1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/*
Copyright (c) 2005-2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#define TBB_PREVIEW_FLOW_GRAPH_FEATURES 1
#include "tbb/tbb_config.h"
#include "../../common/utility/utility.h"
#if __TBB_PREVIEW_ASYNC_MSG && __TBB_CPP11_LAMBDAS_PRESENT
#include <iostream>
#include <fstream>
#include <string>
#include <memory>
#include <queue>
#include "bzlib.h"
#include "tbb/flow_graph.h"
#include "tbb/tick_count.h"
#include "tbb/compat/thread"
#include "tbb/concurrent_queue.h"
// TODO: change memory allocation/deallocation to be managed in constructor/destructor
struct Buffer {
size_t len;
char* b;
};
struct BufferMsg {
BufferMsg() {}
BufferMsg(Buffer& inputBuffer, Buffer& outputBuffer, size_t seqId, bool isLast = false)
: inputBuffer(inputBuffer), outputBuffer(outputBuffer), seqId(seqId), isLast(isLast) {}
static BufferMsg createBufferMsg(size_t seqId, size_t chunkSize) {
Buffer inputBuffer;
inputBuffer.b = new char[chunkSize];
inputBuffer.len = chunkSize;
Buffer outputBuffer;
size_t compressedChunkSize = chunkSize * 1.01 + 600; // compression overhead
outputBuffer.b = new char[compressedChunkSize];
outputBuffer.len = compressedChunkSize;
return BufferMsg(inputBuffer, outputBuffer, seqId);
}
static void destroyBufferMsg(const BufferMsg& destroyMsg) {
delete[] destroyMsg.inputBuffer.b;
delete[] destroyMsg.outputBuffer.b;
}
void markLast(size_t lastId) {
isLast = true;
seqId = lastId;
}
size_t seqId;
Buffer inputBuffer;
Buffer outputBuffer;
bool isLast;
};
class BufferCompressor {
public:
BufferCompressor(int blockSizeIn100KB) : m_blockSize(blockSizeIn100KB) {}
BufferMsg operator()(BufferMsg buffer) const {
if (!buffer.isLast) {
unsigned int outSize = buffer.outputBuffer.len;
BZ2_bzBuffToBuffCompress(buffer.outputBuffer.b, &outSize,
buffer.inputBuffer.b, buffer.inputBuffer.len,
m_blockSize, 0, 30);
buffer.outputBuffer.len = outSize;
}
return buffer;
}
private:
int m_blockSize;
};
class IOOperations {
public:
IOOperations(std::ifstream& inputStream, std::ofstream& outputStream, size_t chunkSize)
: m_inputStream(inputStream), m_outputStream(outputStream), m_chunkSize(chunkSize), m_chunksRead(0) {}
void readChunk(Buffer& buffer) {
m_inputStream.read(buffer.b, m_chunkSize);
buffer.len = static_cast<size_t>(m_inputStream.gcount());
m_chunksRead++;
}
void writeChunk(const Buffer& buffer) {
m_outputStream.write(buffer.b, buffer.len);
}
size_t chunksRead() const {
return m_chunksRead;
}
size_t chunkSize() const {
return m_chunkSize;
}
bool hasDataToRead() const {
return m_inputStream.is_open() && !m_inputStream.eof();
}
private:
std::ifstream& m_inputStream;
std::ofstream& m_outputStream;
size_t m_chunkSize;
size_t m_chunksRead;
};
//-----------------------------------------------------------------------------------------------------------------------
//---------------------------------------Compression example based on async_node-----------------------------------------
//-----------------------------------------------------------------------------------------------------------------------
typedef tbb::flow::async_node< tbb::flow::continue_msg, BufferMsg > async_file_reader_node;
typedef tbb::flow::async_node< BufferMsg, tbb::flow::continue_msg > async_file_writer_node;
class AsyncNodeActivity {
public:
AsyncNodeActivity(IOOperations& io)
: m_io(io), m_fileWriterThread(&AsyncNodeActivity::writingLoop, this) {}
~AsyncNodeActivity() {
m_fileReaderThread.join();
m_fileWriterThread.join();
}
void submitRead(async_file_reader_node::gateway_type& gateway) {
gateway.reserve_wait();
std::thread(&AsyncNodeActivity::readingLoop, this, std::ref(gateway)).swap(m_fileReaderThread);
}
void submitWrite(const BufferMsg& bufferMsg) {
m_writeQueue.push(bufferMsg);
}
private:
void readingLoop(async_file_reader_node::gateway_type& gateway) {
while (m_io.hasDataToRead()) {
BufferMsg bufferMsg = BufferMsg::createBufferMsg(m_io.chunksRead(), m_io.chunkSize());
m_io.readChunk(bufferMsg.inputBuffer);
gateway.try_put(bufferMsg);
}
sendLastMessage(gateway);
gateway.release_wait();
}
void writingLoop() {
BufferMsg buffer;
m_writeQueue.pop(buffer);
while (!buffer.isLast) {
m_io.writeChunk(buffer.outputBuffer);
m_writeQueue.pop(buffer);
}
}
void sendLastMessage(async_file_reader_node::gateway_type& gateway) {
BufferMsg lastMsg;
lastMsg.markLast(m_io.chunksRead());
gateway.try_put(lastMsg);
}
IOOperations& m_io;
tbb::concurrent_bounded_queue< BufferMsg > m_writeQueue;
std::thread m_fileReaderThread;
std::thread m_fileWriterThread;
};
void fgCompressionAsyncNode(IOOperations& io, int blockSizeIn100KB) {
tbb::flow::graph g;
AsyncNodeActivity asyncNodeActivity(io);
async_file_reader_node file_reader(g, tbb::flow::unlimited, [&asyncNodeActivity](const tbb::flow::continue_msg& msg, async_file_reader_node::gateway_type& gateway) {
asyncNodeActivity.submitRead(gateway);
});
tbb::flow::function_node< BufferMsg, BufferMsg > compressor(g, tbb::flow::unlimited, BufferCompressor(blockSizeIn100KB));
tbb::flow::sequencer_node< BufferMsg > ordering(g, [](const BufferMsg& bufferMsg)->size_t {
return bufferMsg.seqId;
});
// The node is serial to preserve the right order of buffers set by the preceding sequencer_node
async_file_writer_node output_writer(g, tbb::flow::serial, [&asyncNodeActivity](const BufferMsg& bufferMsg, async_file_writer_node::gateway_type& gateway) {
asyncNodeActivity.submitWrite(bufferMsg);
});
make_edge(file_reader, compressor);
make_edge(compressor, ordering);
make_edge(ordering, output_writer);
file_reader.try_put(tbb::flow::continue_msg());
g.wait_for_all();
}
//-----------------------------------------------------------------------------------------------------------------------
//------------------------------------------Compression example based on async_msg---------------------------------------
//-----------------------------------------------------------------------------------------------------------------------
typedef tbb::flow::async_msg< BufferMsg > async_msg_type;
class AsyncMsgActivity {
public:
AsyncMsgActivity(tbb::flow::graph& g, IOOperations& io)
: m_io(io), m_graph(g), m_fileReaderThread(&AsyncMsgActivity::readingLoop, this),
m_fileWriterThread(&AsyncMsgActivity::writingLoop, this)
{
// Graph synchronization starts here and ends
// when the last buffer was written in "writing thread"
m_graph.increment_wait_count();
}
~AsyncMsgActivity() {
m_fileReaderThread.join();
m_fileWriterThread.join();
// Lets release resources that async
// activity and graph were acquired
freeBuffers();
}
async_msg_type submitRead(BufferMsg& bufferMsg) {
async_msg_type msg;
work_type readWork = { bufferMsg, msg };
m_readQueue.push(readWork);
return msg;
}
async_msg_type submitWrite(const BufferMsg& bufferMsg) {
async_msg_type msg;
work_type writeWork = { bufferMsg, msg };
m_writeQueue.push(writeWork);
return msg;
}
private:
struct work_type {
BufferMsg bufferMsg;
async_msg_type msg;
};
void readingLoop() {
work_type readWork;
m_readQueue.pop(readWork);
// Reading thread waits for buffers to be received
// (the graph reuses limitted number of buffers)
// and reads the file while there is something to read
while (m_io.hasDataToRead()) {
readWork.bufferMsg.seqId = m_io.chunksRead();
m_io.readChunk(readWork.bufferMsg.inputBuffer);
readWork.msg.set(readWork.bufferMsg);
m_readQueue.pop(readWork);
}
// Pass message with an end flag to the graph
sendLastMessage(readWork);
}
void sendLastMessage(work_type& work) {
work.bufferMsg.markLast(m_io.chunksRead());
work.msg.set(work.bufferMsg);
}
void writingLoop() {
work_type writeWork;
m_writeQueue.pop(writeWork);
// Writing thread writes all buffers that it gets
// and reuses them. At the end all reusing buffers
// is stored in read queue
while (!writeWork.bufferMsg.isLast) {
m_io.writeChunk(writeWork.bufferMsg.outputBuffer);
writeWork.msg.set(writeWork.bufferMsg);
m_writeQueue.pop(writeWork);
}
// Store last message to the reading queue to free resources later
writeWork.msg.set(writeWork.bufferMsg);
// After all buffers have been written
// the synchronization ends
m_graph.decrement_wait_count();
}
void freeBuffers() {
int buffersNumber = m_readQueue.size();
for (int i = 0; i < buffersNumber; i++) {
work_type workToDelete;
m_readQueue.pop(workToDelete);
BufferMsg::destroyBufferMsg(workToDelete.bufferMsg);
}
}
IOOperations& m_io;
tbb::flow::graph& m_graph;
tbb::concurrent_bounded_queue< work_type > m_writeQueue;
tbb::concurrent_bounded_queue< work_type > m_readQueue;
std::thread m_fileReaderThread;
std::thread m_fileWriterThread;
};
void fgCompressionAsyncMsg(IOOperations& io, int blockSizeIn100KB, size_t memoryLimitIn1MB) {
// Memory limit sets the number of buffers that can be reused
int buffersNumber = memoryLimitIn1MB * 1000 * 1024 / io.chunkSize();
tbb::flow::graph g;
AsyncMsgActivity asyncMsgActivity(g, io);
tbb::flow::function_node< BufferMsg, async_msg_type > file_reader(g, tbb::flow::unlimited, [&asyncMsgActivity](BufferMsg bufferMsg) -> async_msg_type {
return asyncMsgActivity.submitRead(bufferMsg);
});
tbb::flow::function_node< BufferMsg, BufferMsg > compressor(g, tbb::flow::unlimited, BufferCompressor(blockSizeIn100KB));
tbb::flow::sequencer_node< BufferMsg > ordering(g, [](const BufferMsg& bufferMsg) -> size_t {
return bufferMsg.seqId;
});
// The node is serial to preserve the right order of buffers set by the preceding sequencer_node
tbb::flow::function_node< BufferMsg, async_msg_type > output_writer(g, tbb::flow::serial, [&asyncMsgActivity](const BufferMsg& bufferMsg) -> async_msg_type {
return asyncMsgActivity.submitWrite(bufferMsg);
});
make_edge(file_reader, compressor);
make_edge(compressor, ordering);
make_edge(ordering, output_writer);
make_edge(output_writer, file_reader);
// Creating buffers to be reused in read/compress/write graph loop
for (int i = 0; i < buffersNumber; i++) {
BufferMsg reuseBufferMsg = BufferMsg::createBufferMsg(0, io.chunkSize());
file_reader.try_put(reuseBufferMsg);
}
g.wait_for_all();
}
//-----------------------------------------------------------------------------------------------------------------------
//---------------------------------------------Simple compression example------------------------------------------------
//-----------------------------------------------------------------------------------------------------------------------
void fgCompression(IOOperations& io, int blockSizeIn100KB) {
tbb::flow::graph g;
tbb::flow::source_node< BufferMsg > file_reader(g, [&io](BufferMsg& bufferMsg)->bool {
if (io.hasDataToRead()) {
bufferMsg = BufferMsg::createBufferMsg(io.chunksRead(), io.chunkSize());
io.readChunk(bufferMsg.inputBuffer);
return true;
}
return false;
});
tbb::flow::function_node< BufferMsg, BufferMsg > compressor(g, tbb::flow::unlimited, BufferCompressor(blockSizeIn100KB));
tbb::flow::sequencer_node< BufferMsg > ordering(g, [](const BufferMsg& buffer)->size_t {
return buffer.seqId;
});
tbb::flow::function_node< BufferMsg > output_writer(g, tbb::flow::serial, [&io](const BufferMsg& bufferMsg) {
io.writeChunk(bufferMsg.outputBuffer);
BufferMsg::destroyBufferMsg(bufferMsg);
});
make_edge(file_reader, compressor);
make_edge(compressor, ordering);
make_edge(ordering, output_writer);
g.wait_for_all();
}
//-----------------------------------------------------------------------------------------------------------------------
bool endsWith(const std::string& str, const std::string& suffix) {
return str.find(suffix, str.length() - suffix.length()) != std::string::npos;
}
//-----------------------------------------------------------------------------------------------------------------------
int main(int argc, char* argv[]) {
try {
tbb::tick_count mainStartTime = tbb::tick_count::now();
const std::string archiveExtension = ".bz2";
bool verbose = false;
std::string asyncType;
std::string inputFileName;
int blockSizeIn100KB = 1; // block size in 100KB chunks
size_t memoryLimitIn1MB = 1; // memory limit for compression in megabytes granularity
utility::parse_cli_arguments(argc, argv,
utility::cli_argument_pack()
//"-h" option for displaying help is present implicitly
.arg(blockSizeIn100KB, "-b", "\t block size in 100KB chunks, [1 .. 9]")
.arg(verbose, "-v", "verbose mode")
.arg(memoryLimitIn1MB, "-l", "used memory limit for compression algorithm in 1MB (minimum) granularity")
.arg(asyncType, "-a", "name of the used graph async implementation - can be async_node or async_msg")
.positional_arg(inputFileName, "filename", "input file name")
);
if (inputFileName.empty()) {
throw std::invalid_argument("Input file name is not specified. Try 'fgbzip2 -h' for more information.");
}
if (blockSizeIn100KB < 1 || blockSizeIn100KB > 9) {
throw std::invalid_argument("Incorrect block size. Try 'fgbzip2 -h' for more information.");
}
if (memoryLimitIn1MB < 1) {
throw std::invalid_argument("Incorrect memory limit size. Try 'fgbzip2 -h' for more information.");
}
if (verbose) std::cout << "Input file name: " << inputFileName << std::endl;
if (endsWith(inputFileName, archiveExtension)) {
throw std::invalid_argument("Input file already have " + archiveExtension + " extension.");
}
std::ifstream inputStream(inputFileName.c_str(), std::ios::in | std::ios::binary);
if (!inputStream.is_open()) {
throw std::invalid_argument("Cannot open " + inputFileName + " file.");
}
std::string outputFileName(inputFileName + archiveExtension);
std::ofstream outputStream(outputFileName.c_str(), std::ios::out | std::ios::binary | std::ios::trunc);
if (!outputStream.is_open()) {
throw std::invalid_argument("Cannot open " + outputFileName + " file.");
}
// General interface to work with I/O buffers operations
size_t chunkSize = blockSizeIn100KB * 100 * 1024;
IOOperations io(inputStream, outputStream, chunkSize);
if (asyncType.empty()) {
if (verbose) std::cout << "Running flow graph based compression algorithm." << std::endl;
fgCompression(io, blockSizeIn100KB);
} else if (asyncType == "async_node") {
if (verbose) std::cout << "Running flow graph based compression algorithm with async_node based asynchronious IO operations." << std::endl;
fgCompressionAsyncNode(io, blockSizeIn100KB);
} else if (asyncType == "async_msg") {
if (verbose) std::cout << "Running flow graph based compression algorithm with async_msg based asynchronious IO operations. Using limited memory: " << memoryLimitIn1MB << "MB." << std::endl;
fgCompressionAsyncMsg(io, blockSizeIn100KB, memoryLimitIn1MB);
}
inputStream.close();
outputStream.close();
utility::report_elapsed_time((tbb::tick_count::now() - mainStartTime).seconds());
return 0;
} catch (std::exception& e) {
std::cerr << "Error occurred. Error text is : \"" << e.what() << "\"\n";
return -1;
}
}
#else
int main() {
utility::report_skipped();
return 0;
}
#endif /* __TBB_PREVIEW_ASYNC_NODE && __TBB_CPP11_LAMBDAS_PRESENT */
|