File: utility.h

package info (click to toggle)
tbb 2018~U6-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 19,920 kB
  • sloc: cpp: 131,295; ansic: 9,211; makefile: 1,343; asm: 1,061; python: 838; sh: 395; lisp: 198; objc: 176; pascal: 69
file content (526 lines) | stat: -rw-r--r-- 23,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/*
    Copyright (c) 2005-2018 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.




*/

#ifndef UTILITY_H_
#define UTILITY_H_

#if __TBB_MIC_OFFLOAD
#pragma offload_attribute (push,target(mic))
#include <exception>
#include <cstdio>
#pragma offload_attribute (pop)
#endif // __TBB_MIC_OFFLOAD

#include <utility>
#include <string>
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <sstream>
#include <numeric>
#include <stdexcept>
#include <memory>
#include <cassert>
#include <iostream>
#include <cstdlib>
// TBB headers should not be used, as some examples may need to be built without TBB.

namespace utility{
    namespace internal{

#if (_MSC_VER >= 1600 || __cplusplus >= 201103L || __GXX_EXPERIMENTAL_CXX0X__) \
    && (_CPPLIB_VER || _LIBCPP_VERSION || __GLIBCXX__ && _UNIQUE_PTR_H ) \
    && (!__INTEL_COMPILER || __INTEL_COMPILER >= 1200 )
    // std::unique_ptr is available, and compiler can use it
    #define smart_ptr std::unique_ptr
    using std::swap;
#else
    #if __INTEL_COMPILER && __GXX_EXPERIMENTAL_CXX0X__
    // std::unique_ptr is unavailable, so suppress std::auto_prt<> deprecation warning
    #pragma warning(disable: 1478)
    #endif
    #define smart_ptr std::auto_ptr
    // in some C++ libraries, std::swap does not work with std::auto_ptr
    template<typename T>
    void swap( std::auto_ptr<T>& ptr1, std::auto_ptr<T>& ptr2 ) {
        std::auto_ptr<T> tmp; tmp = ptr2; ptr2 = ptr1; ptr1 = tmp;
    }
#endif

        //TODO: add tcs
        template<class dest_type>
        dest_type& string_to(std::string const& s, dest_type& result){
            std::stringstream stream(s);
            stream>>result;
            if ((!stream)||(stream.fail())){
                throw std::invalid_argument("error converting string '"+std::string(s)+"'");
            }
            return result;
        }

        template<class dest_type>
        dest_type string_to(std::string const& s){
            dest_type result;
            return string_to(s,result);
        }

        template<typename>
        struct is_bool          { static bool value(){return false;}};
        template<>
        struct is_bool<bool>    { static bool value(){return true;}};

        class type_base {
            type_base& operator=(const type_base&);
            public:
            const std::string name;
            const std::string description;

            type_base (std::string a_name, std::string a_description) : name(a_name), description(a_description) {}
            virtual void parse_and_store(const std::string & s) = 0;
            virtual std::string value() const = 0;
            virtual smart_ptr<type_base> clone() const = 0;
            virtual ~type_base(){}
        };
        template <typename type>
        class type_impl : public type_base {
        private:
            type_impl& operator=(const type_impl&);
            typedef bool(*validating_function_type)(const type&);
        private:
            type & target;
            validating_function_type validating_function;
        public:
            type_impl(std::string a_name, std::string a_description, type & a_target, validating_function_type a_validating_function = NULL)
                : type_base (a_name,a_description), target(a_target),validating_function(a_validating_function)
            {};
            void parse_and_store (const std::string & s) /*override*/ {
                try{
                    const bool is_bool = internal::is_bool<type>::value();
                    if (is_bool && s.empty()){
                        //to avoid directly assigning true
                        //(as it will impose additional layer of indirection)
                        //so, simply pass it as string
                        internal::string_to("1",target);
                    }else {
                        internal::string_to(s,target);
                    }
                }catch(std::invalid_argument& e){
                    std::stringstream str;
                    str <<"'"<<s<<"' is incorrect input for argument '"<<name<<"'"
                        <<" ("<<e.what()<<")";
                    throw std::invalid_argument(str.str());
                }
                if (validating_function){
                    if (!((validating_function)(target))){
                        std::stringstream str;
                        str <<"'"<<target<<"' is invalid value for argument '"<<name<<"'";
                        throw std::invalid_argument(str.str());
                    }
                }
            }
            template <typename t>
            static bool is_null_c_str(t&){return false;}
            static bool is_null_c_str(char* s){return s==NULL;}
            std::string value() const /*override*/ {
                std::stringstream str;
                if (!is_null_c_str(target))
                    str<<target;
                return str.str();
            }
            smart_ptr<type_base> clone() const /*override*/ {
                return smart_ptr<type_base>(new type_impl(*this));
            }
        };

        class argument{
        private:
            smart_ptr<type_base> p_type;
            bool matched_;
        public:
            argument(argument const& other)
                : p_type(other.p_type.get() ? (other.p_type->clone()).release() : NULL)
                 ,matched_(other.matched_)
            {}
            argument& operator=(argument a){
                this->swap(a);
                return *this;
            }
            void swap(argument& other){
                internal::swap(p_type, other.p_type);
                std::swap(matched_,other.matched_);
            }
            template<class type>
            argument(std::string a_name, std::string a_description, type& dest, bool(*a_validating_function)(const type&)= NULL)
                :p_type(new type_impl<type>(a_name,a_description,dest,a_validating_function))
                 ,matched_(false)
            {}
            std::string value()const{
                return p_type->value();
            }
            std::string name()const{
                return p_type->name;
            }
            std::string description() const{
                return p_type->description;
            }
            void parse_and_store(const std::string & s){
                p_type->parse_and_store(s);
                matched_=true;
            }
            bool is_matched() const{return matched_;}
        };
    } // namespace internal

    class cli_argument_pack{
        typedef std::map<std::string,internal::argument> args_map_type;
        typedef std::vector<std::string> args_display_order_type;
        typedef std::vector<std::string> positional_arg_names_type;
    private:
        args_map_type args_map;
        args_display_order_type args_display_order;
        positional_arg_names_type positional_arg_names;
        std::set<std::string> bool_args_names;
    private:
        void add_arg(internal::argument const& a){
            std::pair<args_map_type::iterator, bool> result = args_map.insert(std::make_pair(a.name(),a));
            if (!result.second){
                throw std::invalid_argument("argument with name: '"+a.name()+"' already registered");
            }
            args_display_order.push_back(a.name());
        }
    public:
        template<typename type>
        cli_argument_pack& arg(type& dest,std::string const& name, std::string const& description, bool(*validate)(const type &)= NULL){
            internal::argument a(name,description,dest,validate);
            add_arg(a);
            if (internal::is_bool<type>::value()){
                bool_args_names.insert(name);
            }
            return *this;
        }

        //Positional means that argument name can be omitted in actual CL
        //only key to match values for parameters with
        template<typename type>
        cli_argument_pack& positional_arg(type& dest,std::string const& name, std::string const& description, bool(*validate)(const type &)= NULL){
            internal::argument a(name,description,dest,validate);
            add_arg(a);
            if (internal::is_bool<type>::value()){
                bool_args_names.insert(name);
            }
            positional_arg_names.push_back(name);
            return *this;
        }

        void parse(std::size_t argc, char const* argv[]){
            {
                std::size_t current_positional_index=0;
                for (std::size_t j=1;j<argc;j++){
                    internal::argument* pa = NULL;
                    std::string argument_value;

                    const char * const begin=argv[j];
                    const char * const end=begin+std::strlen(argv[j]);

                    const char * const assign_sign = std::find(begin,end,'=');

                    struct throw_unknown_parameter{ static void _(std::string const& location){
                        throw std::invalid_argument(std::string("unknown parameter starting at:'")+location+"'");
                    }};
                    //first try to interpret it like parameter=value string
                    if (assign_sign!=end){
                        std::string name_found = std::string(begin,assign_sign);
                        args_map_type::iterator it = args_map.find(name_found );

                        if(it!=args_map.end()){
                            pa= &((*it).second);
                            argument_value = std::string(assign_sign+1,end);
                        }else {
                            throw_unknown_parameter::_(argv[j]);
                        }
                    }
                    //then see is it a named flag
                    else{
                        args_map_type::iterator it = args_map.find(argv[j] );
                        if(it!=args_map.end()){
                            pa= &((*it).second);
                            argument_value = "";
                        }
                        //then try it as positional argument without name specified
                        else if (current_positional_index < positional_arg_names.size()){
                            std::stringstream str(argv[j]);
                            args_map_type::iterator found_positional_arg = args_map.find(positional_arg_names.at(current_positional_index));
                            //TODO: probably use of smarter assert would help here
                            assert(found_positional_arg!=args_map.end()/*&&"positional_arg_names and args_map are out of sync"*/);
                            if (found_positional_arg==args_map.end()){
                                throw std::logic_error("positional_arg_names and args_map are out of sync");
                            }
                            pa= &((*found_positional_arg).second);
                            argument_value = argv[j];

                            current_positional_index++;
                        }else {
                            //TODO: add tc to check
                            throw_unknown_parameter::_(argv[j]);
                        }
                    }
                    assert(pa);
                    if (pa->is_matched()){
                        throw std::invalid_argument(std::string("several values specified for: '")+pa->name()+"' argument");
                    }
                    pa->parse_and_store(argument_value);
                }
            }
        }
        std::string usage_string(const std::string& binary_name)const{
            std::string command_line_params;
            std::string summary_description;

            for (args_display_order_type::const_iterator it = args_display_order.begin();it!=args_display_order.end();++it){
                const bool is_bool = (0!=bool_args_names.count((*it)));
                args_map_type::const_iterator argument_it = args_map.find(*it);
                //TODO: probably use of smarter assert would help here
                assert(argument_it!=args_map.end()/*&&"args_display_order and args_map are out of sync"*/);
                if (argument_it==args_map.end()){
                    throw std::logic_error("args_display_order and args_map are out of sync");
                }
                const internal::argument & a = (*argument_it).second;
                command_line_params +=" [" + a.name() + (is_bool ?"":"=value")+ "]";
                summary_description +=" " + a.name() + " - " + a.description() +" ("+a.value() +")" + "\n";
            }

            std::string positional_arg_cl;
            for (positional_arg_names_type::const_iterator it = positional_arg_names.begin();it!=positional_arg_names.end();++it){
                positional_arg_cl +=" ["+(*it);
            }
            for (std::size_t i=0;i<positional_arg_names.size();++i){
                positional_arg_cl+="]";
            }
            command_line_params+=positional_arg_cl;
            std::stringstream str;
            using std::endl;
            str << " Program usage is:" << endl
                 << " " << binary_name << command_line_params
                 << endl << endl
                 << " where:" << endl
                 << summary_description
            ;
            return str.str();
        }
    }; // class cli_argument_pack

    namespace internal {
        template<typename T>
        bool is_power_of_2( T val ) {
            size_t intval = size_t(val);
            return (intval&(intval-1)) == size_t(0);
        }
        int step_function_plus(int previous, double step){
            return static_cast<int>(previous+step);
        }
        int step_function_multiply(int previous, double multiply){
            return static_cast<int>(previous*multiply);
        }
        // "Power-of-2 ladder": nsteps is the desired number of steps between any subsequent powers of 2.
        // The actual step is the quotient of the nearest smaller power of 2 divided by that number (but at least 1).
        // E.g., '1:32:#4' means 1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32
        int step_function_power2_ladder(int previous, double nsteps){
            int steps = int(nsteps);
            assert( is_power_of_2(steps) );  // must be a power of 2
            // The actual step is 1 until the value is twice as big as nsteps
            if( previous < 2*steps )
                return previous+1;
            // calculate the previous power of 2
            int prev_power2 = previous/2;                 // start with half the given value
            int rshift = 1;                               // and with the shift of 1;
            while( int shifted = prev_power2>>rshift ) {  // shift the value right; while the result is non-zero,
                prev_power2 |= shifted;                   //   add the bits set in 'shifted';
                rshift <<= 1;                             //   double the shift, as twice as many top bits are set;
            }                                             // repeat.
            ++prev_power2; // all low bits set; now it's just one less than the desired power of 2
            assert( is_power_of_2(prev_power2) );
            assert( (prev_power2<=previous)&&(2*prev_power2>previous) );
            // The actual step value is the previous power of 2 divided by steps
            return previous + (prev_power2/steps);
        }
        typedef int (* step_function_ptr_type)(int,double);

        struct step_function_descriptor  {
            char mnemonic;
            step_function_ptr_type function;
        public:
            step_function_descriptor(char a_mnemonic, step_function_ptr_type a_function) : mnemonic(a_mnemonic), function(a_function) {}
        private:
            void operator=(step_function_descriptor  const&);
        };
        step_function_descriptor step_function_descriptors[] = {
                step_function_descriptor('*',step_function_multiply),
                step_function_descriptor('+',step_function_plus),
                step_function_descriptor('#',step_function_power2_ladder)
        };

        template<typename T, size_t N>
        inline size_t array_length(const T(&)[N])
        {
           return N;
        }

        struct thread_range_step {
            step_function_ptr_type step_function;
            double step_function_argument;

            thread_range_step ( step_function_ptr_type step_function_, double step_function_argument_)
                :step_function(step_function_),step_function_argument(step_function_argument_)
            {
                if (!step_function_)
                    throw std::invalid_argument("step_function for thread range step should not be NULL");
            }
            int operator()(int previous)const {
                assert(0<=previous); // test 0<=first and loop discipline
                const int ret = step_function(previous,step_function_argument);
                assert(previous<ret);
                return ret;
            }
            friend std::istream& operator>>(std::istream& input_stream, thread_range_step& step){
                char function_char;
                double function_argument;
                input_stream >> function_char >> function_argument;
                size_t i = 0;
                while ((i<array_length(step_function_descriptors)) && (step_function_descriptors[i].mnemonic!=function_char)) ++i;
                if (i >= array_length(step_function_descriptors)){
                    throw std::invalid_argument("unknown step function mnemonic: "+std::string(1,function_char));
                } else if ((function_char=='#') && !is_power_of_2(function_argument)) {
                    throw std::invalid_argument("the argument of # should be a power of 2");
                }
                step.step_function = step_function_descriptors[i].function;
                step.step_function_argument = function_argument;
                return input_stream;
            }
        };
    } // namespace internal

    struct thread_number_range{
        int (*auto_number_of_threads)();
        int first; // 0<=first (0 can be used as a special value)
        int last;  // first<=last

        internal::thread_range_step step;

        thread_number_range( int (*auto_number_of_threads_)(),int low_=1, int high_=-1
                , internal::thread_range_step step_ =  internal::thread_range_step(internal::step_function_power2_ladder,4)
        )
            : auto_number_of_threads(auto_number_of_threads_), first(low_), last((high_>-1) ? high_ : auto_number_of_threads_())
              ,step(step_)
        {
            if (first<0) {
                throw std::invalid_argument("negative value not allowed");
            }
            if (first>last) {
                throw std::invalid_argument("decreasing sequence not allowed");
            }
        }
        friend std::istream& operator>>(std::istream& i, thread_number_range& range){
            try{
                std::string s;
                i>>s;
                struct string_to_number_of_threads{
                    int auto_value;
                    string_to_number_of_threads(int auto_value_):auto_value(auto_value_){}
                    int operator()(const std::string & value)const{
                        return (value=="auto")? auto_value : internal::string_to<int>(value);
                    }
                };
                string_to_number_of_threads string_to_number_of_threads(range.auto_number_of_threads());
                int low, high;
                std::size_t colon = s.find(':');
                if ( colon == std::string::npos ){
                    low = high = string_to_number_of_threads(s);
                } else {
                    //it is a range
                    std::size_t second_colon = s.find(':',colon+1);

                    low  = string_to_number_of_threads(std::string(s, 0, colon)); //not copying the colon
                    high = string_to_number_of_threads(std::string(s, colon+1, second_colon - (colon+1))); //not copying the colons
                    if (second_colon != std::string::npos){
                        internal::string_to(std::string(s,second_colon + 1),range.step);
                    }
                }
                range = thread_number_range(range.auto_number_of_threads,low,high,range.step);
            }catch(std::invalid_argument&){
                i.setstate(std::ios::failbit);
                throw;
            }
            return i;
        }
        friend std::ostream& operator<<(std::ostream& o, thread_number_range const& range){
            using namespace internal;
            size_t i = 0;
            for (; i < array_length(step_function_descriptors) && step_function_descriptors[i].function != range.step.step_function; ++i ) {}
            if (i >= array_length(step_function_descriptors)){
                throw std::invalid_argument("unknown step function for thread range");
            }
            o<<range.first<<":"<<range.last<<":"<<step_function_descriptors[i].mnemonic<<range.step.step_function_argument;
            return o;
        }
    }; // struct thread_number_range
    //TODO: fix unused warning here
    //TODO: update the thread range description in the .html files
    static const char* thread_number_range_desc="number of threads to use; a range of the form low[:high[:(+|*|#)step]],"
                                                "\n\twhere low and optional high are non-negative integers or 'auto' for the default choice,"
                                                "\n\tand optional step expression specifies how thread numbers are chosen within the range."
                                                "\n\tSee examples/common/index.html for detailed description."
   ;

    inline void report_elapsed_time(double seconds){
        std::cout<<"elapsed time : "<<seconds<<" seconds"<<std::endl;
    }

    inline void report_skipped(){
        std::cout<<"skip"<<std::endl;
    }

    inline void parse_cli_arguments(int argc, const char* argv[], utility::cli_argument_pack cli_pack){
        bool show_help = false;
        cli_pack.arg(show_help,"-h","show this message");

        bool invalid_input=false;
        try {
            cli_pack.parse(argc,argv);
        }catch(std::exception& e){
            std::cerr
                    <<"error occurred while parsing command line."<<std::endl
                    <<"error text: "<<e.what()<<std::endl
                    <<std::flush;
            invalid_input =true;
        }
        if (show_help || invalid_input){
            std::cout<<cli_pack.usage_string(argv[0])<<std::flush;
            std::exit(0);
        }

    }
    inline void parse_cli_arguments(int argc, char* argv[], utility::cli_argument_pack cli_pack){
         parse_cli_arguments(argc, const_cast<const char**>(argv), cli_pack);
    }
}

#endif /* UTILITY_H_ */