1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
/*
* Copyright (c) 2017, Miroslav Stoyanov
*
* This file is part of
* Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
*
* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
* and the following disclaimer in the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
* THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
* COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
* THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
* IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
*/
#ifndef __TASMANIAN_SPARSE_GRID_SEQUENCE_OPTIMIZER_CPP
#define __TASMANIAN_SPARSE_GRID_SEQUENCE_OPTIMIZER_CPP
#include "tsgSequenceOptimizer.hpp"
namespace TasGrid{
namespace Optimizer{
/*!
* \ingroup TasmanianSequenceOpt
* \brief Computes the coefficients needed for fast evaluation of the Lagrange polynomials.
*/
std::vector<double> makeCoefficients(std::vector<double> const &nodes){
size_t num_nodes = nodes.size();
std::vector<double> coeffs(num_nodes);
for(size_t i=0; i<num_nodes; i++){
double c = 1.0;
for(size_t j=0; j<i; j++){
c *= (nodes[i] - nodes[j]);
}
for(size_t j=i+1; j<num_nodes; j++){
c *= (nodes[i] - nodes[j]);
}
coeffs[i] = c;
}
return coeffs;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief Computes the values of the Lagrange polynomials at \b x, used in most functionals.
*/
std::vector<double> evalLagrange(std::vector<double> const &nodes, std::vector<double> const &coeffs, double x){
int num_nodes = (int) nodes.size();
std::vector<double> lag(nodes.size());
lag[0] = 1.0;
for(int i=0; i<num_nodes-1; i++){
lag[i+1] = (x - nodes[i]) * lag[i];
}
double w = 1.0;
lag[num_nodes-1] /= coeffs[num_nodes-1];
for(int i= num_nodes-2; i>=0; i--){
w *= (x - nodes[i+1]);
lag[i] *= w / coeffs[i];
}
return lag;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief Computes the derivative of the \b inode basis functions at \b x.
*/
double differentiateBasis(std::vector<double> const &nodes, std::vector<double> const &coeffs, size_t inode, double x){
size_t num_nodes = nodes.size();
double s = 1.0;
double p = 1.0;
double n = (inode != 0) ? (x - nodes[0]) : (x - nodes[1]);
for(size_t j=1; j<inode; j++){
p *= n;
n = (x - nodes[j]);
s *= n;
s += p;
}
for(size_t j = ((inode == 0) ? 2 : inode+1); j<num_nodes; j++){
p *= n;
n = (x - nodes[j]);
s *= n;
s += p;
}
return s / coeffs[inode];
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief Data needed for the functional associated with the sequence rule, specialized for each case.
*
* In most cases, we are working with Lagrange polynomials and associated coefficients.
*/
template<TypeOneDRule> struct CurrentNodes{
//! \brief Default constructor, retain a copy of the nodes and compute the coefficients.
CurrentNodes(std::vector<double> const &cnodes)
: nodes(cnodes), coeff(makeCoefficients(cnodes)){}
//! \brief Constructor that combines the \b cnodes with the \b new_node.
CurrentNodes(std::vector<double> const &cnodes, double new_node)
: nodes(cnodes){
nodes.push_back(new_node);
coeff = makeCoefficients(nodes);
}
//! \brief Current set of nodes.
std::vector<double> nodes;
//! \brief Coefficients cache.
std::vector<double> coeff;
};
/*!
* \ingroup TasmanianSequenceOpt
* \brief Specialization for \b rule_leja, no need for coefficients.
*/
template<> struct CurrentNodes<rule_leja>{
//! \brief Retain a copy of the nodes.
CurrentNodes(std::vector<double> const &cnodes) : nodes(cnodes){}
//! \brief Current set of nodes.
std::vector<double> nodes;
};
/*!
* \ingroup TasmanianSequenceOpt
* \brief Specialization for \b rule_mindeltaodd, requires two levels.
*/
template<> struct CurrentNodes<rule_mindeltaodd>{
//! \brief Construct two levels using the \b cnodes and \b cnodes with added \b new_node.
CurrentNodes(std::vector<double> const &cnodes, double new_node)
: nodes(cnodes), nodes_less1(cnodes), coeff_less1(makeCoefficients(cnodes)){
nodes.push_back(new_node);
coeff = makeCoefficients(nodes);
}
//! \brief Nodes for the current level.
std::vector<double> nodes;
//! \brief Nodes for the previous level.
std::vector<double> nodes_less1;
//! \brief Coefficients cache current level.
std::vector<double> coeff;
//! \brief Coefficients cache for previous level.
std::vector<double> coeff_less1;
};
/*!
* \ingroup TasmanianSequenceOpt
* \brief Indicates whether a \b rule has associated derivative, most do.
*/
template<TypeOneDRule rule> struct HasDerivative{
//! \brief Indicates whether the functional is differentiable.
static constexpr bool value = true;
};
/*!
* \ingroup TasmanianSequenceOpt
* \brief Specialization for \b rule_minlebesgue which uses a min-max problem and cannot be differentiated.
*/
template<> struct HasDerivative<rule_minlebesgue>{
//! \brief Indicates non-differentiable.
static constexpr bool value = false;
};
/*!
* \ingroup TasmanianSequenceOpt
* \brief Specialization for \b rule_mindelta which uses a min-max problem and cannot be differentiated.
*/
template<> struct HasDerivative<rule_mindelta>{
//! \brief Indicates non-differentiable.
static constexpr bool value = false;
};
/*!
* \ingroup TasmanianSequenceOpt
* \brief Computes the value of the functional for given \b x, specialized for each sequence.
*/
template<TypeOneDRule rule> double getValue(CurrentNodes<rule> const&, double){ return 0.0; }
/*!
* \ingroup TasmanianSequenceOpt
* \brief Computes the derivative of the functional for given \b x, specialized for each sequence with \b HasDerivative<rule>::value \b = \b true.
*/
template<TypeOneDRule rule> double getDerivative(CurrentNodes<rule> const&, double){ return 0.0; }
/*!
* \ingroup TasmanianSequenceOpt
* \brief Uses the secant method to find local maximum of the functional of the current nodes, uses \b left and \b right as starting points.
*
* Uses the secant method to find the zero of the derivative of the functional associated with the \b rule.
* The method converges fast but may converge to the wrong answer if the initial guess is not close to the zero.
* When called from \b computeLocalMaximum(), the result of a coarse pattern search is used as initial guess.
*/
template<TypeOneDRule rule>
OptimizerResult performSecantSearch(CurrentNodes<rule> const& current, double left, double right){
auto func = [&](double x)->OptimizerResult{ return {x, getDerivative<rule>(current, x)}; };
OptimizerResult past = func(left);
OptimizerResult present = func(right);
if (std::abs(past.value) < std::abs(present.value))
std::swap(past, present);
int iterations = 0;
while((std::abs(present.value) > 3.0 * Maths::num_tol) && (iterations < 1000)){ // 1000 guards against stagnation
OptimizerResult future = func(present.node - present.value * (present.node - past.node) / (present.value - past.value));
past = present;
present = future;
iterations++;
}
return present;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief Finds the maximum of the functional of the current nodes in the interval between \b left_node and \b right_node.
*
* Uses pattern search with simple left, middle, and right points.
* If the functional of the \b rule is differentiable, then the pattern search is used as an initial guess
* to secant optimization method.
*/
template<TypeOneDRule rule>
OptimizerResult computeLocalMaximum(CurrentNodes<rule> const& current, double left_node, double right_node){
auto func = [&](double x)->OptimizerResult{ return {x, getValue<rule>(current, x)}; };
double pattern = 0.5 * (right_node - left_node); // pattern width
OptimizerResult left = func(left_node);
OptimizerResult middle = func(left_node + pattern);
OptimizerResult right = func(right_node);
// if differentiable, use coarse tolerance since we will post-process.
double tolerance = (HasDerivative<rule>::value) ? Maths::num_tol * 1.E-3 : Maths::num_tol;
while(pattern > tolerance){
if (middle.value >= std::max(left.value, right.value)){ // middle is largest, shrink
pattern /= 2.0;
left = func(middle.node - pattern);
right = func(middle.node + pattern);
}else if (left.value >= std::max(middle.value, right.value)){ // left is the largest
if (left.node - pattern < left_node){ // if going out of bounds
pattern /= 2.0;
right = middle;
middle = func(left.node + pattern);
}else{ // shift left
right = middle;
middle = left;
left = func(middle.node - pattern);
}
}else{ // right must be the largest
if (right.node + pattern > right_node){ // if going out of bounds
pattern /= 2.0;
left = middle;
middle = func(right.node - pattern);
}else{ // shift right
left = middle;
middle = right;
right = func(middle.node + pattern);
}
}
}
if (HasDerivative<rule>::value){
middle = performSecantSearch(current, left.node, right.node); // this returns the derivative
middle = func(middle.node);
}
return middle;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief Finds the maximum of the functional over the interval (-1, 1).
*
* Given the \b current set of nodes, construct the functional for the given \b rule
* and perform a local optimization on every interval, i.e., compute the local maximum
* between every two adjacent nodes in \b current.
* The work in done in parallel and the global maximum is reported as the largest among
* the local maximums.
*/
template<TypeOneDRule rule> OptimizerResult computeMaximum(CurrentNodes<rule> const& current){
std::vector<double> sorted = current.nodes;
std::sort(sorted.begin(), sorted.end());
int num_intervals = (int) sorted.size() - 1;
auto func = [&](double x)->OptimizerResult{ return {x, getValue<rule>(current, x)}; };
OptimizerResult max_result = func(-1.0);
OptimizerResult right_result = func(1.0);
if (right_result.value > max_result.value)
max_result = right_result;
#pragma omp parallel
{
OptimizerResult thread_max = max_result, thread_result;
#pragma omp for schedule(dynamic)
for(int i=0; i<num_intervals; i++){
thread_result = computeLocalMaximum(current, sorted[i], sorted[i+1]);
if ((!std::isnan(thread_result.value)) && (thread_result.value > thread_max.value))
thread_max = thread_result;
}
#pragma omp critical
{
if (thread_max.value > max_result.value){
max_result = thread_max;
}
}
}
return max_result;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The \b rule_leja functional.
*/
template<> double getValue<rule_leja>(CurrentNodes<rule_leja> const& current, double x){
double p = 1.0;
for(auto n : current.nodes) p *= (x - n);
return std::abs(p);
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The \b rule_maxlebesgue functional.
*/
template<> double getValue<rule_maxlebesgue>(CurrentNodes<rule_maxlebesgue> const& current, double x){
std::vector<double> lag = evalLagrange(current.nodes, current.coeff, x);
double sum = 0.0;
for(auto l : lag) sum += std::abs(l);
return sum;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The \b rule_mindeltaodd functional (indicates companion to \b rule_mindelta for the min-max problem).
*/
template<> double getValue<rule_mindeltaodd>(CurrentNodes<rule_mindeltaodd> const& current, double x){
auto lag = evalLagrange(current.nodes, current.coeff, x);
auto lag_less1 = evalLagrange(current.nodes_less1, current.coeff_less1, x);
double result = std::abs(lag.back());
for(size_t i=0; i<lag_less1.size(); i++) {
result += std::abs(lag_less1[i] - lag[i]);
}
return result;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The \b rule_minlebesgue functional, uses the \b rule_maxlebesgue functions in min-max problem.
*/
template<> double getValue<rule_minlebesgue>(CurrentNodes<rule_minlebesgue> const& current, double x){
for(auto n : current.nodes) if (std::abs(x - n) < 10 * Maths::num_tol) return -1.E+100;
CurrentNodes<rule_maxlebesgue> companion(current.nodes, x);
return - computeMaximum(companion).value;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The \b rule_mindelta functional, uses the \b rule_mindeltaodd functions in min-max problem.
*/
template<> double getValue<rule_mindelta>(CurrentNodes<rule_mindelta> const& current, double x){
for(auto n : current.nodes) if (std::abs(x - n) < 10 * Maths::num_tol) return -1.E+100;
CurrentNodes<rule_mindeltaodd> companion(current.nodes, x);
return - computeMaximum(companion).value;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The derivative of the \b rule_leja functional.
*/
template<> double getDerivative<rule_leja>(CurrentNodes<rule_leja> const& current, double x){
double s = 1.0, p = 1.0, n = (x - current.nodes[0]);
for(size_t j=1; j<current.nodes.size(); j++){
p *= n;
n = (x - current.nodes[j]);
s *= n;
s += p;
}
return s;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The derivative of the \b rule_maxlebesgue functional.
*/
template<> double getDerivative<rule_maxlebesgue>(CurrentNodes<rule_maxlebesgue> const& current, double x){
std::vector<double> lag = evalLagrange(current.nodes, current.coeff, x);
double sum = 0.0;
for(size_t i=0; i<lag.size(); i++)
sum += Maths::sign(lag[i]) * differentiateBasis(current.nodes, current.coeff, i, x);
return sum;
}
/*!
* \ingroup TasmanianSequenceOpt
* \brief The derivative of the \b rule_mindeltaodd functional.
*/
template<> double getDerivative<rule_mindeltaodd>(CurrentNodes<rule_mindeltaodd> const& current, double x){
auto lag = evalLagrange(current.nodes, current.coeff, x);
auto lag_less1 = evalLagrange(current.nodes_less1, current.coeff_less1, x);
double sum = 0.0;
for(size_t i=0; i<lag_less1.size(); i++){
sum += Maths::sign(lag[i] - lag_less1[i])
* (differentiateBasis(current.nodes, current.coeff, i, x)
- differentiateBasis(current.nodes_less1, current.coeff_less1, i, x));
}
return sum + Maths::sign(lag.back()) * differentiateBasis(current.nodes, current.coeff, lag.size() - 1, x);
}
std::vector<double> getPrecomputedMinLebesgueNodes(){
return { 0.00000000000000000e+00,
1.00000000000000000e+00,
-1.00000000000000000e+00,
5.77350269189625731e-01,
-6.82983516382591915e-01,
3.08973641709742008e-01,
-8.88438098101029028e-01,
9.01204348257380272e-01,
-3.79117423735989223e-01,
7.68752974570125480e-01,
-5.49318186832010835e-01,
-9.64959809152743819e-01,
9.67682365886019302e-01,
-1.28290369854639041e-01,
4.45625686400429988e-01,
-8.04184165478832425e-01,
1.67074539986499709e-01,
8.44556006683382599e-01,
-4.67815101214832718e-01,
-9.88223645152207397e-01,
6.75111201618315282e-01,
-2.31781319689011223e-01,
9.90353577025220644e-01,
-8.50249643305543756e-01,
3.78518581322005110e-01,
-7.34179511891844605e-01,
9.37348529794296281e-01,
7.43693755708555865e-02,
-9.43140751144033618e-01,
7.22894448368867515e-01,
-3.13966521558236233e-01,
5.21332302672803283e-01,
-6.22914216661596742e-01,
9.81207150951301732e-01,
-9.96112540596109541e-01,
2.27115897487506796e-01,
8.71343953281246475e-01,
-5.83881096023192936e-01,
-7.07087869617637754e-02,
-9.21222090369298474e-01,
6.35275009690072778e-01,
9.97425667442937813e-01,
-7.74028611711955805e-01,
1.19609717340386237e-01,
8.06079215959057738e-01,
-9.77828412798477653e-01,
-2.81002869364477770e-01,
4.81831205470734381e-01,
-4.33236587065744694e-01,
9.51233414543255273e-01};
}
std::vector<double> getPrecomputedMinDeltaNodes(){
return { 0.00000000000000000e+00,
1.00000000000000000e+00,
-1.00000000000000000e+00,
5.85786437626666157e-01,
-7.11391303688287735e-01,
-3.65515299787630255e-01,
8.73364116971659943e-01,
-9.09934766576546594e-01,
3.48149066530255846e-01,
7.61022503813320816e-01,
-5.63728220989981099e-01,
1.61287729090120513e-01,
-9.70195195938610255e-01,
9.71760208817352256e-01,
-2.12010912937840634e-01,
-8.19500788126849566e-01,
9.28317867167342214e-01,
4.63681477197408431e-01,
-4.75500758437281013e-01,
6.83991900744136849e-01,
-9.89565716162813747e-01,
-9.47327399278441035e-02,
9.91020313545615483e-01,
-7.70894179555761561e-01,
2.57418053836716398e-01,
-9.38159793780884654e-01,
8.23375672488699584e-01,
-2.90168112727829441e-01,
5.28028188455664571e-01,
-6.43769278853295157e-01,
9.51854409585821237e-01,
-8.71963189117939352e-01,
8.85485426816430832e-02,
7.23563624423755547e-01,
-9.96440136176172664e-01,
-1.50233510276863047e-01,
9.96883045450636107e-01,
-5.22343767211049914e-01,
4.02868136231700480e-01,
-8.46787710296258989e-01,
8.96281851550158049e-01,
-4.11624139689389490e-01,
6.30422054421239331e-01,
-9.57396180946457842e-01,
2.09670340519686721e-01,
8.47208170728777743e-01,
-6.80096440009749670e-01,
-4.07635282203260146e-02,
9.81787150881257009e-01,
-9.81715548483999001e-01};
}
inline std::vector<double> getPrecomputed(TypeOneDRule rule){
if (rule == rule_leja){
return {0.0, 1.0, -1.0, std::sqrt(1.0/3.0)};
}else if (rule == rule_maxlebesgue){
return {0.0, 1.0, -1.0, 0.5};
}else if (rule == rule_minlebesgue){
return getPrecomputedMinLebesgueNodes();
}else{ // rule_mindelta
return getPrecomputedMinDeltaNodes();
}
}
template<TypeOneDRule rule> double getNextNode(std::vector<double> const &nodes){
return computeMaximum(CurrentNodes<rule>(nodes)).node;
}
template double getNextNode<rule_leja>(std::vector<double> const &nodes);
template double getNextNode<rule_maxlebesgue>(std::vector<double> const &nodes);
template double getNextNode<rule_minlebesgue>(std::vector<double> const &nodes);
template double getNextNode<rule_mindelta>(std::vector<double> const &nodes);
template<TypeOneDRule rule>
std::vector<double> getGreedyNodes(int n){
// load the first few precomputed nodes
auto precomputed = getPrecomputed(rule);
size_t usefirst = std::min(precomputed.size(), (size_t) n);
std::vector<double> nodes(precomputed.begin(), precomputed.begin() + usefirst);
if (n > (int) precomputed.size()){
nodes.reserve((size_t) n);
for(int i = (int) precomputed.size(); i<n; i++)
nodes.push_back(getNextNode<rule>(nodes));
}
return nodes;
}
template std::vector<double> getGreedyNodes<rule_leja>(int n);
template std::vector<double> getGreedyNodes<rule_maxlebesgue>(int n);
template std::vector<double> getGreedyNodes<rule_minlebesgue>(int n);
template std::vector<double> getGreedyNodes<rule_mindelta>(int n);
}
}
#endif
|