1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/*
Copyright (c) 2005-2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#define TBB_PREVIEW_FLOW_GRAPH_NODES 1
#define TBB_PREVIEW_FLOW_GRAPH_FEATURES 1
#include "tbb/tbb_config.h"
#include "../../common/utility/utility.h"
#if __TBB_PREVIEW_OPENCL_NODE && __TBB_CPP11_LAMBDAS_PRESENT
#if _MSC_VER
// suppress warning C4503: decorated name length exceeded, name was truncated
#pragma warning(disable : 4503)
#endif
#include <iostream>
#include "tbb/flow_graph.h"
#include "tbb/flow_graph_opencl_node.h"
#include "tbb/tick_count.h"
#include "utils.h"
static const int redChannelOffset = 0;
static const int greenChannelOffset = 1;
static const int blueChannelOffset = 2;
static const int channelsPerPixel = 4;
static const int channelIncreaseValue = 10;
void applyLeftImageEffect(utils::image_buffer& image) {
const int heighBase = channelsPerPixel * image.width;
std::vector<unsigned char>& buffer = *image.buffer;
// Increase the Red channel of left image by 10
for (unsigned int y = 0; y < image.height; y++) {
const int heightOffset = heighBase * y;
for (unsigned int x = 0; x < image.width; x++) {
int pixelOffset = heightOffset + channelsPerPixel * x + redChannelOffset;
buffer[pixelOffset] += channelIncreaseValue;
}
}
}
void applyRightImageEffect(utils::image_buffer& image) {
const int heighBase = channelsPerPixel * image.width;
std::vector<unsigned char>& buffer = *image.buffer;
// Increase the Blue channel of left image by 10
for (unsigned int y = 0; y < image.height; y++) {
const int heightOffset = heighBase * y;
for (unsigned int x = 0; x < image.width; x++) {
const int pixelOffset = heightOffset + channelsPerPixel * x + blueChannelOffset;
buffer[pixelOffset] += channelIncreaseValue;
}
}
}
// This function merges to image buffers into the first buffer (leftImageBuffer as a destination)
void mergeImageBuffers(utils::image_buffer& leftImage, const utils::image_buffer& rightImage) {
const int heighBase = channelsPerPixel * leftImage.width;
std::vector<unsigned char>& leftImageBuffer = *leftImage.buffer;
std::vector<unsigned char>& rightImageBuffer = *rightImage.buffer;
// Apply stereoscopic merge using algorithm: R: left image, G: left and right images (middle value), B: right image
for (unsigned int y = 0; y < leftImage.height; y++) {
const int heightOffset = heighBase * y;
for (unsigned int x = 0; x < leftImage.width; x++) {
const int pixelOffset = heightOffset + channelsPerPixel * x;
const int greenChannelIndex = pixelOffset + greenChannelOffset;
const int blueChannelIndex = pixelOffset + blueChannelOffset;
const int middleGreenChannel = (leftImageBuffer[greenChannelIndex] + rightImageBuffer[greenChannelIndex]);
leftImageBuffer[greenChannelIndex] = middleGreenChannel / 2;
leftImageBuffer[blueChannelIndex] = rightImageBuffer[blueChannelIndex];
}
}
}
void fillOpenclBuffer(tbb::flow::opencl_buffer<cl_uchar>& openclBuffer, const std::vector<unsigned char>& sourceBuffer) {
std::copy(sourceBuffer.begin(), sourceBuffer.end(), openclBuffer.begin());
}
class gpu_device_selector {
public:
template <typename DeviceFilter>
tbb::flow::opencl_device operator()(tbb::flow::opencl_factory<DeviceFilter>& f) {
// Set your GPU device if available to execute kernel on
const tbb::flow::opencl_device_list &devices = f.devices();
tbb::flow::opencl_device_list::const_iterator it = std::find_if(
devices.cbegin(), devices.cend(),
[](const tbb::flow::opencl_device &d) {
cl_device_type type;
d.info(CL_DEVICE_TYPE, type);
return CL_DEVICE_TYPE_GPU == type;
});
if (it == devices.cend()) {
std::cout << "Info: could not find any GPU devices. Choosing the first available device (default behaviour)." << std::endl;
return *(f.devices().begin());
} else {
// Return GPU device from factory
return *it;
}
}
};
// Image processing function that is executed on CPU only
void hostFunction(const std::string& firstFile, const std::string& secondFile, const std::string& outputFile) {
using namespace tbb::flow;
typedef tuple< utils::image_buffer, utils::image_buffer > MergeImagesTuple;
graph g;
function_node< std::string, utils::image_buffer > fileReaderOne(g, serial, [](const std::string& fileToRead) -> utils::image_buffer {
return utils::getOrGenerateImage(fileToRead);
});
function_node< std::string, utils::image_buffer > fileReaderTwo = fileReaderOne;
function_node< utils::image_buffer, utils::image_buffer > leftImageEffect(g, unlimited, [](utils::image_buffer image) -> utils::image_buffer {
applyLeftImageEffect(image);
return image;
});
function_node< utils::image_buffer, utils::image_buffer > rightImageEffect(g, unlimited, [](utils::image_buffer image) -> utils::image_buffer {
applyRightImageEffect(image);
return image;
});
join_node< tuple< utils::image_buffer, utils::image_buffer > > joinNode(g);
function_node< MergeImagesTuple, utils::image_buffer > mergeImages(g, unlimited, [](const MergeImagesTuple& bufferTuple) -> utils::image_buffer {
// Two input images from tupple are merged into the first image,
utils::image_buffer leftImageBuffer = std::get<0>(bufferTuple);
utils::image_buffer rightImageBuffer = std::get<1>(bufferTuple);
mergeImageBuffers(leftImageBuffer, rightImageBuffer);
return leftImageBuffer;
});
function_node< utils::image_buffer > outputWriter(g, unlimited, [&outputFile](const utils::image_buffer& image) {
utils::writePNGImage(image, outputFile);
});
// Read left image
make_edge(fileReaderOne, leftImageEffect);
// Read right image
make_edge(fileReaderTwo, rightImageEffect);
// Process left image
make_edge(leftImageEffect, tbb::flow::input_port<0>(joinNode));
// Process right image
make_edge(rightImageEffect, tbb::flow::input_port<1>(joinNode));
// Merge images
make_edge(joinNode, mergeImages);
make_edge(mergeImages, outputWriter);
// Start graph image processing
fileReaderOne.try_put(firstFile);
fileReaderTwo.try_put(secondFile);
g.wait_for_all();
}
// Image processing function using OpenCL
/** Reading and writing image to file is executed on CPU, while all buffers manipulation are executed on GPU */
void openclFunctionGPU(const std::string& firstFile, const std::string& secondFile, const std::string& outputFile) {
using namespace tbb::flow;
typedef opencl_buffer<cl_uchar> OpenclImageBuffer;
typedef std::array<unsigned int, 2> NDRange;
typedef tuple< OpenclImageBuffer, cl_uint, NDRange > OpenclImageTuple;
typedef tuple< OpenclImageBuffer, OpenclImageBuffer, cl_uint, NDRange > OpenclImagesMergeTuple;
typedef tuple< OpenclImageBuffer, NDRange > WriteImageBufferTuple;
graph g;
gpu_device_selector gpu_selector;
function_node< std::string, OpenclImageTuple > fileReaderOne(g, serial, [&g](const std::string& fileToRead) -> OpenclImageTuple {
utils::image_buffer src = utils::getOrGenerateImage(fileToRead);
// Create and initialize opencl_buffer in order to pass it to kernel
OpenclImageBuffer oclImage(src.buffer->size());
fillOpenclBuffer(oclImage, *src.buffer);
NDRange rangeList = { src.width, src.height };
return std::make_tuple(oclImage, src.width, rangeList);
});
function_node< std::string, OpenclImageTuple > fileReaderTwo = fileReaderOne;
split_node< OpenclImageTuple > splitArgumentsLeftNode(g);
// Kernel should be in the current folder
opencl_program<> program("imageEffects.cl");
opencl_node< OpenclImageTuple > leftImageEffect(g, program.get_kernel("applyLeftImageEffect"), gpu_selector);
split_node< OpenclImageTuple > splitArgumentsRightNode(g);
opencl_node< OpenclImageTuple > rightImageEffect(g, program.get_kernel("applyRightImageEffect"), gpu_selector);
opencl_node< OpenclImagesMergeTuple > mergeImages(g, program.get_kernel("mergeImages"), gpu_selector);
join_node< WriteImageBufferTuple > joinTupleNode(g);
function_node< WriteImageBufferTuple > outputWriter(g, unlimited, [&outputFile](const WriteImageBufferTuple& image) {
// The result image have to be copied in order to be changed,
// the second parameter - image size, can be taken by const reference
OpenclImageBuffer imageBuffer = std::get<0>(image);
const NDRange& imageSize = std::get<1>(image);
unsigned int width = imageSize[0];
unsigned int height = imageSize[1];
utils::writePNGImage(imageBuffer.data(), width, height, outputFile);
});
// Process left image
make_edge(fileReaderOne, splitArgumentsLeftNode);
make_edge(output_port<0>(splitArgumentsLeftNode), input_port<0>(leftImageEffect));
make_edge(output_port<1>(splitArgumentsLeftNode), input_port<1>(leftImageEffect));
// Pass OpenCL NDRange via input port because it depends on input data
make_edge(output_port<2>(splitArgumentsLeftNode), input_port<2>(leftImageEffect));
// Process right image
make_edge(fileReaderTwo, splitArgumentsRightNode);
make_edge(output_port<0>(splitArgumentsRightNode), input_port<0>(rightImageEffect));
make_edge(output_port<1>(splitArgumentsRightNode), input_port<1>(rightImageEffect));
// Pass OpenCL NDRange via input port because it depends on input data
make_edge(output_port<2>(splitArgumentsRightNode), input_port<2>(rightImageEffect));
// Merge images
make_edge(output_port<0>(leftImageEffect), input_port<0>(mergeImages));
make_edge(output_port<0>(rightImageEffect), input_port<1>(mergeImages));
make_edge(output_port<1>(leftImageEffect), input_port<2>(mergeImages));
// Set OpenCL NDRange here (because the values may vary, depending on input data)
make_edge(output_port<2>(leftImageEffect), input_port<3>(mergeImages));
// Write image to PNG
make_edge(output_port<0>(mergeImages), input_port<0>(joinTupleNode));
make_edge(output_port<3>(mergeImages), input_port<1>(joinTupleNode));
make_edge(joinTupleNode, outputWriter);
// Define where to get ndrange and kernel arguments
leftImageEffect.set_args(port_ref<0, 1>());
leftImageEffect.set_range(port_ref<2>());
rightImageEffect.set_args(port_ref<0, 1>());
rightImageEffect.set_range(port_ref<2>());
mergeImages.set_args(port_ref<0, 2>());
mergeImages.set_range(port_ref<3>());
// Start graph image processing pipeline
fileReaderOne.try_put(firstFile);
fileReaderTwo.try_put(secondFile);
g.wait_for_all();
}
// Second image processing function using OpenCL
/** Reading and writing image to file is executed on CPU, while some buffers manipulation are executed on GPU
and others runs on CPU device. This case should have the best performance among others. */
void openclFunctionGPUPlusCPU(const std::string& firstFile, const std::string& secondFile, const std::string& outputFile) {
using namespace tbb::flow;
typedef opencl_buffer<cl_uchar> OpenclImageBuffer;
typedef std::array<unsigned int, 2> NDRange;
typedef tuple< OpenclImageBuffer, cl_uint, NDRange > OpenclImageTuple;
typedef tuple< OpenclImageBuffer, OpenclImageBuffer, cl_uint, NDRange > OpenclImagesMergeTuple;
typedef tuple< OpenclImageBuffer, NDRange > WriteImageBufferTuple;
graph g;
gpu_device_selector gpu_selector;
function_node< std::string, OpenclImageTuple > fileReaderOne(g, serial, [&g](const std::string& fileToRead) -> OpenclImageTuple {
utils::image_buffer src = utils::getOrGenerateImage(fileToRead);
// Create and initialize opencl_buffer in order to pass it to mergeImages kernel
OpenclImageBuffer oclImage(src.buffer->size());
fillOpenclBuffer(oclImage, *src.buffer);
NDRange rangeList = { src.width, src.height };
return std::make_tuple(oclImage, src.width, rangeList);
});
function_node< std::string, utils::image_buffer > fileReaderTwo(g, serial, [](const std::string& fileToRead) -> utils::image_buffer {
return utils::readPNGImage(fileToRead);
});
split_node< OpenclImageTuple > splitArgumentsLeftNode(g);
// Kernel should be in the current folder
opencl_program<> program("imageEffects.cl");
opencl_node< OpenclImageTuple > leftImageEffect(g, program.get_kernel("applyLeftImageEffect"), gpu_selector);
function_node< utils::image_buffer, OpenclImageBuffer > rightImageEffect(g, unlimited, [&g](utils::image_buffer image) -> OpenclImageBuffer {
applyRightImageEffect(image);
// Create and initialize opencl_buffer in order to pass it to kernel
OpenclImageBuffer oclImage(image.buffer->size());
fillOpenclBuffer(oclImage, *image.buffer);
return oclImage;
});
opencl_node< OpenclImagesMergeTuple > mergeImages(g, program.get_kernel("mergeImages"), gpu_selector);
join_node< WriteImageBufferTuple > joinTupleNode(g);
function_node< WriteImageBufferTuple > outputWriter(g, unlimited, [&outputFile](const WriteImageBufferTuple& image) {
// The result image have to be copied in order to be changed,
// the second parameter - image size, can be taken by const reference
OpenclImageBuffer imageBuffer = std::get<0>(image);
const NDRange& imageSize = std::get<1>(image);
unsigned int width = imageSize[0];
unsigned int height = imageSize[1];
utils::writePNGImage(imageBuffer.data(), width, height, outputFile);
});
// Process left image on GPU
make_edge(fileReaderOne, splitArgumentsLeftNode);
make_edge(output_port<0>(splitArgumentsLeftNode), input_port<0>(leftImageEffect));
make_edge(output_port<1>(splitArgumentsLeftNode), input_port<1>(leftImageEffect));
// Pass OpenCL NDRange via input port because it depends on input data
make_edge(output_port<2>(splitArgumentsLeftNode), input_port<2>(leftImageEffect));
// Process right image on CPU
make_edge(fileReaderTwo, rightImageEffect);
// Merge images on GPU
make_edge(output_port<0>(leftImageEffect), input_port<0>(mergeImages));
make_edge(rightImageEffect, input_port<1>(mergeImages));
make_edge(output_port<1>(leftImageEffect), input_port<2>(mergeImages));
// Pass OpenCL NDRange via input port because it depends on input data
make_edge(output_port<2>(leftImageEffect), input_port<3>(mergeImages));
// Write image to PNG
make_edge(output_port<0>(mergeImages), input_port<0>(joinTupleNode));
make_edge(output_port<3>(mergeImages), input_port<1>(joinTupleNode));
make_edge(joinTupleNode, outputWriter);
// Define where to get ndrange and kernel arguments
leftImageEffect.set_args(port_ref<0, 1>());
leftImageEffect.set_range(port_ref<2>());
mergeImages.set_args(port_ref<0, 2>());
mergeImages.set_range(port_ref<3>());
// Start graph image processing pipeline
fileReaderOne.try_put(firstFile);
fileReaderTwo.try_put(secondFile);
g.wait_for_all();
}
int main(int argc, char* argv[]) {
try {
tbb::tick_count mainStartTime = tbb::tick_count::now();
bool verbose = false;
std::string algVersion;
std::string inputFileFirst;
std::string inputFileSecond;
std::string outputFile = "output.png";
utility::parse_cli_arguments(argc, argv,
utility::cli_argument_pack()
//"-h" option for displaying help
.arg(verbose, "-v", "verbose mode")
.arg(algVersion, "-alg", "name of the used pipeline realisation - can be host, target (default) or host_target")
.positional_arg(inputFileFirst, "first_filename", "first input file name")
.positional_arg(inputFileSecond, "second_filename", "second input file name")
);
if (!utils::isBothImagesExists(inputFileFirst, inputFileSecond)) {
std::cout << "Info: one or both images does not exists or empty. Input images will be generated instead." << std::endl;
inputFileFirst.clear();
inputFileSecond.clear();
} else {
std::cout << "First input file name: " << inputFileFirst << std::endl;
std::cout << "Second input file name: " << inputFileSecond << std::endl;
}
if (algVersion.empty() || algVersion == "target") {
openclFunctionGPU(inputFileFirst, inputFileSecond, outputFile);
} else if (algVersion == "host_target") {
openclFunctionGPUPlusCPU(inputFileFirst, inputFileSecond, outputFile);
} else if (algVersion == "host") {
hostFunction(inputFileFirst, inputFileSecond, outputFile);
}
utility::report_elapsed_time((tbb::tick_count::now() - mainStartTime).seconds());
return 0;
} catch (std::exception& e) {
std::cerr << "Error occurred :\"" << e.what() << "\"\n";
return -1;
}
}
#else
int main() {
utility::report_skipped();
return 0;
}
#endif /* __TBB_PREVIEW_OPENCL_NODE && __TBB_CPP11_LAMBDAS_PRESENT */
|