1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
/*
Copyright 2005-2008 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
// Example program that computes number of prime numbers up to n,
// where n is a command line argument. The algorithm here is a
// fairly efficient version of the sieve of Eratosthenes.
// The parallel version demonstrates how to use parallel_reduce,
// and in particular how to exploit lazy splitting.
#include <cassert>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <cstdlib>
#include <cctype>
#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/tick_count.h"
using namespace std;
using namespace tbb;
typedef unsigned long Number;
//! If true, then print primes on stdout.
static bool PrintPrimes = false;
//! Grainsize parameter
static Number GrainSize = 1000;
class Multiples {
inline Number strike( Number start, Number limit, Number stride ) {
// Hoist "my_is_composite" into register for sake of speed.
bool* is_composite = my_is_composite;
assert( stride>=2 );
for( ;start<limit; start+=stride )
is_composite[start] = true;
return start;
}
//! Window into conceptual sieve
bool* my_is_composite;
//! Indexes into window
/** my_striker[k] is an index into my_composite corresponding to
an odd multiple multiple of my_factor[k]. */
Number* my_striker;
//! Prime numbers less than m.
Number* my_factor;
public:
//! Number of factors in my_factor.
Number n_factor;
Number m;
Multiples( Number n ) :
is_forked_copy(false)
{
m = Number(sqrt(double(n)));
// Round up to even
m += m&1;
my_is_composite = new bool[m/2];
my_striker = new Number[m/2];
my_factor = new Number[m/2];
n_factor = 0;
memset( my_is_composite, 0, m/2 );
for( Number i=3; i<m; i+=2 ) {
if( !my_is_composite[i/2] ) {
if( PrintPrimes )
printf("%d\n",(int)i);
my_striker[n_factor] = strike( i/2, m/2, i );
my_factor[n_factor++] = i;
}
}
}
//! Find primes in range [start,window_size), advancing my_striker as we go.
/** Returns number of primes found. */
Number find_primes_in_window( Number start, Number window_size ) {
bool* is_composite = my_is_composite;
memset( is_composite, 0, window_size/2 );
for( size_t k=0; k<n_factor; ++k )
my_striker[k] = strike( my_striker[k]-m/2, window_size/2, my_factor[k] );
Number count = 0;
for( Number k=0; k<window_size/2; ++k ) {
if( !is_composite[k] ) {
if( PrintPrimes )
printf("%ld\n",long(start+2*k+1));
++count;
}
}
return count;
}
~Multiples() {
if( !is_forked_copy )
delete[] my_factor;
delete[] my_striker;
delete[] my_is_composite;
}
//------------------------------------------------------------------------
// Begin extra members required by parallel version
//------------------------------------------------------------------------
//! True if this instance was forked from another instance.
const bool is_forked_copy;
Multiples( const Multiples& f, split ) :
n_factor(f.n_factor),
m(f.m),
my_is_composite(NULL),
my_striker(NULL),
my_factor(f.my_factor),
is_forked_copy(true)
{}
bool is_initialized() const {
return my_is_composite!=NULL;
}
void initialize( Number start ) {
assert( start>=1 );
my_is_composite = new bool[m/2];
my_striker = new Number[m/2];
for( size_t k=0; k<n_factor; ++k ) {
Number f = my_factor[k];
Number p = (start-1)/f*f % m;
my_striker[k] = (p&1 ? p+2*f : p+f)/2;
assert( m/2<=my_striker[k] );
}
}
//------------------------------------------------------------------------
// End extra methods required by parallel version
//------------------------------------------------------------------------
};
//! Count number of primes between 0 and n
/** This is the serial version. */
Number SerialCountPrimes( Number n ) {
// Two is special case
Number count = n>=2;
if( n>=3 ) {
Multiples multiples(n);
count += multiples.n_factor;
if( PrintPrimes )
printf("---\n");
Number window_size = multiples.m;
for( Number j=multiples.m; j<=n; j+=window_size ) {
if( j+window_size>n+1 )
window_size = n+1-j;
count += multiples.find_primes_in_window( j, window_size );
}
}
return count;
}
//! Range of a sieve window.
class SieveRange {
//! Width of full-size window into sieve.
const Number my_stride;
//! Always multiple of my_stride
Number my_begin;
//! One past last number in window.
Number my_end;
//! Width above which it is worth forking.
const Number my_grainsize;
bool assert_okay() const {
assert( my_begin%my_stride==0 );
assert( my_begin<=my_end );
assert( my_stride<=my_grainsize );
return true;
}
public:
//------------------------------------------------------------------------
// Begin signatures required by parallel_reduce
//------------------------------------------------------------------------
bool is_divisible() const {return my_end-my_begin>my_grainsize;}
bool empty() const {return my_end<=my_begin;}
SieveRange( SieveRange& r, split ) :
my_stride(r.my_stride),
my_grainsize(r.my_grainsize),
my_end(r.my_end)
{
assert( r.is_divisible() );
assert( r.assert_okay() );
Number middle = r.my_begin + (r.my_end-r.my_begin+r.my_stride-1)/2;
middle = middle/my_stride*my_stride;
my_begin = middle;
r.my_end = middle;
assert( assert_okay() );
assert( r.assert_okay() );
}
//------------------------------------------------------------------------
// End of signatures required by parallel_reduce
//------------------------------------------------------------------------
Number begin() const {return my_begin;}
Number end() const {return my_end;}
SieveRange( Number begin, Number end, Number stride, Number grainsize ) :
my_begin(begin),
my_end(end),
my_stride(stride),
my_grainsize(grainsize<stride?stride:grainsize)
{
assert( assert_okay() );
}
};
//! Loop body for parallel_reduce.
/** parallel_reduce splits the sieve into subsieves.
Each subsieve handles a subrange of [0..n]. */
class Sieve {
public:
//! Prime multiples to consider, and working storage for this subsieve.
Multiples multiples;
//! Number of primes found so far by this subsieve.
Number count;
//! Construct Sieve for counting primes in [0..n].
Sieve( Number n ) :
multiples(n),
count(0)
{}
//------------------------------------------------------------------------
// Begin signatures required by parallel_reduce
//------------------------------------------------------------------------
void operator()( const SieveRange& r ) {
Number m = multiples.m;
if( multiples.is_initialized() ) {
// Simply reuse "multiples" structure from previous window
// This works because parallel_reduce always applies
// *this from left to right.
} else {
// Need to initialize "multiples" because *this is a forked copy
// that needs to be set up to start at r.begin().
multiples.initialize( r.begin() );
}
Number window_size = m;
for( Number j=r.begin(); j<r.end(); j+=window_size ) {
assert( j%multiples.m==0 );
if( j+window_size>r.end() )
window_size = r.end()-j;
count += multiples.find_primes_in_window( j, window_size );
}
}
void join( Sieve& other ) {
count += other.count;
}
Sieve( Sieve& other, split ) :
multiples(other.multiples,split()),
count(0)
{}
//------------------------------------------------------------------------
// End of signatures required by parallel_reduce
//------------------------------------------------------------------------
};
//! Count number of primes between 0 and n
/** This is the parallel version. */
Number ParallelCountPrimes( Number n ) {
// Two is special case
Number count = n>=2;
if( n>=3 ) {
Sieve s(n);
count += s.multiples.n_factor;
if( PrintPrimes )
printf("---\n");
parallel_reduce( SieveRange( s.multiples.m, n, s.multiples.m, GrainSize ), s );
count += s.count;
}
return count;
}
//------------------------------------------------------------------------
// Code below this line constitutes the driver that calls SerialCountPrimes
// and ParallelCountPrimes.
//------------------------------------------------------------------------
//! A closed range of Number.
struct NumberRange {
Number low;
Number high;
void set_from_string( const char* s );
NumberRange( Number low_, Number high_ ) : low(low_), high(high_) {}
};
void NumberRange::set_from_string( const char* s ) {
char* end;
high = low = strtol(s,&end,0);
switch( *end ) {
case ':':
high = strtol(end+1,0,0);
break;
case '\0':
break;
default:
printf("unexpected character = %c\n",*end);
}
}
//! Number of threads to use.
static NumberRange NThread(0,4);
//! If true, then at end wait for user to hit return
static bool PauseFlag = false;
//! Parse the command line.
static Number ParseCommandLine( int argc, char* argv[] ) {
Number n = 100000000;
int i = 1;
if( i<argc && strcmp( argv[i], "pause" )==0 ) {
PauseFlag = true;
++i;
}
if( i<argc && !isdigit(argv[i][0]) ) {
// Command line is garbled.
fprintf(stderr,"Usage: %s [['pause'] n [nthread [grainsize]]]\n", argv[0]);
fprintf(stderr,"where n is a positive integer [%lu]\n",n);
fprintf(stderr," nthread is a non-negative integer, or range of the form low:high [%ld:%lu]\n",NThread.low,NThread.high);
fprintf(stderr," grainsize is an optional postive integer [%lu]\n",GrainSize);
exit(1);
}
if( i<argc )
n = strtol(argv[i++],0,0);
if( i<argc )
NThread.set_from_string(argv[i++]);
if( i<argc )
GrainSize = strtol(argv[i++],0,0);
return n;
}
static void WaitForUser() {
char c;
printf("Press return to continue\n");
do {
c = getchar();
} while( c!='\n' );
}
int main( int argc, char* argv[] ) {
Number n = ParseCommandLine(argc,argv);
// Try different numbers of threads
for( Number p=NThread.low; p<=NThread.high; ++p ) {
task_scheduler_init init(task_scheduler_init::deferred);
// If p!=0, we are doing a parallel run
if( p )
init.initialize(p);
Number count;
tick_count t0 = tick_count::now();
if( p==0 ) {
count = SerialCountPrimes(n);
} else {
count = ParallelCountPrimes(n);
}
tick_count t1 = tick_count::now();
printf("#primes from [2..%lu] = %lu (%.2f sec with ",
(unsigned long)n, (unsigned long)count, (t1-t0).seconds());
if( p )
printf("%lu-way parallelism)\n", p );
else
printf("serial code)\n");
}
if( PauseFlag ) {
WaitForUser();
}
return 0;
}
|