File: primes.cpp

package info (click to toggle)
tbb 2.0r020-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 6,128 kB
  • ctags: 4,501
  • sloc: cpp: 24,707; ansic: 1,563; asm: 777; makefile: 470; sh: 175
file content (400 lines) | stat: -rw-r--r-- 13,147 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
    Copyright 2005-2008 Intel Corporation.  All Rights Reserved.

    This file is part of Threading Building Blocks.

    Threading Building Blocks is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License
    version 2 as published by the Free Software Foundation.

    Threading Building Blocks is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Threading Building Blocks; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, you may use this file as part of a free software
    library without restriction.  Specifically, if other files instantiate
    templates or use macros or inline functions from this file, or you compile
    this file and link it with other files to produce an executable, this
    file does not by itself cause the resulting executable to be covered by
    the GNU General Public License.  This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

// Example program that computes number of prime numbers up to n, 
// where n is a command line argument.  The algorithm here is a 
// fairly efficient version of the sieve of Eratosthenes. 
// The parallel version demonstrates how to use parallel_reduce,
// and in particular how to exploit lazy splitting.

#include <cassert>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <cstdlib>
#include <cctype>
#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/tick_count.h"

using namespace std;
using namespace tbb;

typedef unsigned long Number;

//! If true, then print primes on stdout.
static bool PrintPrimes = false;

//! Grainsize parameter
static Number GrainSize = 1000;

class Multiples {
    inline Number strike( Number start, Number limit, Number stride ) {
        // Hoist "my_is_composite" into register for sake of speed.
        bool* is_composite = my_is_composite;
        assert( stride>=2 );
        for( ;start<limit; start+=stride ) 
            is_composite[start] = true;
        return start;
    }
    //! Window into conceptual sieve 
    bool* my_is_composite;

    //! Indexes into window
    /** my_striker[k] is an index into my_composite corresponding to
        an odd multiple multiple of my_factor[k]. */
    Number* my_striker;

    //! Prime numbers less than m.
    Number* my_factor;
public:
    //! Number of factors in my_factor.
    Number n_factor;
    Number m;
    Multiples( Number n ) : 
        is_forked_copy(false) 
    {
        m = Number(sqrt(double(n)));
        // Round up to even
        m += m&1;
        my_is_composite = new bool[m/2];
        my_striker = new Number[m/2];
        my_factor = new Number[m/2];
        n_factor = 0;
        memset( my_is_composite, 0, m/2 );
        for( Number i=3; i<m; i+=2 ) {
            if( !my_is_composite[i/2] ) {
                if( PrintPrimes )
                    printf("%d\n",(int)i);
                my_striker[n_factor] = strike( i/2, m/2, i );
                my_factor[n_factor++] = i;
            }
        }
    }

    //! Find primes in range [start,window_size), advancing my_striker as we go.
    /** Returns number of primes found. */
    Number find_primes_in_window( Number start, Number window_size ) {
        bool* is_composite = my_is_composite;
        memset( is_composite, 0, window_size/2 );
        for( size_t k=0; k<n_factor; ++k )
            my_striker[k] = strike( my_striker[k]-m/2, window_size/2, my_factor[k] );
        Number count = 0;
        for( Number k=0; k<window_size/2; ++k ) {
            if( !is_composite[k] ) {
                if( PrintPrimes )
                    printf("%ld\n",long(start+2*k+1));
                ++count;
            }
        }
        return count;
    }

    ~Multiples() {
        if( !is_forked_copy )
            delete[] my_factor;
        delete[] my_striker;
        delete[] my_is_composite;
    }

    //------------------------------------------------------------------------
    // Begin extra members required by parallel version
    //------------------------------------------------------------------------

    //! True if this instance was forked from another instance.
    const bool is_forked_copy;

    Multiples( const Multiples& f, split ) :
        n_factor(f.n_factor),
        m(f.m),
        my_is_composite(NULL),
        my_striker(NULL),
        my_factor(f.my_factor),
        is_forked_copy(true)
    {}

    bool is_initialized() const {
        return my_is_composite!=NULL;
    }

    void initialize( Number start ) { 
        assert( start>=1 );
        my_is_composite = new bool[m/2];
        my_striker = new Number[m/2];
        for( size_t k=0; k<n_factor; ++k ) {
            Number f = my_factor[k];
            Number p = (start-1)/f*f % m;
            my_striker[k] = (p&1 ? p+2*f : p+f)/2;
            assert( m/2<=my_striker[k] );
        }
    }
    //------------------------------------------------------------------------
    // End extra methods required by parallel version
    //------------------------------------------------------------------------
};

//! Count number of primes between 0 and n
/** This is the serial version. */
Number SerialCountPrimes( Number n ) {
    // Two is special case
    Number count = n>=2;
    if( n>=3 ) {
        Multiples multiples(n);
        count += multiples.n_factor;
        if( PrintPrimes ) 
            printf("---\n");
        Number window_size = multiples.m;
        for( Number j=multiples.m; j<=n; j+=window_size ) { 
            if( j+window_size>n+1 ) 
                window_size = n+1-j;
            count += multiples.find_primes_in_window( j, window_size );
        }
    }
    return count;
}

//! Range of a sieve window.
class SieveRange {
    //! Width of full-size window into sieve.
    const Number my_stride;

    //! Always multiple of my_stride
    Number my_begin;

    //! One past last number in window.
    Number my_end;

    //! Width above which it is worth forking.
    const Number my_grainsize;

    bool assert_okay() const {
        assert( my_begin%my_stride==0 );
        assert( my_begin<=my_end );
        assert( my_stride<=my_grainsize );
        return true;
    } 
public:
    //------------------------------------------------------------------------
    // Begin signatures required by parallel_reduce
    //------------------------------------------------------------------------
    bool is_divisible() const {return my_end-my_begin>my_grainsize;}
    bool empty() const {return my_end<=my_begin;}
    SieveRange( SieveRange& r, split ) : 
        my_stride(r.my_stride), 
        my_grainsize(r.my_grainsize),
        my_end(r.my_end)
    {
        assert( r.is_divisible() );
        assert( r.assert_okay() );
        Number middle = r.my_begin + (r.my_end-r.my_begin+r.my_stride-1)/2;
        middle = middle/my_stride*my_stride;
        my_begin = middle;
        r.my_end = middle;
        assert( assert_okay() );
        assert( r.assert_okay() );
    }
    //------------------------------------------------------------------------
    // End of signatures required by parallel_reduce
    //------------------------------------------------------------------------
    Number begin() const {return my_begin;}
    Number end() const {return my_end;}
    SieveRange( Number begin, Number end, Number stride, Number grainsize ) :
        my_begin(begin),
        my_end(end),
        my_stride(stride),      
        my_grainsize(grainsize<stride?stride:grainsize)
    {
        assert( assert_okay() );
    }
};

//! Loop body for parallel_reduce.
/** parallel_reduce splits the sieve into subsieves.
    Each subsieve handles a subrange of [0..n]. */
class Sieve {
public:
    //! Prime multiples to consider, and working storage for this subsieve.
    Multiples multiples;

    //! Number of primes found so far by this subsieve.
    Number count;

    //! Construct Sieve for counting primes in [0..n].
    Sieve( Number n ) : 
        multiples(n),
        count(0)
    {}

    //------------------------------------------------------------------------
    // Begin signatures required by parallel_reduce
    //------------------------------------------------------------------------
    void operator()( const SieveRange& r ) {
        Number m = multiples.m;
        if( multiples.is_initialized() ) { 
            // Simply reuse "multiples" structure from previous window
            // This works because parallel_reduce always applies
            // *this from left to right.
        } else {
            // Need to initialize "multiples" because *this is a forked copy
            // that needs to be set up to start at r.begin().
            multiples.initialize( r.begin() );
        }
        Number window_size = m;
        for( Number j=r.begin(); j<r.end(); j+=window_size ) { 
            assert( j%multiples.m==0 );
            if( j+window_size>r.end() ) 
                window_size = r.end()-j;
            count += multiples.find_primes_in_window( j, window_size );
        }
    }
    void join( Sieve& other ) {
        count += other.count;
    }
    Sieve( Sieve& other, split ) : 
        multiples(other.multiples,split()),
        count(0)
    {}
    //------------------------------------------------------------------------
    // End of signatures required by parallel_reduce
    //------------------------------------------------------------------------
};

//! Count number of primes between 0 and n
/** This is the parallel version. */
Number ParallelCountPrimes( Number n ) {
    // Two is special case
    Number count = n>=2;
    if( n>=3 ) {
        Sieve s(n);
        count += s.multiples.n_factor;
        if( PrintPrimes ) 
            printf("---\n");
        parallel_reduce( SieveRange( s.multiples.m, n, s.multiples.m, GrainSize ), s );
        count += s.count;
    }
    return count;
}

//------------------------------------------------------------------------
// Code below this line constitutes the driver that calls SerialCountPrimes
// and ParallelCountPrimes.
//------------------------------------------------------------------------

//! A closed range of Number.
struct NumberRange {
    Number low;
    Number high;
    void set_from_string( const char* s );
    NumberRange( Number low_, Number high_ ) : low(low_), high(high_) {}
};

void NumberRange::set_from_string( const char* s ) {
    char* end;
    high = low = strtol(s,&end,0);
    switch( *end ) {
    case ':': 
        high = strtol(end+1,0,0); 
        break;
    case '\0':
        break;
    default:
        printf("unexpected character = %c\n",*end);
    }
    
}

//! Number of threads to use.
static NumberRange NThread(0,4);

//! If true, then at end wait for user to hit return
static bool PauseFlag = false;

//! Parse the command line.
static Number ParseCommandLine( int argc, char* argv[] ) {
    Number n = 100000000;
    int i = 1;
    if( i<argc && strcmp( argv[i], "pause" )==0 ) {
        PauseFlag = true;
        ++i;
    }
    if( i<argc && !isdigit(argv[i][0]) ) { 
        // Command line is garbled.
        fprintf(stderr,"Usage: %s [['pause'] n [nthread [grainsize]]]\n", argv[0]);
        fprintf(stderr,"where n is a positive integer [%lu]\n",n);
        fprintf(stderr,"      nthread is a non-negative integer, or range of the form low:high [%ld:%lu]\n",NThread.low,NThread.high);
        fprintf(stderr,"      grainsize is an optional postive integer [%lu]\n",GrainSize);
        exit(1);
    }
    if( i<argc )
        n = strtol(argv[i++],0,0);
    if( i<argc )
        NThread.set_from_string(argv[i++]);
    if( i<argc )
        GrainSize = strtol(argv[i++],0,0);
    return n;
}

static void WaitForUser() {
    char c;
    printf("Press return to continue\n");
    do {
        c = getchar();
    } while( c!='\n' );
}

int main( int argc, char* argv[] ) {
    Number n = ParseCommandLine(argc,argv);

    // Try different numbers of threads
    for( Number p=NThread.low; p<=NThread.high; ++p ) {
        task_scheduler_init init(task_scheduler_init::deferred);
        // If p!=0, we are doing a parallel run
        if( p ) 
            init.initialize(p);

        Number count;
        tick_count t0 = tick_count::now();
        if( p==0 ) {
            count = SerialCountPrimes(n);
        } else {
            count = ParallelCountPrimes(n);
        }
        tick_count t1 = tick_count::now();

        printf("#primes from [2..%lu] = %lu (%.2f sec with ",
            (unsigned long)n, (unsigned long)count, (t1-t0).seconds());
        if( p ) 
            printf("%lu-way parallelism)\n", p );
        else 
            printf("serial code)\n");
    }
    if( PauseFlag ) {
        WaitForUser();
    }
    return 0;
}