File: shortpath.cpp

package info (click to toggle)
tbb 4.0%2Br233-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 14,396 kB
  • sloc: cpp: 78,709; ansic: 6,200; asm: 950; makefile: 875; sh: 107; pascal: 68
file content (375 lines) | stat: -rw-r--r-- 13,818 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
    Copyright 2005-2011 Intel Corporation.  All Rights Reserved.

    This file is part of Threading Building Blocks.

    Threading Building Blocks is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License
    version 2 as published by the Free Software Foundation.

    Threading Building Blocks is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Threading Building Blocks; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, you may use this file as part of a free software
    library without restriction.  Specifically, if other files instantiate
    templates or use macros or inline functions from this file, or you compile
    this file and link it with other files to produce an executable, this
    file does not by itself cause the resulting executable to be covered by
    the GNU General Public License.  This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

#include <cstdio>
#include <vector>
#include <math.h>
#include "tbb/atomic.h"
#include "tbb/tick_count.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/task_group.h"
#include "tbb/concurrent_priority_queue.h"
#include "tbb/spin_mutex.h"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
#include "../../common/utility/utility.h"
#include "../../common/utility/fast_random.h"

#if defined(_MSC_VER) && defined(_Wp64)
    // Workaround for overzealous compiler warnings in /Wp64 mode
    #pragma warning (disable: 4267)
#endif /* _MSC_VER && _Wp64 */

#define __TBB_LAMBDAS_PRESENT  ( _MSC_VER >= 1600 && !__INTEL_COMPILER || __INTEL_COMPILER > 1100 && _TBB_CPP0X )

using namespace std;
using namespace tbb;

struct point {
    double x, y;
    point() {}
    point(double _x, double _y) : x(_x), y(_y) {}
    point(const point& p) : x(p.x), y(p.y) {} 
};

double get_distance(const point& p1, const point& p2) {
    double xdiff=p1.x-p2.x, ydiff=p1.y-p2.y;
    return sqrt(xdiff*xdiff + ydiff*ydiff);
}

// generates random points on 2D plane within a box of maxsize width & height
point generate_random_point(utility::FastRandom& mr) {
    const size_t maxsize=500;
    double x = (double)(mr.get() % maxsize);
    double y = (double)(mr.get() % maxsize);
    return point(x,y);
}

// weighted toss makes closer nodes (in the point vector) heavily connected
bool die_toss(size_t a, size_t b, utility::FastRandom& mr) {
    int node_diff = std::abs((int)(a-b));
    // near nodes
    if (node_diff < 16) return true;
    // mid nodes
    if (node_diff < 64) return ((int)mr.get() % 8 == 0);
    // far nodes
    if (node_diff < 512) return ((int)mr.get() % 16 == 0);
    return false;
}

typedef vector<point> point_set;
typedef size_t vertex_id;
typedef std::pair<vertex_id,double> vertex_rec;
typedef vector<vector<vertex_id> > edge_set;

bool verbose = false;          // prints bin details and other diagnostics to screen
bool silent = false;           // suppress all output except for time
size_t N = 1000;               // number of vertices
size_t src = 0;                // start of path
size_t dst = N-1;              // end of path
double INF=100000.0;           // infinity
size_t grainsize = 16;         // number of vertices per task on average
size_t max_spawn;              // max tasks to spawn
atomic<size_t> num_spawn;      // number of active tasks

point_set vertices;            // vertices
edge_set edges;                // edges
vector<vertex_id> predecessor; // for recreating path from src to dst

vector<double> f_distance;     // estimated distances at particular vertex
vector<double> g_distance;     // current shortest distances from src vertex
vector<spin_mutex> locks;      // a lock for each vertex
task_group *sp_group;          // task group for tasks executing sub-problems

class compare_f {
public:
    bool operator()(const vertex_rec& u, const vertex_rec& v) const {
        return u.second>v.second;
    }
};

concurrent_priority_queue<vertex_rec, compare_f> open_set; // tentative vertices

void shortpath_helper();

#if !__TBB_LAMBDAS_PRESENT
class shortpath_helper_functor {
public:
    shortpath_helper_functor() {};
    void operator() () const { shortpath_helper(); }
};
#endif

void shortpath() {
    g_distance[src] = 0.0; // src's distance from src is zero
    f_distance[src] = get_distance(vertices[src], vertices[dst]); // estimate distance from src to dst
    open_set.push(make_pair(src,f_distance[src])); // push src into open_set
#if __TBB_LAMBDAS_PRESENT    
    sp_group->run([](){ shortpath_helper(); });
#else
    sp_group->run( shortpath_helper_functor() );
#endif
    sp_group->wait();
}

void shortpath_helper() {
    vertex_rec u_rec;
    while (open_set.try_pop(u_rec)) {
        vertex_id u = u_rec.first;
        if (u==dst) continue;
        double f = u_rec.second;
        double old_g_u = 0.0;
        {
            spin_mutex::scoped_lock l(locks[u]);
            if (f > f_distance[u]) continue; // prune search space
            old_g_u = g_distance[u];
        }
        for (size_t i=0; i<edges[u].size(); ++i) {
            vertex_id v = edges[u][i];
            double new_g_v = old_g_u + get_distance(vertices[u], vertices[v]);
            double new_f_v = 0.0;
            // the push flag lets us move some work out of the critical section below
            bool push = false;
            {
                spin_mutex::scoped_lock l(locks[v]);
                if (new_g_v < g_distance[v]) {
                    predecessor[v] = u;
                    g_distance[v] = new_g_v;
                    new_f_v = f_distance[v] = g_distance[v] + get_distance(vertices[v], vertices[dst]);
                    push = true;
                }
            }
            if (push) {
                open_set.push(make_pair(v,new_f_v));
                size_t n_spawn = ++num_spawn;
                if (n_spawn < max_spawn) {
#if __TBB_LAMBDAS_PRESENT    
                    sp_group->run([]{ shortpath_helper(); });
#else
                    sp_group->run( shortpath_helper_functor() );
#endif                
                }
                else --num_spawn;
            }
        }
    }
    --num_spawn;
}

void make_path(vertex_id src, vertex_id dst, vector<vertex_id>& path) {
    vertex_id at = predecessor[dst];
    if (at == N) path.push_back(src);
    else if (at == src) { path.push_back(src); path.push_back(dst); }
    else { make_path(src, at, path); path.push_back(dst); }
}

void print_path() {
    vector<vertex_id> path;
    double path_length=0.0;
    make_path(src, dst, path);
    if (verbose) printf("\n      ");
    for (size_t i=0; i<path.size(); ++i) {
        if (path[i] != dst) {
            double seg_length = get_distance(vertices[path[i]], vertices[path[i+1]]);
            if (verbose) printf("%6.1f       ", seg_length);
            path_length += seg_length;
        }
        else if (verbose) printf("\n");
    }
    if (verbose) {
        for (size_t i=0; i<path.size(); ++i) {
            if (path[i] != dst) printf("(%4d)------>", (int)path[i]);
            else printf("(%4d)\n", (int)path[i]);
        }
    }
    if (verbose) printf("Total distance = %5.1f\n", path_length);
    else if (!silent) printf(" %5.1f\n", path_length);
}

int get_default_num_threads() {
    static int threads = 0;
    if (threads == 0)
        threads = tbb::task_scheduler_init::default_num_threads();
    return threads;
}

#if !__TBB_LAMBDAS_PRESENT
class gen_vertices {
public: 
    gen_vertices() {}
    void operator() (blocked_range<size_t>& r) const {
        utility::FastRandom my_random((unsigned int)r.begin());
        for (size_t i=r.begin(); i!=r.end(); ++i) {
            vertices[i] = generate_random_point(my_random);
        }
    }
};

class gen_edges {
public: 
    gen_edges() {}
    void operator() (blocked_range<size_t>& r) const {
        utility::FastRandom my_random((unsigned int)r.begin());
        for (size_t i=r.begin(); i!=r.end(); ++i) {
            for (size_t j=0; j<i; ++j) {
                if (die_toss(i, j, my_random))
                    edges[i].push_back(j);
            }
        }
    }
};

class reset_vertices {
public: 
    reset_vertices() {}
    void operator() (blocked_range<size_t>& r) const {
        for (size_t i=r.begin(); i!=r.end(); ++i) {
            f_distance[i] = g_distance[i] = INF;
            predecessor[i] = N;
        }
    }
};
#endif

void InitializeGraph() {
    sp_group = new task_group;
    vertices.resize(N);
    edges.resize(N);
    predecessor.resize(N);
    g_distance.resize(N);
    f_distance.resize(N);
    locks.resize(N);
    task_scheduler_init init(get_default_num_threads());
    if (verbose) printf("Generating vertices...\n");
#if __TBB_LAMBDAS_PRESENT
    parallel_for(blocked_range<size_t>(0,N,64), 
                 [&](blocked_range<size_t>& r) {
                     utility::FastRandom my_random(r.begin());
                     for (size_t i=r.begin(); i!=r.end(); ++i) {
                         vertices[i] = generate_random_point(my_random);
                     }
                 }, simple_partitioner());
#else
    parallel_for(blocked_range<size_t>(0,N,64), gen_vertices(), simple_partitioner());
#endif
    if (verbose) printf("Generating edges...\n");
#if __TBB_LAMBDAS_PRESENT
    parallel_for(blocked_range<size_t>(0,N,64), 
                 [&](blocked_range<size_t>& r) {
                     utility::FastRandom my_random(r.begin());
                     for (size_t i=r.begin(); i!=r.end(); ++i) {
                         for (size_t j=0; j<i; ++j) {
                             if (die_toss(i, j, my_random))
                                 edges[i].push_back(j);
                         }
                     }
                 }, simple_partitioner());
#else
    parallel_for(blocked_range<size_t>(0,N,64), gen_edges(), simple_partitioner());
#endif
    for (size_t i=0; i<N; ++i) {
        for (size_t j=0; j<edges[i].size(); ++j) {
            vertex_id k = edges[i][j];
            edges[k].push_back(i);
        }
    }
    if (verbose) printf("Done.\n");
}

void ResetGraph() {
    task_scheduler_init init(get_default_num_threads());
#if __TBB_LAMBDAS_PRESENT
    parallel_for(blocked_range<size_t>(0,N), 
                 [&](blocked_range<size_t>& r) {
                     for (size_t i=r.begin(); i!=r.end(); ++i) {
                         f_distance[i] = g_distance[i] = INF;
                         predecessor[i] = N;
                     }
                 });
#else
    parallel_for(blocked_range<size_t>(0,N), reset_vertices());
#endif
}

int main(int argc, char *argv[]) {
    try {
        utility::thread_number_range threads(get_default_num_threads);
        utility::parse_cli_arguments(argc, argv,
                                     utility::cli_argument_pack()
                                     //"-h" option for for displaying help is present implicitly
                                     .positional_arg(threads,"#threads","  number of threads to use; a range of the "
                                                     "form low[:high]\n              where low and optional high are "
                                                     "non-negative integers,\n              or 'auto' for the TBB "
                                                     "default")
                                     .arg(verbose,"verbose","   print diagnostic output to screen")
                                     .arg(silent,"silent","    limits output to timing info; overrides verbose")
                                     .arg(N,"N","         number of vertices")
                                     .arg(src,"start","      start of path")
                                     .arg(dst,"end","        end of path")
        );
        if (silent) verbose = false;  // make silent override verbose
        else
            printf("shortpath will run with %d vertices to find shortest path between vertices"
                   " %d and %d using %d:%d threads.\n", 
                   (int)N, (int)src, (int)dst, (int)threads.first, (int)threads.last);
  
        if (dst >= N) { 
            if (verbose) 
                printf("end value %d is invalid for %d vertices; correcting to %d\n", (int)dst, (int)N, (int)N-1);
            dst = N-1;
        }
        
        num_spawn = 0;
        max_spawn = N/grainsize;
        tick_count t0, t1;
        InitializeGraph();
        for (int n_thr=threads.first; n_thr<=threads.last; ++n_thr) {
            ResetGraph();
            task_scheduler_init init(n_thr);
            t0 = tick_count::now();
            shortpath();
            t1 = tick_count::now();
            if (!silent) {
                if (predecessor[dst] != N) {
                    printf("%d threads: [%6.6f] The shortest path from vertex %d to vertex %d is:", 
                           (int)n_thr, (t1-t0).seconds(), (int)src, (int)dst);
                    print_path();
                }
                else {
                    printf("%d threads: [%6.6f] There is no path from vertex %d to vertex %d\n", 
                           (int)n_thr, (t1-t0).seconds(), (int)src, (int)dst);
                }
            } else
                utility::report_elapsed_time((t1-t0).seconds());
        }
        return 0;
    } catch(std::exception& e) {
        cerr<<"error occurred. error text is :\"" <<e.what()<<"\"\n";
        return 1;
    }
}