1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*
Copyright (c) 2005-2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Example program that computes number of prime numbers up to n,
// where n is a command line argument. The algorithm here is a
// fairly efficient version of the sieve of Eratosthenes.
// The parallel version demonstrates how to use parallel_reduce,
// and in particular how to exploit lazy splitting.
#include "primes.h"
#if __TBB_MIC_OFFLOAD
#pragma offload_attribute (target(mic))
#endif // __TBB_MIC_OFFLOAD
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <cstdlib>
#include <cctype>
#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
using namespace std;
//! If true, then print primes on stdout.
static bool printPrimes = false;
class Multiples {
inline NumberType strike( NumberType start, NumberType limit, NumberType stride ) {
// Hoist "my_is_composite" into register for sake of speed.
bool* is_composite = my_is_composite;
assert( stride>=2 );
for( ;start<limit; start+=stride )
is_composite[start] = true;
return start;
}
//! Window into conceptual sieve
bool* my_is_composite;
//! Indexes into window
/** my_striker[k] is an index into my_composite corresponding to
an odd multiple multiple of my_factor[k]. */
NumberType* my_striker;
//! Prime numbers less than m.
NumberType* my_factor;
public:
//! NumberType of factors in my_factor.
NumberType n_factor;
NumberType m;
Multiples( NumberType n ) {
m = NumberType(sqrt(double(n)));
// Round up to even
m += m&1;
my_is_composite = new bool[m/2];
my_striker = new NumberType[m/2];
my_factor = new NumberType[m/2];
n_factor = 0;
memset( my_is_composite, 0, m/2 );
for( NumberType i=3; i<m; i+=2 ) {
if( !my_is_composite[i/2] ) {
if( printPrimes )
printf("%d\n",(int)i);
my_striker[n_factor] = strike( i/2, m/2, i );
my_factor[n_factor++] = i;
}
}
}
//! Find primes in range [start,window_size), advancing my_striker as we go.
/** Returns number of primes found. */
NumberType find_primes_in_window( NumberType start, NumberType window_size ) {
bool* is_composite = my_is_composite;
memset( is_composite, 0, window_size/2 );
for( size_t k=0; k<n_factor; ++k )
my_striker[k] = strike( my_striker[k]-m/2, window_size/2, my_factor[k] );
NumberType count = 0;
for( NumberType k=0; k<window_size/2; ++k ) {
if( !is_composite[k] ) {
if( printPrimes )
printf("%ld\n",long(start+2*k+1));
++count;
}
}
return count;
}
~Multiples() {
delete[] my_factor;
delete[] my_striker;
delete[] my_is_composite;
}
//------------------------------------------------------------------------
// Begin extra members required by parallel version
//------------------------------------------------------------------------
// Splitting constructor
Multiples( const Multiples& f, tbb::split ) :
n_factor(f.n_factor),
m(f.m),
my_is_composite(NULL),
my_striker(NULL),
my_factor(f.my_factor)
{}
bool is_initialized() const {
return my_is_composite!=NULL;
}
void initialize( NumberType start ) {
assert( start>=1 );
my_is_composite = new bool[m/2];
my_striker = new NumberType[m/2];
for( size_t k=0; k<n_factor; ++k ) {
NumberType f = my_factor[k];
NumberType p = (start-1)/f*f % m;
my_striker[k] = (p&1 ? p+2*f : p+f)/2;
assert( m/2<=my_striker[k] );
}
}
// Move other to *this.
void move( Multiples& other ) {
// The swap moves the contents of other to *this and causes the old contents
// of *this to be deleted later when other is destroyed.
std::swap( my_striker, other.my_striker );
std::swap( my_is_composite, other.my_is_composite );
// other.my_factor is a shared pointer that was copied by the splitting constructor.
// Set it to NULL to prevent premature deletion by the destructor of ~other.
assert(my_factor==other.my_factor);
other.my_factor = NULL;
}
//------------------------------------------------------------------------
// End extra methods required by parallel version
//------------------------------------------------------------------------
};
//! Count number of primes between 0 and n
/** This is the serial version. */
NumberType SerialCountPrimes( NumberType n ) {
// Two is special case
NumberType count = n>=2;
if( n>=3 ) {
Multiples multiples(n);
count += multiples.n_factor;
if( printPrimes )
printf("---\n");
NumberType window_size = multiples.m;
for( NumberType j=multiples.m; j<=n; j+=window_size ) {
if( j+window_size>n+1 )
window_size = n+1-j;
count += multiples.find_primes_in_window( j, window_size );
}
}
return count;
}
//! Range of a sieve window.
class SieveRange {
//! Width of full-size window into sieve.
const NumberType my_stride;
//! Always multiple of my_stride
NumberType my_begin;
//! One past last number in window.
NumberType my_end;
//! Width above which it is worth forking.
const NumberType my_grainsize;
bool assert_okay() const {
assert( my_begin%my_stride==0 );
assert( my_begin<=my_end );
assert( my_stride<=my_grainsize );
return true;
}
public:
//------------------------------------------------------------------------
// Begin signatures required by parallel_reduce
//------------------------------------------------------------------------
bool is_divisible() const {return my_end-my_begin>my_grainsize;}
bool empty() const {return my_end<=my_begin;}
SieveRange( SieveRange& r, tbb::split ) :
my_stride(r.my_stride),
my_grainsize(r.my_grainsize),
my_end(r.my_end)
{
assert( r.is_divisible() );
assert( r.assert_okay() );
NumberType middle = r.my_begin + (r.my_end-r.my_begin+r.my_stride-1)/2;
middle = middle/my_stride*my_stride;
my_begin = middle;
r.my_end = middle;
assert( assert_okay() );
assert( r.assert_okay() );
}
//------------------------------------------------------------------------
// End of signatures required by parallel_reduce
//------------------------------------------------------------------------
NumberType begin() const {return my_begin;}
NumberType end() const {return my_end;}
SieveRange( NumberType begin, NumberType end, NumberType stride, NumberType grainsize ) :
my_begin(begin),
my_end(end),
my_stride(stride),
my_grainsize(grainsize<stride?stride:grainsize)
{
assert( assert_okay() );
}
};
//! Loop body for parallel_reduce.
/** parallel_reduce splits the sieve into subsieves.
Each subsieve handles a subrange of [0..n]. */
class Sieve {
public:
//! Prime Multiples to consider, and working storage for this subsieve.
::Multiples multiples;
//! NumberType of primes found so far by this subsieve.
NumberType count;
//! Construct Sieve for counting primes in [0..n].
Sieve( NumberType n ) :
multiples(n),
count(0)
{}
//------------------------------------------------------------------------
// Begin signatures required by parallel_reduce
//------------------------------------------------------------------------
void operator()( const SieveRange& r ) {
NumberType m = multiples.m;
if( multiples.is_initialized() ) {
// Simply reuse "Multiples" structure from previous window
// This works because parallel_reduce always applies
// *this from left to right.
} else {
// Need to initialize "Multiples" because *this is a forked copy
// that needs to be set up to start at r.begin().
multiples.initialize( r.begin() );
}
NumberType window_size = m;
for( NumberType j=r.begin(); j<r.end(); j+=window_size ) {
assert( j%multiples.m==0 );
if( j+window_size>r.end() )
window_size = r.end()-j;
count += multiples.find_primes_in_window( j, window_size );
}
}
void join( Sieve& other ) {
count += other.count;
// Final value of multiples needs to final value of other multiples,
// so that *this can correctly process next window to right.
multiples.move( other.multiples );
}
Sieve( Sieve& other, tbb::split ) :
multiples(other.multiples,tbb::split()),
count(0)
{}
//------------------------------------------------------------------------
// End of signatures required by parallel_reduce
//------------------------------------------------------------------------
};
//! Count number of primes between 0 and n
/** This is the parallel version. */
NumberType ParallelCountPrimes( NumberType n , int number_of_threads, NumberType grain_size ) {
tbb::task_scheduler_init init(number_of_threads);
// Two is special case
NumberType count = n>=2;
if( n>=3 ) {
Sieve s(n);
count += s.multiples.n_factor;
if( printPrimes )
printf("---\n");
using namespace tbb;
// Explicit grain size and simple_partitioner() used here instead of automatic grainsize
// determination becase we want SieveRange to be decomposed down to grainSize or smaller.
// Doing so improves odds that the working set fits in cache when evaluating Sieve::operator().
parallel_reduce( SieveRange( s.multiples.m, n, s.multiples.m, grain_size ), s, simple_partitioner() );
count += s.count;
}
return count;
}
|