1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
/*
Copyright (c) 2005-2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef UTILITY_H_
#define UTILITY_H_
#if __TBB_MIC_OFFLOAD
#pragma offload_attribute (push,target(mic))
#include <exception>
#include <cstdio>
#pragma offload_attribute (pop)
#endif // __TBB_MIC_OFFLOAD
#include <utility>
#include <string>
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <sstream>
#include <numeric>
#include <stdexcept>
#include <memory>
#include <cassert>
#include <iostream>
#include <cstdlib>
// TBB headers should not be used, as some examples may need to be built without TBB.
namespace utility{
namespace internal{
#if (_MSC_VER >= 1600 || __cplusplus >= 201103L || __GXX_EXPERIMENTAL_CXX0X__) \
&& (_CPPLIB_VER || _LIBCPP_VERSION || __GLIBCXX__ && _UNIQUE_PTR_H ) \
&& (!__INTEL_COMPILER || __INTEL_COMPILER >= 1200 )
// std::unique_ptr is available, and compiler can use it
#define smart_ptr std::unique_ptr
using std::swap;
#else
#if __INTEL_COMPILER && __GXX_EXPERIMENTAL_CXX0X__
// std::unique_ptr is unavailable, so suppress std::auto_prt<> deprecation warning
#pragma warning(disable: 1478)
#endif
#define smart_ptr std::auto_ptr
// in some C++ libraries, std::swap does not work with std::auto_ptr
template<typename T>
void swap( std::auto_ptr<T>& ptr1, std::auto_ptr<T>& ptr2 ) {
std::auto_ptr<T> tmp; tmp = ptr2; ptr2 = ptr1; ptr1 = tmp;
}
#endif
//TODO: add tcs
template<class dest_type>
dest_type& string_to(std::string const& s, dest_type& result){
std::stringstream stream(s);
stream>>result;
if ((!stream)||(stream.fail())){
throw std::invalid_argument("error converting string '"+std::string(s)+"'");
}
return result;
}
template<class dest_type>
dest_type string_to(std::string const& s){
dest_type result;
return string_to(s,result);
}
template<typename>
struct is_bool { static bool value(){return false;}};
template<>
struct is_bool<bool> { static bool value(){return true;}};
class type_base {
type_base& operator=(const type_base&);
public:
const std::string name;
const std::string description;
type_base (std::string a_name, std::string a_description) : name(a_name), description(a_description) {}
virtual void parse_and_store(const std::string & s) = 0;
virtual std::string value() const = 0;
virtual smart_ptr<type_base> clone() const = 0;
virtual ~type_base(){}
};
template <typename type>
class type_impl : public type_base {
private:
type_impl& operator=(const type_impl&);
typedef bool(*validating_function_type)(const type&);
private:
type & target;
validating_function_type validating_function;
public:
type_impl(std::string a_name, std::string a_description, type & a_target, validating_function_type a_validating_function = NULL)
: type_base (a_name,a_description), target(a_target),validating_function(a_validating_function)
{};
void parse_and_store (const std::string & s) /*override*/ {
try{
const bool is_bool = internal::is_bool<type>::value();
if (is_bool && s.empty()){
//to avoid directly assigning true
//(as it will impose additional layer of indirection)
//so, simply pass it as string
internal::string_to("1",target);
}else {
internal::string_to(s,target);
}
}catch(std::invalid_argument& e){
std::stringstream str;
str <<"'"<<s<<"' is incorrect input for argument '"<<name<<"'"
<<" ("<<e.what()<<")";
throw std::invalid_argument(str.str());
}
if (validating_function){
if (!((validating_function)(target))){
std::stringstream str;
str <<"'"<<target<<"' is invalid value for argument '"<<name<<"'";
throw std::invalid_argument(str.str());
}
}
}
template <typename t>
static bool is_null_c_str(t&){return false;}
static bool is_null_c_str(char* s){return s==NULL;}
std::string value() const /*override*/ {
std::stringstream str;
if (!is_null_c_str(target))
str<<target;
return str.str();
}
smart_ptr<type_base> clone() const /*override*/ {
return smart_ptr<type_base>(new type_impl(*this));
}
};
class argument{
private:
smart_ptr<type_base> p_type;
bool matched_;
public:
argument(argument const& other)
: p_type(other.p_type.get() ? (other.p_type->clone()).release() : NULL)
,matched_(other.matched_)
{}
argument& operator=(argument a){
this->swap(a);
return *this;
}
void swap(argument& other){
internal::swap(p_type, other.p_type);
std::swap(matched_,other.matched_);
}
template<class type>
argument(std::string a_name, std::string a_description, type& dest, bool(*a_validating_function)(const type&)= NULL)
:p_type(new type_impl<type>(a_name,a_description,dest,a_validating_function))
,matched_(false)
{}
std::string value()const{
return p_type->value();
}
std::string name()const{
return p_type->name;
}
std::string description() const{
return p_type->description;
}
void parse_and_store(const std::string & s){
p_type->parse_and_store(s);
matched_=true;
}
bool is_matched() const{return matched_;}
};
} // namespace internal
class cli_argument_pack{
typedef std::map<std::string,internal::argument> args_map_type;
typedef std::vector<std::string> args_display_order_type;
typedef std::vector<std::string> positional_arg_names_type;
private:
args_map_type args_map;
args_display_order_type args_display_order;
positional_arg_names_type positional_arg_names;
std::set<std::string> bool_args_names;
private:
void add_arg(internal::argument const& a){
std::pair<args_map_type::iterator, bool> result = args_map.insert(std::make_pair(a.name(),a));
if (!result.second){
throw std::invalid_argument("argument with name: '"+a.name()+"' already registered");
}
args_display_order.push_back(a.name());
}
public:
template<typename type>
cli_argument_pack& arg(type& dest,std::string const& name, std::string const& description, bool(*validate)(const type &)= NULL){
internal::argument a(name,description,dest,validate);
add_arg(a);
if (internal::is_bool<type>::value()){
bool_args_names.insert(name);
}
return *this;
}
//Positional means that argument name can be omitted in actual CL
//only key to match values for parameters with
template<typename type>
cli_argument_pack& positional_arg(type& dest,std::string const& name, std::string const& description, bool(*validate)(const type &)= NULL){
internal::argument a(name,description,dest,validate);
add_arg(a);
if (internal::is_bool<type>::value()){
bool_args_names.insert(name);
}
positional_arg_names.push_back(name);
return *this;
}
void parse(std::size_t argc, char const* argv[]){
{
std::size_t current_positional_index=0;
for (std::size_t j=1;j<argc;j++){
internal::argument* pa = NULL;
std::string argument_value;
const char * const begin=argv[j];
const char * const end=begin+std::strlen(argv[j]);
const char * const assign_sign = std::find(begin,end,'=');
struct throw_unknown_parameter{ static void _(std::string const& location){
throw std::invalid_argument(std::string("unknown parameter starting at:'")+location+"'");
}};
//first try to interpret it like parameter=value string
if (assign_sign!=end){
std::string name_found = std::string(begin,assign_sign);
args_map_type::iterator it = args_map.find(name_found );
if(it!=args_map.end()){
pa= &((*it).second);
argument_value = std::string(assign_sign+1,end);
}else {
throw_unknown_parameter::_(argv[j]);
}
}
//then see is it a named flag
else{
args_map_type::iterator it = args_map.find(argv[j] );
if(it!=args_map.end()){
pa= &((*it).second);
argument_value = "";
}
//then try it as positional argument without name specified
else if (current_positional_index < positional_arg_names.size()){
std::stringstream str(argv[j]);
args_map_type::iterator found_positional_arg = args_map.find(positional_arg_names.at(current_positional_index));
//TODO: probably use of smarter assert would help here
assert(found_positional_arg!=args_map.end()/*&&"positional_arg_names and args_map are out of sync"*/);
if (found_positional_arg==args_map.end()){
throw std::logic_error("positional_arg_names and args_map are out of sync");
}
pa= &((*found_positional_arg).second);
argument_value = argv[j];
current_positional_index++;
}else {
//TODO: add tc to check
throw_unknown_parameter::_(argv[j]);
}
}
assert(pa);
if (pa->is_matched()){
throw std::invalid_argument(std::string("several values specified for: '")+pa->name()+"' argument");
}
pa->parse_and_store(argument_value);
}
}
}
std::string usage_string(const std::string& binary_name)const{
std::string command_line_params;
std::string summary_description;
for (args_display_order_type::const_iterator it = args_display_order.begin();it!=args_display_order.end();++it){
const bool is_bool = (0!=bool_args_names.count((*it)));
args_map_type::const_iterator argument_it = args_map.find(*it);
//TODO: probably use of smarter assert would help here
assert(argument_it!=args_map.end()/*&&"args_display_order and args_map are out of sync"*/);
if (argument_it==args_map.end()){
throw std::logic_error("args_display_order and args_map are out of sync");
}
const internal::argument & a = (*argument_it).second;
command_line_params +=" [" + a.name() + (is_bool ?"":"=value")+ "]";
summary_description +=" " + a.name() + " - " + a.description() +" ("+a.value() +")" + "\n";
}
std::string positional_arg_cl;
for (positional_arg_names_type::const_iterator it = positional_arg_names.begin();it!=positional_arg_names.end();++it){
positional_arg_cl +=" ["+(*it);
}
for (std::size_t i=0;i<positional_arg_names.size();++i){
positional_arg_cl+="]";
}
command_line_params+=positional_arg_cl;
std::stringstream str;
using std::endl;
str << " Program usage is:" << endl
<< " " << binary_name << command_line_params
<< endl << endl
<< " where:" << endl
<< summary_description
;
return str.str();
}
}; // class cli_argument_pack
namespace internal {
template<typename T>
bool is_power_of_2( T val ) {
size_t intval = size_t(val);
return (intval&(intval-1)) == size_t(0);
}
int step_function_plus(int previous, double step){
return static_cast<int>(previous+step);
}
int step_function_multiply(int previous, double multiply){
return static_cast<int>(previous*multiply);
}
// "Power-of-2 ladder": nsteps is the desired number of steps between any subsequent powers of 2.
// The actual step is the quotient of the nearest smaller power of 2 divided by that number (but at least 1).
// E.g., '1:32:#4' means 1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32
int step_function_power2_ladder(int previous, double nsteps){
int steps = int(nsteps);
assert( is_power_of_2(steps) ); // must be a power of 2
// The actual step is 1 until the value is twice as big as nsteps
if( previous < 2*steps )
return previous+1;
// calculate the previous power of 2
int prev_power2 = previous/2; // start with half the given value
int rshift = 1; // and with the shift of 1;
while( int shifted = prev_power2>>rshift ) { // shift the value right; while the result is non-zero,
prev_power2 |= shifted; // add the bits set in 'shifted';
rshift <<= 1; // double the shift, as twice as many top bits are set;
} // repeat.
++prev_power2; // all low bits set; now it's just one less than the desired power of 2
assert( is_power_of_2(prev_power2) );
assert( (prev_power2<=previous)&&(2*prev_power2>previous) );
// The actual step value is the previous power of 2 divided by steps
return previous + (prev_power2/steps);
}
typedef int (* step_function_ptr_type)(int,double);
struct step_function_descriptor {
char mnemonic;
step_function_ptr_type function;
public:
step_function_descriptor(char a_mnemonic, step_function_ptr_type a_function) : mnemonic(a_mnemonic), function(a_function) {}
private:
void operator=(step_function_descriptor const&);
};
step_function_descriptor step_function_descriptors[] = {
step_function_descriptor('*',step_function_multiply),
step_function_descriptor('+',step_function_plus),
step_function_descriptor('#',step_function_power2_ladder)
};
template<typename T, size_t N>
inline size_t array_length(const T(&)[N])
{
return N;
}
struct thread_range_step {
step_function_ptr_type step_function;
double step_function_argument;
thread_range_step ( step_function_ptr_type step_function_, double step_function_argument_)
:step_function(step_function_),step_function_argument(step_function_argument_)
{
if (!step_function_)
throw std::invalid_argument("step_function for thread range step should not be NULL");
}
int operator()(int previous)const {
assert(0<=previous); // test 0<=first and loop discipline
const int ret = step_function(previous,step_function_argument);
assert(previous<ret);
return ret;
}
friend std::istream& operator>>(std::istream& input_stream, thread_range_step& step){
char function_char;
double function_argument;
input_stream >> function_char >> function_argument;
size_t i = 0;
while ((i<array_length(step_function_descriptors)) && (step_function_descriptors[i].mnemonic!=function_char)) ++i;
if (i >= array_length(step_function_descriptors)){
throw std::invalid_argument("unknown step function mnemonic: "+std::string(1,function_char));
} else if ((function_char=='#') && !is_power_of_2(function_argument)) {
throw std::invalid_argument("the argument of # should be a power of 2");
}
step.step_function = step_function_descriptors[i].function;
step.step_function_argument = function_argument;
return input_stream;
}
};
} // namespace internal
struct thread_number_range{
int (*auto_number_of_threads)();
int first; // 0<=first (0 can be used as a special value)
int last; // first<=last
internal::thread_range_step step;
thread_number_range( int (*auto_number_of_threads_)(),int low_=1, int high_=-1
, internal::thread_range_step step_ = internal::thread_range_step(internal::step_function_power2_ladder,4)
)
: auto_number_of_threads(auto_number_of_threads_), first(low_), last((high_>-1) ? high_ : auto_number_of_threads_())
,step(step_)
{
if (first<0) {
throw std::invalid_argument("negative value not allowed");
}
if (first>last) {
throw std::invalid_argument("decreasing sequence not allowed");
}
}
friend std::istream& operator>>(std::istream& i, thread_number_range& range){
try{
std::string s;
i>>s;
struct string_to_number_of_threads{
int auto_value;
string_to_number_of_threads(int auto_value_):auto_value(auto_value_){}
int operator()(const std::string & value)const{
return (value=="auto")? auto_value : internal::string_to<int>(value);
}
};
string_to_number_of_threads string_to_number_of_threads(range.auto_number_of_threads());
int low, high;
std::size_t colon = s.find(':');
if ( colon == std::string::npos ){
low = high = string_to_number_of_threads(s);
} else {
//it is a range
std::size_t second_colon = s.find(':',colon+1);
low = string_to_number_of_threads(std::string(s, 0, colon)); //not copying the colon
high = string_to_number_of_threads(std::string(s, colon+1, second_colon - (colon+1))); //not copying the colons
if (second_colon != std::string::npos){
internal::string_to(std::string(s,second_colon + 1),range.step);
}
}
range = thread_number_range(range.auto_number_of_threads,low,high,range.step);
}catch(std::invalid_argument&){
i.setstate(std::ios::failbit);
throw;
}
return i;
}
friend std::ostream& operator<<(std::ostream& o, thread_number_range const& range){
using namespace internal;
size_t i = 0;
for (; i < array_length(step_function_descriptors) && step_function_descriptors[i].function != range.step.step_function; ++i ) {}
if (i >= array_length(step_function_descriptors)){
throw std::invalid_argument("unknown step function for thread range");
}
o<<range.first<<":"<<range.last<<":"<<step_function_descriptors[i].mnemonic<<range.step.step_function_argument;
return o;
}
}; // struct thread_number_range
//TODO: fix unused warning here
//TODO: update the thread range description in the .html files
static const char* thread_number_range_desc="number of threads to use; a range of the form low[:high[:(+|*|#)step]],"
"\n\twhere low and optional high are non-negative integers or 'auto' for the default choice,"
"\n\tand optional step expression specifies how thread numbers are chosen within the range."
"\n\tSee examples/common/index.html for detailed description."
;
inline void report_elapsed_time(double seconds){
std::cout<<"elapsed time : "<<seconds<<" seconds"<<std::endl;
}
inline void report_skipped(){
std::cout<<"skip"<<std::endl;
}
inline void parse_cli_arguments(int argc, const char* argv[], utility::cli_argument_pack cli_pack){
bool show_help = false;
cli_pack.arg(show_help,"-h","show this message");
bool invalid_input=false;
try {
cli_pack.parse(argc,argv);
}catch(std::exception& e){
std::cerr
<<"error occurred while parsing command line."<<std::endl
<<"error text: "<<e.what()<<std::endl
<<std::flush;
invalid_input =true;
}
if (show_help || invalid_input){
std::cout<<cli_pack.usage_string(argv[0])<<std::flush;
std::exit(0);
}
}
inline void parse_cli_arguments(int argc, char* argv[], utility::cli_argument_pack cli_pack){
parse_cli_arguments(argc, const_cast<const char**>(argv), cli_pack);
}
}
#endif /* UTILITY_H_ */
|