36254192315551625, 0.20438681551383264, 0.012027193241660438};
coeffs[1] = {0.90985488901447964, 0.29866296454372104, -0.077377811931657145, 0.017034083534297827, // third level
-0.28361250628699103, 0.33723841173046543, 0.24560604387620491, -0.023811935316236606,
0.015786802304611155, 0.23056985382971185, 0.31221657974498912, -0.03868102549989539,
0.194797093133632, -0.099050236091189195, 0.51520570019738199, -0.073403162960780324};
coeffs[2] = {0.90985443399962629, 0.29866318097339162, -0.077377917373678995, 0.017034105626588848, // fourth level
-0.28361254472311259, 0.33723844527609648, 0.24560602528531161, -0.023811931411878345,
0.015786801751471, 0.23056986060092344, 0.31221657434994671, -0.038681024059425327,
0.14697942814289319, -0.047340431972365773, 0.51871874565793186, -0.093244980946745618,
-0.019628614067688826, 0.25611706552019509, 0.30090457777800012, -0.036629694186987166,
-1.0/32.0, 9.0/32.0, 9.0/32.0, -1.0/32.0};
// Initialize scaling functions
data[1].resize(3*num_data_points);
std::fill(data[1].begin(), data[1].end(), 0.0);
// Point (sparse grid numbering):
// 1 3 0 4 2
// X --- X --- X --- X --- X
// 0 1 2 3 4
// Point (level 2 coarse indexing)
// This ordering makes phi1 -> point 0, phi2 -> point 1, phi3 -> point 3
// Points 2 & 4 can be found by reflection of phi2, phi3, respectively.
data[1][ACCESS_COARSE(2, 2, iteration_depth)] = 1.0;
data[1][num_data_points + ACCESS_COARSE(0, 2, iteration_depth)] = 1.0;
data[1][2*num_data_points + ACCESS_COARSE(1, 2, iteration_depth)] = 1.0;
cubic_cascade(data[1].data(), 2, iteration_depth);
cubic_cascade(&(data[1][num_data_points]), 2, iteration_depth);
cubic_cascade(&(data[1][2*num_data_points]), 2, iteration_depth);
for(int level = 2; level <= 4; level++){
// Scaling functions at current level.
std::vector<double> phi1(num_data_points, 0.0);
std::vector<double> phi2(num_data_points, 0.0);
std::vector<double> phi3(num_data_points, 0.0);
std::vector<double> phi4(num_data_points, 0.0);
int num_saved = 2 * (level-1); // 2 'unique' functions at level 2, 4 at 3, 6 at 4.
data[level].resize(num_saved * num_data_points);
std::fill(data[level].begin(), data[level].end(), 0.0);
// Initialize first four scaling functions
phi1[ACCESS_COARSE(0, level, iteration_depth)] = 1.0;
phi2[ACCESS_COARSE(1, level, iteration_depth)] = 1.0;
phi3[ACCESS_COARSE(2, level, iteration_depth)] = 1.0;
phi4[ACCESS_COARSE(3, level, iteration_depth)] = 1.0;
cubic_cascade(phi1.data(), level, iteration_depth);
cubic_cascade(phi2.data(), level, iteration_depth);
cubic_cascade(phi3.data(), level, iteration_depth);
cubic_cascade(phi4.data(), level, iteration_depth);
for(int index = 0; index < num_saved; index++){
// Initialize unlifted wavelet
double *wavelet = &data[level][index*(num_data_points)];
wavelet[ACCESS_FINE(index, level, iteration_depth)] = 1;
cubic_cascade(wavelet, level, iteration_depth);
double c1 = coeffs[level-2][4*index],
c2 = coeffs[level-2][4*index+1],
c3 = coeffs[level-2][4*index+2],
c4 = coeffs[level-2][4*index+3];
if(level > 2 && index >= 2){
// Change pointers around to avoid copying data
std::vector<double> tmp;
std::swap(tmp, phi1);
std::swap(phi1, phi2);
std::swap(phi2, phi3);
std::swap(phi3, phi4);
std::swap(phi4, tmp);
// Initialize new scaling function
std::fill(phi4.begin(), phi4.end(), 0.0);
phi4[ACCESS_COARSE(index+2, level, iteration_depth)] = 1;
cubic_cascade(phi4.data(), level, iteration_depth);
}
for(int i = 0; i < num_data_points; i++){
// Lift the wavelet
wavelet[i] -= c1 * phi1[i] + c2 * phi2[i] + c3 * phi3[i] + c4 * phi4[i];
}
}
}
}
}
void RuleWavelet::cubic_cascade(double *y, int starting_level, int in_iteration_depth){
// Using the cascade algorithm (interpolating subdivision), approximates the values
// of the desired scaling function or wavelet at 2^(iteration_depth)+1 points.
// Wavelets are generated by placing a 1 in the appropriate place at a fine point
// on a given level while scaling functions are generated by placing a 1 in the
// appropriate place at a coarse point.
for(int level = starting_level; level < in_iteration_depth; level++){
int num_pts = (1 << (level));
int prev_pts = (1 << (level)) + 1;
auto AC = [&](int i, int l)->int{ return ACCESS_COARSE(i, l, in_iteration_depth); };
auto AF = [&](int i, int l)->int{ return ACCESS_FINE(i, l, in_iteration_depth); };
// Boundary predictions
y[AF(0,level)] += (
5 *(y[AC(0,level)] + 3*y[AC(1,level)] - y[AC(2,level)])
+ y[AC(3,level)]
) / 16.;
y[AF(num_pts-1,level)] += (
5 *(y[AC(prev_pts-1,level)] + 3*y[AC(prev_pts-2,level)] - y[AC(prev_pts-3,level)])
+ y[AC(prev_pts-4,level)]
) / 16.;
// Central predictions
#pragma omp parallel for
for(int i = 1; i < num_pts-1; i++){
y[AF(i,level)] += (
9 * (y[AC(i,level)] + y[AC(i+1,level)])
- (y[AC(i-1,level)] + y[AC(i+2,level)])
) / 16.;
}
}
}
int RuleWavelet::getOrder() const{
return order;
}
int RuleWavelet::getNumPoints(int level) const{
// Returns the number of points on a given level.
if(order == 1){
return (1 << (level + 1)) + 1;
}else{
return (1 << (level + 2)) + 1;
}
}
const char * RuleWavelet::getDescription() const{
if (order == 1){
return "First-Order Wavelet Basis";
}else{
return "Third-Order Wavelet Basis";
}
}
int RuleWavelet::getLevel(int point) const{
// Returns the level to which the given node belongs.
if(order == 1){
return (point <= 2) ? 0 : Maths::intlog2(point - 1);
}else{
return (point < 5) ? 0 : Maths::intlog2(point - 1) - 1;
}
}
void RuleWavelet::getChildren(int point, int &first, int &second) const{
// Returns the children of the given node in first and second. If the node has only a
// single child, then second is set to -1.
if (order == 1){
if (point >= 3){ // most likely case
first = 2*point-1;
second = 2*point;
}else if (point < 2 ){ // second most likely case
first = 3;
second = (point == 0) ? 4 : -1;
}else{ // point == 2
first = 4;
second = -1;
}
}else if (order == 3){
if (point >= 3){
first = 2*point-1;
second = 2*point;
}else if (point == 0){
first = 6;
second = 7;
}else if (point == 1){
first = 5;
second = -1;
}else{ // point == 2
first = 8;
second = -1;
}
}
}
int RuleWavelet::getParent(int point) const{
// Returns the parent of a given node.
// Miro: this is a hack, -1 indicates no parent, >= 0 indicates the parent, -2 indicates all nodes on level 0
if (order == 1){
if(point <= 2) return -1;
if(point <= 4) return -2;
}else{
if(point <= 4) return -1;
if(point <= 8) return -2;
}
return (point+1)/2;
}
double RuleWavelet::getNode(int point) const {
// Returns the x-coordinate in the canonical domain associated with the given wavelet.
if (point == 0) return 0.0;
if (point == 1) return -1.0;
if (point == 2) return 1.0;
return ((double)(2*point - 1)) / ((double) Maths::int2log2(point - 1)) - 3.0;
}
double RuleWavelet::getWeight(int point) const{
// Returns the integral of the given wavelet.
if (order == 1){
return (point == 0) ? 1.0 : (point <= 2) ? 0.5 : 0.0;
}else if(order == 3){
if (point > 4){
return 0.0;
}
switch (point){
case 1:
case 2:
return 1.680555555555555691e-01;
case 3:
case 4:
return 6.611111111111110938e-01;
case 0:
return 3.416666666666666741e-01;
}
}
return 0.0;
}
template<int mode>
double RuleWavelet::eval(int point, double x) const{
// Evaluates or differentiates a wavelet designated by point at coordinate x.
if(order == 1){
// Level 0
if (point < 3){
double node = getNode(point);
if (mode == 0) {
double w = 1.0 - std::abs(x - node);
return (w < 0.0) ? 0.0 : w;
}else{
// Preserve the symmetry of derivatives as much as possible.
if (point == 0) return (x < 0.0) ? 1.0 : -1.0;
else if (point == 1) return (x < 0.0) ? -1.0 : 0.0;
else return (x < 0.0) ? 0.0 : 1.0;
}
}
// Level 1+
return eval_linear<mode>(point, x);
}
else if(order == 3){
return eval_cubic<mode>(point, x);
}
return 0.;
}
template double RuleWavelet::eval<0>(int point, double x) const;
template double RuleWavelet::eval<1>(int point, double x) const;
template<int mode>
inline double RuleWavelet::eval_cubic(int point, double x) const{
// Helps stabilize numerical errors.
if (point == 0 and x == 0.0 and mode == 1) return 0.0;
// Evaluates a third order wavelet at a given point x.
double sgn = 1.0;
if (point < 5){ // Scaling functions
if (point == 2){ // Reflect across y-axis
point = 1;
sgn = -1.0;
x = -x;
}else if(point == 4){
point = 3;
sgn = -1.0;
x = -x;
}
const double *phi = &(data[1][((point+1)/2) * num_data_points]);
return (mode == 0 ? interpolate<mode>(phi, x) : sgn * interpolate<mode>(phi, x));
}
int l = Maths::intlog2(point - 1);
if(l == 2){
if (point > 6){
// i.e. 7 or 8
// These wavelets are reflections across the y-axis of 6 & 5, respectively
x = -x;
sgn = -1.0;
point = 13 - point;
}
point -= 5;
const double *phi = &data[2][point*num_data_points];
return (mode == 0 ? interpolate<mode>(phi, x) : sgn * interpolate<mode>(phi, x));
}else if(l == 3){
if (point > 12){
// i.e. 13, 14, 15, 16
// These wavelets are reflections of 12, 11, 10, 9, respectively
x = -x;
sgn = -1.0;
point = 25 - point;
}
point -= 9;
const double *phi = &data[3][point*num_data_points];
return (mode == 0 ? interpolate<mode>(phi, x) : sgn * interpolate<mode>(phi, x));
}
// Standard lifted wavelets.
int subindex = (point - 1) % (1 << l);
double scale = pow(2,l-4);
double value;
if (subindex < 5){
// Left boundary wavelet.
value = interpolate<mode>(&data[4][subindex*num_data_points], scale * (x + 1.) - 1.);
} else if ((1 << l) - 1 - subindex < 5){
// Right boundary wavelet.
value = interpolate<mode>(&data[4][((1 << l) - subindex - 1)*num_data_points], scale * (1. - x) - 1.);
} else {
// Central wavelets.
double shift = 0.125 * (double (subindex - 5));
value = interpolate<mode>(&data[4][5*num_data_points], scale * (x + 1.) -1. - shift);
}
// Adjust for the chain rule multiplier.
if (mode == 1) value *= ((1 << l) - 1 - subindex < 5) ? -scale : scale;
return value;
}
void RuleWavelet::getShiftScale(int point, double &scale, double &shift) const{
if (point < 3){
scale = getNode(point);
shift = -1.0;
}else{
int l = Maths::intlog2(point - 1);
int subindex = (point - 1) % (1 << l);
scale = std::pow(2,l-2);
if (subindex == 0){
shift = -2.0;
}else if (subindex == (1 << l) - 1){
shift = -3.0;
}else{
shift = 0.5 * (double (subindex - 1));
}
}
}
double RuleWavelet::getSupport(int point) const{
if (order == 1){
if (point <= 2) return 1.0; // linear-polynomial points
return 3.0 / ( 4.0 * std::pow(2.0, Maths::intlog2(point - 1) - 2) );
}else{
if (point <= 8) return 2.0; // cubic-polynomial points and level 1 have global support
// the strange 4.2 compensates for numerical errors in computing the cubic-cascade
return 4.2 / (3.0 * std::pow(2.0, Maths::intlog2(point - 1) - 3));
}
}
template<int mode>
inline double RuleWavelet::eval_linear(int point, double x) const{
// Given a wavelet designated by point and a value x, evaluates the wavelet (or its derivative) at x.
// If x <= 0 (resp. x > 0), we take only right (resp. left) derivatives.
// Standard Lifted Wavelets
int l = Maths::intlog2(point - 1);
int subindex = (point - 1) % (1 << l);
double scale = std::pow(2,l-2);
double value;
if (subindex == 0){
// Left boundary wavelet.
value = linear_boundary_wavelet<mode>(scale * (x + 1.) - 1., x <= 0.0);
} else if (subindex == (1 << l) - 1) {
// Right boundary wavelet.
value = linear_boundary_wavelet<mode>(scale * (1. - x) - 1., x > 0.0);
} else {
// Central wavelets
double shift = 0.5 * (double (subindex - 1));
value = linear_central_wavelet<mode>(scale * (x + 1) - 1. - shift, x <= 0.0);
}
// Adjust for the chain rule multiplier.
if (mode == 1) value *= (subindex == (1 << l) - 1) ? -scale : scale;
return value;
}
template<int mode>
inline double RuleWavelet::linear_boundary_wavelet(double x, bool right) const{
// Evaluates or differentiates the first order boundary wavelet with support on [-1, 0].
// If `right` is true, then we return the right derivatives/values (if they exist); else, we return the left ones.
if (std::abs(x + 0.5) > 0.5) return 0.0;
if (mode == 0) {
if (x < -0.75) {
return 0.75 * (7.0 * x + 6.0);
} else if ((right and x < -0.5) or (!right and x <= -0.5)) {
return -0.25 * (11.0 * x + 6.0);
} else if ((right and x < 0) or (!right and x <= 0)) {
return 0.25 * x;
} else {
return 0.0;
}
} else {
if (x < -0.75 or (x == -0.75 and not right)) {
return 0.75 * 7.0;
} else if (x < -0.5 or (x == -0.5 and not right)) {
return -0.25 * 11.0;
} else if (x < 0 or (x == 0 and not right)) {
return 0.25;
} else {
// Case: (right and x == 0.0)
return 0.0;
}
}
}
template<int mode>
inline double RuleWavelet::linear_central_wavelet(double x, bool right) const {
// Evaluates or differentiates (right derivative only) the first order central wavelet with support on [-1, .5].
// If `right` is true, then we return the right derivatives/values (if they exist); else, we return the left ones.
if (std::abs(x + 0.25) > 0.75) return 0.0;
if (mode == 0) {
if ( x < -0.5) {
return -0.5 * x - 0.5;
} else if (x < -0.25) {
return 4.0 * x + 1.75;;
} else if (x < 0.0) {
return -4.0 * x - 0.25;
} else if (x < 0.5) {
return 0.5 * x - 0.25;
} else {
return 0.0;
}
} else {
// The ordering is important.
if (x < -0.5 or (x == -0.5 and not right)) {
return -0.5;
} else if (x < -0.25 or (x == -0.25 and not right)) {
return 4.0;
} else if (x < 0.0 or (x == 0.0 and not right)) {
return -4.0;
} else if (x < 0.5 or (x == 0.5 and not right)) {
return 0.5;
} else {
// Case: (right and x == 0.5)
return 0.0;
}
}
}
inline int RuleWavelet::find_index(double x) const{
// Finds an interval such that x_i <= x < x_i+1 using bisection search and returns i.
if (x > 1. || x < -1.){
return -1;
}
// Bisection search
const double *xs = data[0].data();
int low = 0;
int high = num_data_points-1;
while(high - low > 1){
int test = (high + low)/2;
if (x < xs[test]){
high = test;
}
else{
low = test;
}
}
return low;
}
template<int mode>
inline double RuleWavelet::interpolate(const double *y, double x) const{
// For a given x value and dataset y, calculates the value of the interpolating
// polynomial of given order going through the nearby points.
constexpr int interpolation_order = 3;
int idx = find_index(x);
if (idx == -1){
// Outside of table
return 0.0;
}
// Neville's Algorithm
if (idx < interpolation_order/2){
idx = interpolation_order/2;
}else if(num_data_points - idx - 1 < (interpolation_order+1)/2){
idx = num_data_points - 1 - (interpolation_order+1)/2;
}
size_t start = (size_t)( idx - interpolation_order / 2 );
double const *xs = &(data[0][start]);
double const *ps = &(y[start]);
double const dx0 = x - xs[0];
double const dx1 = x - xs[1];
double const dx2 = x - xs[2];
double const dx3 = x - xs[3];
double const *c = &(cachexs[4*start]);
if (mode == 0) {
return c[0] * ps[0] * dx1 * dx2 * dx3
+ c[1] * ps[1] * dx0 * dx2 * dx3
+ c[2] * ps[2] * dx0 * dx1 * dx3
+ c[3] * ps[3] * dx0 * dx1 * dx2;
} else {
double dx01 = dx0 * dx1;
double dx02 = dx0 * dx2;
double dx03 = dx0 * dx3;
double dx12 = dx1 * dx2;
double dx13 = dx1 * dx3;
double dx23 = dx2 * dx3;
return c[0] * ps[0] * (dx23 + dx13 + dx12)
+ c[1] * ps[1] * (dx23 + dx03 + dx02)
+ c[2] * ps[2] * (dx13 + dx03 + dx01)
+ c[3] * ps[3] * (dx12 + dx02 + dx01);
}
}
} // namespace TasGrid
|