File: Simple_Example_Fibonacci_Numbers.htm

package info (click to toggle)
tbb 4.2~20140122-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,492 kB
  • ctags: 21,278
  • sloc: cpp: 92,813; ansic: 9,775; asm: 1,070; makefile: 1,057; sh: 351; java: 226; objc: 98; pascal: 71; xml: 41
file content (247 lines) | stat: -rwxr-xr-x 9,830 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
<!DOCTYPE html
  PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<!-- saved from url=(0014)about:internet -->
<html xmlns:MSHelp="http://www.microsoft.com/MSHelp/" lang="en-us" xml:lang="en-us"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<meta name="DC.Type" content="topic">
<meta name="DC.Title" content="Simple Example: Fibonacci Numbers">
<meta name="DC.subject" content="Simple Example: Fibonacci Numbers">
<meta name="keywords" content="Simple Example: Fibonacci Numbers">
<meta name="DC.Relation" scheme="URI" content="../tbb_userguide/The_Task_Scheduler.htm">
<meta name="DC.Relation" scheme="URI" content="Scheduler_Bypass.htm#tutorial_Scheduler_Bypass">
<meta name="DC.Relation" scheme="URI" content="How_Task_Scheduling_Works.htm#tutorial_How_Task_Scheduling_Works">
<meta name="DC.Format" content="XHTML">
<meta name="DC.Identifier" content="tutorial_Simple_Example_Fibonacci_Numbers">
<link rel="stylesheet" type="text/css" href="../intel_css_styles.css">
<title>Simple Example: Fibonacci Numbers</title>
<xml>
<MSHelp:Attr Name="DocSet" Value="Intel"></MSHelp:Attr>
<MSHelp:Attr Name="Locale" Value="kbEnglish"></MSHelp:Attr>
<MSHelp:Attr Name="TopicType" Value="kbReference"></MSHelp:Attr>
</xml>
</head>
<body id="tutorial_Simple_Example_Fibonacci_Numbers">
 <!-- ==============(Start:NavScript)================= -->
 <script src="..\NavScript.js" language="JavaScript1.2" type="text/javascript"></script>
 <script language="JavaScript1.2" type="text/javascript">WriteNavLink(1);</script>
 <!-- ==============(End:NavScript)================= -->
<a name="tutorial_Simple_Example_Fibonacci_Numbers"><!-- --></a>

 
  <h1 class="topictitle1">Simple Example: Fibonacci Numbers</h1>
 
   
  <div> 
	 <p>This section uses computation of the 
		<var>n</var>th Fibonacci number as an example. This example uses
		an inefficient method to compute Fibonacci numbers, but it demonstrates the
		basics of a task library using a simple recursive pattern. To get scalable
		speedup out of task-based programming, you need to specify a lot of tasks. This
		is typically done in Intel&reg; TBB with a recursive task pattern. 
	 </p>
 
	 <p>This is the serial code: 
	 </p>
 
	 <pre>long SerialFib( long n ) {
    if( n&lt;2 )
        return n;
    else
        return SerialFib(n-1)+SerialFib(n-2);
}</pre> 
	 <p>The top-level code for the parallel task-based version is: 
	 </p>
 
	 <pre>long ParallelFib( long n ) {
    long sum;
    FibTask&amp; a = *new(task::allocate_root()) FibTask(n,&amp;sum);
    task::spawn_root_and_wait(a);
    return sum;
}</pre> 
	 <p>This code uses a task of type 
		<samp class="codeph">FibTask</samp> to do the real work. It involves the following
		distinct steps: 
	 </p>
 
	 <ol> 
		<li> 
		  <p>Allocate space for the task. This is done by a special "overloaded
			 new" and method 
	 <span class="option">task::allocate_root</span>. The 
	 <samp class="codeph">_root</samp> suffix in the name denotes the fact that the task
	 created has no parent. It is the root of a task tree. Tasks must be allocated
	 by special methods so that the space can be efficiently recycled when the task
	 completes. 
	 </p>
 
	 </li>
 
	 <li> 
		<p>Construct the task with the constructor 
		  <samp class="codeph">FibTask(n,&amp;sum)</samp> invoked by 
		  <samp class="codeph">new</samp>. When the task is run in step 3, it computes the
		  nth Fibonacci number and stores it into 
		  <samp class="codeph">*sum</samp>. 
		</p>
 
	 </li>
 
	 <li> 
		<p>Run the task to completion with 
		  <samp class="codeph">task::spawn_root_and_wait</samp>. 
		</p>
 
	 </li>
 
	 </ol>
 
	 <p>The real work is inside struct 
		<samp class="codeph">FibTask</samp>. Its definition is shown below. 
	 </p>
 
	 <pre>class FibTask: public task {
public:
    const long n;
    long* const sum;
    FibTask( long n_, long* sum_ ) :
        n(n_), sum(sum_)
    {}
    task* execute() {      // Overrides virtual function task::execute
        if( n&lt;CutOff ) {
            *sum = SerialFib(n);
        } else {
            long x, y;
            FibTask&amp; a = *new( allocate_child() ) FibTask(n-1,&amp;x);
            FibTask&amp; b = *new( allocate_child() ) FibTask(n-2,&amp;y);
            // Set ref_count to 'two children plus one for the wait".
            set_ref_count(3);
            // Start b running.
            spawn( b );
            // Start a running and wait for all children (a and b).
            spawn_and_wait_for_all(a);
            // Do the sum
            *sum = x+y;
        }
        return NULL;
    }
};</pre> 
	 <p>It is a relatively large piece of code, compared to 
		<samp class="codeph">SerialFib</samp>, because it expresses parallelism without the
		help of any extensions to standard C++. 
	 </p>
 
	 <p>Like all tasks scheduled by Intel&reg; TBB, 
		<samp class="codeph">FibTask</samp> is derived from class 
		<samp class="codeph">task</samp>. Fields 
		<samp class="codeph">n</samp> and 
		<samp class="codeph">sum</samp> hold respectively the input value and pointer to the
		output. These are copies of the arguments passed to the constructor for 
		<samp class="codeph">FibTask</samp>. Method 
		<samp class="codeph">execute</samp> does the actual computation. Every task must
		provide a definition of 
		<samp class="codeph">execute</samp> that overrides the pure virtual method 
	 <span class="option">task::execute</span>. The definition should do the work of the
	 task, and return either NULL, or a pointer to the next task to run. In this
	 simple example, it returns NULL. For more information on the non-NULL case see 
	 <strong>Scheduler Bypass</strong>. 
	 </p>
 
	 <p>Method 
	 <span class="option">FibTask::execute()</span>does the following: 
	 </p>
 
	 <ul type="disc"> 
		<li> 
		  <p>Checks if 
			 <samp class="codeph">n</samp> is so small that serial execution would be faster.
			 Finding the right value of 
			 <samp class="codeph">CutOff</samp> requires some experimentation. A value of at
			 least 16 works well in practice for getting most of the possible speedup out of
			 this example. Resorting to a sequential algorithm when the problem size becomes
			 small is characteristic of most divide-and-conquer patterns for parallelism.
			 Finding the point at which to switch requires experimentation, so be sure to
			 write your code in a way that allows you to experiment. 
		  </p>
 
		</li>
 
		<li> 
		  <p>If the 
			 <samp class="codeph">else</samp> is taken, the code creates and runs two child
			 tasks that compute the (<samp class="codeph">n</samp>-1)th and (<samp class="codeph">n</samp>-2)th
			 Fibonacci numbers. Here, inherited method 
			 <samp class="codeph">allocate_child()</samp> is used to allocate space for the
			 task. Remember that the top-level routine 
			 <samp class="codeph">ParallelFib</samp> used 
			 <samp class="codeph">allocate_root()</samp> to allocate space for a task. The
			 difference is that here the task is creating 
			 <em>child</em> tasks. This relationship is indicated by the choice of
			 allocation method. 
		  </p>
 
		</li>
 
		<li> 
		  <p>Calls 
			 <samp class="codeph">set_ref_count(3)</samp>. The number 
			 <samp class="codeph">3</samp> represents the two children and an additional
			 implicit reference that is required by method 
			 <samp class="codeph">spawn_and_wait_for_all</samp>. Make sure to call 
			 <samp class="codeph">set_reference_count(3)</samp> before spawning any children.
			 Failure to do so results in undefined behavior. The debug version of the
			 library usually detects and reports this type of error. 
		  </p>
 
		</li>
 
		<li> 
		  <p>Spawns two child tasks. Spawning a task indicates to the scheduler
			 that it can run the task whenever it chooses, possibly in parallel with other
			 tasks. For more information on the execution policy see 
			 <strong>How Task Scheduling Works</strong>. The first spawning, by method 
			 <samp class="codeph">spawn</samp>, returns immediately without waiting for the
			 child task to start executing. The second spawning, by method 
			 <samp class="codeph">spawn_and_wait_for_all</samp>, causes the parent to wait
			 until all currently allocated child tasks are finished. 
		  </p>
 
		</li>
 
		<li> 
		  <p>After the two child tasks complete, the parent computes 
			 <samp class="codeph">x+y</samp> and stores it in 
			 <samp class="codeph">*sum</samp>. 
		  </p>
 
		</li>
 
	 </ul>
 
	 <p>At first glance, the parallelism might appear to be limited, because the
		task creates only two child tasks. The trick here is 
		<em>recursive parallelism.</em> The two child tasks each create two child
		tasks, and so on, until 
		<samp class="codeph">n&lt;Cutoff</samp>. This chain reaction creates a lot of
		potential parallelism. The advantage of the task scheduler is that it turns
		this potential parallelism into real parallelism in a very efficient way,
		because it chooses tasks to run in a way that keeps physical threads busy with
		relatively little context switching. 
	 </p>
 
  </div>
 
  
<div class="familylinks">
<div class="parentlink"><strong>Parent topic:</strong>&nbsp;<a href="../tbb_userguide/The_Task_Scheduler.htm">The Task Scheduler</a></div>
</div>
<div class="See Also">
<h2>See Also</h2>
<div class="linklist">
<div><a href="Scheduler_Bypass.htm#tutorial_Scheduler_Bypass">Scheduler Bypass 
		  </a></div>
<div><a href="How_Task_Scheduling_Works.htm#tutorial_How_Task_Scheduling_Works">How Task Scheduling Works 
		  </a></div></div>
</div> 

</body>
</html>