File: statistics.tcl

package info (click to toggle)
tcllib 1.10-dfsg-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 17,708 kB
  • ctags: 6,122
  • sloc: tcl: 106,354; ansic: 9,205; sh: 8,707; xml: 1,766; yacc: 753; makefile: 115; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1430 lines) | stat: -rwxr-xr-x 40,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
# statistics.tcl --
#
#    Package for basic statistical analysis
#
# version 0.1:   initial implementation, january 2003
# version 0.1.1: added linear regression, june 2004
# version 0.1.2: border case in stdev taken care of
# version 0.1.3: moved initialisation of CDF to first call, november 2004
# version 0.3:   added test for normality (as implemented by Torsten Reincke), march 2006
#                (also fixed an error in the export list)
# version 0.4:   added the multivariate linear regression procedures by
#                Eric Kemp-Benedict, february 2007
# version 0.5:   added the population standard deviation and variance,
#                as suggested by Dimitrios Zachariadis

package provide math::statistics 0.5

# ::math::statistics --
#   Namespace holding the procedures and variables
#

namespace eval ::math::statistics {
    #
    # Safer: change to short procedures
    #
    namespace export mean min max number var stdev pvar pstdev basic-stats corr \
	    histogram interval-mean-stdev t-test-mean quantiles \
	    test-normal lillieforsFit \
	    autocorr crosscorr filter map samplescount median \
	    test-2x2 print-2x2 control-xbar test_xbar \
	    control-Rchart test-Rchart
    #
    # Error messages
    #
    variable NEGSTDEV   {Zero or negative standard deviation}
    variable TOOFEWDATA {Too few or invalid data}
    variable OUTOFRANGE {Argument out of range}

    #
    # Coefficients involved
    #
    variable factorNormalPdf
    set factorNormalPdf [expr {sqrt(8.0*atan(1.0))}]

    # xbar/R-charts:
    # Data from:
    #    Peter W.M. John:
    #    Statistical methods in engineering and quality assurance
    #    Wiley and Sons, 1990
    #
    variable control_factors {
        A2 {1.880 1.093 0.729 0.577 0.483 0.419 0.419}
        D3 {0.0   0.0   0.0   0.0   0.0   0.076 0.076}
        D4 {3.267 2.574 2.282 2.114 2.004 1.924 1.924}
    }
}

# mean, min, max, number, var, stdev, pvar, pstdev --
#    Return the mean (minimum, maximum) value of a list of numbers
#    or number of non-missing values
#
# Arguments:
#    type     Type of value to be returned
#    values   List of values to be examined
#
# Results:
#    Value that was required
#
#
namespace eval ::math::statistics {
    foreach type {mean min max number stdev var pstdev pvar} {
	proc $type { values } "BasicStats $type \$values"
    }
    proc basic-stats { values } "BasicStats all \$values"
}

# BasicStats --
#    Return the one or all of the basic statistical properties
#
# Arguments:
#    type     Type of value to be returned
#    values   List of values to be examined
#
# Results:
#    Value that was required
#
proc ::math::statistics::BasicStats { type values } {
    variable TOOFEWDATA

    set min    {}
    set max    {}
    set mean   {}
    set stdev  {}
    set var    {}

    set sum    0.0
    set sumsq  0.0
    set number 0

    foreach value $values {
	if { $value == {} } {
	    continue
	}
	set value [expr {double($value)}]

	incr number
	set  sum    [expr {$sum+$value}]
	set  sumsq  [expr {$sumsq+$value*$value}]

	if { $min == {} || $value < $min } {
	    set min $value
	}
	if { $max == {} || $value > $max } {
	    set max $value
	}
    }

    if { $number > 0 } {
	set mean [expr {$sum/$number}]
    } else {
	return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }

    if { $number > 1 } {
	set var    [expr {($sumsq-$mean*$sum)/double($number-1)}]
        #
        # Take care of a rare situation: uniform data might
        # cause a tiny negative difference
        #
        if { $var < 0.0 } {
           set var 0.0
        }
	set stdev  [expr {sqrt($var)}]
    }
	set pvar [expr {($sumsq-$mean*$sum)/double($number)}]
        #
        # Take care of a rare situation: uniform data might
        # cause a tiny negative difference
        #
        if { $pvar < 0.0 } {
           set pvar 0.0
        }
	set pstdev  [expr {sqrt($pvar)}]

    set all [list $mean $min $max $number $stdev $var $pstdev $pvar]

    #
    # Return the appropriate value
    #
    if { [lsearch {all mean min max number stdev var pstdev pvar} $type] >= 0 } {
	# FRINK: nocheck
	return [set $type]
    } else {
	return -code error \
		-errorcode ARG -errorinfo [list unknown type of statistic -- $type] \
		[list unknown type of statistic -- $type]
    }
}

# histogram --
#    Return histogram information from a list of numbers
#
# Arguments:
#    limits   Upper limits for the buckets (in increasing order)
#    values   List of values to be examined
#
# Results:
#    List of number of values in each bucket (length is one more than
#    the number of limits)
#
#
proc ::math::statistics::histogram { limits values } {

    if { [llength $limits] < 1 } {
	return -code error -errorcode ARG -errorinfo {No limits given} {No limits given}
    }

    set limits [lsort -real -increasing $limits]

    for { set index 0 } { $index <= [llength $limits] } { incr index } {
	set buckets($index) 0
    }
    set last [llength $limits]

    foreach value $values {
	if { $value == {} } {
	    continue
	}

	set index 0
	set found 0
	foreach limit $limits {
	    if { $value <= $limit } {
		set found 1
		incr buckets($index)
		break
	    }
	    incr index
	}

	if { $found == 0 } {
	    incr buckets($last)
	}
    }

    set result {}
    for { set index 0 } { $index <= $last } { incr index } {
	lappend result $buckets($index)
    }

    return $result
}

# corr --
#    Return the correlation coefficient of two sets of data
#
# Arguments:
#    data1    List with the first set of data
#    data2    List with the second set of data
#
# Result:
#    Correlation coefficient of the two
#
proc ::math::statistics::corr { data1 data2 } {
    variable TOOFEWDATA

    set number  0
    set sum1    0.0
    set sum2    0.0
    set sumsq1  0.0
    set sumsq2  0.0
    set sumprod 0.0

    foreach value1 $data1 value2 $data2 {
	if { $value1 == {} || $value2 == {} } {
	    continue
	}
	set  value1  [expr {double($value1)}]
	set  value2  [expr {double($value2)}]

	set  sum1    [expr {$sum1+$value1}]
	set  sum2    [expr {$sum2+$value2}]
	set  sumsq1  [expr {$sumsq1+$value1*$value1}]
	set  sumsq2  [expr {$sumsq2+$value2*$value2}]
	set  sumprod [expr {$sumprod+$value1*$value2}]
	incr number
    }
    if { $number > 0 } {
	set numerator   [expr {$number*$sumprod-$sum1*$sum2}]
	set denom1      [expr {sqrt($number*$sumsq1-$sum1*$sum1)}]
	set denom2      [expr {sqrt($number*$sumsq2-$sum2*$sum2)}]
	if { $denom1 != 0.0 && $denom2 != 0.0 } {
	    set corr_coeff  [expr {$numerator/$denom1/$denom2}]
	} elseif { $denom1 != 0.0 || $denom2 != 0.0 } {
	    set corr_coeff  0.0 ;# Uniform against non-uniform
	} else {
	    set corr_coeff  1.0 ;# Both uniform
	}

    } else {
	return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }
    return $corr_coeff
}

# lillieforsFit --
#     Calculate the goodness of fit according to Lilliefors
#     (goodness of fit to a normal distribution)
#
# Arguments:
#     values          List of values to be tested for normality
#
# Result:
#     Value of the statistic D
#
proc ::math::statistics::lillieforsFit {values} {
    #
    # calculate the goodness of fit according to Lilliefors
    # (goodness of fit to a normal distribution)
    #
    # values -> list of values to be tested for normality
    # (these values are sampled counts)
    #

    # calculate standard deviation and mean of the sample:
    set n [llength $values]
    if { $n < 5 } {
        return -code error "Insufficient number of data (at least five required)"
    }
    set sd   [stdev $values]
    set mean [mean $values]

    # sort the sample for further processing:
    set values [lsort -real $values]

    # standardize the sample data (Z-scores):
    foreach x $values {
        lappend stdData [expr {($x - $mean)/double($sd)}]
    }

    # compute the value of the distribution function at every sampled point:
    foreach x $stdData {
        lappend expData [pnorm $x]
    }

    # compute D+:
    set i 0
    foreach x $expData {
        incr i
        lappend dplus [expr {$i/double($n)-$x}]
    }
    set dplus [lindex [lsort -real $dplus] end]

    # compute D-:
    set i 0
    foreach x $expData {
        incr i
        lappend dminus [expr {$x-($i-1)/double($n)}]
    }
    set dminus [lindex [lsort -real $dminus] end]

    # Calculate the test statistic D
    # by finding the maximal vertical difference
    # between the sample and the expectation:
    #
    set D [expr {$dplus > $dminus ? $dplus : $dminus}]

    # We now use the modified statistic Z,
    # because D is only reliable
    # if the p-value is smaller than 0.1
    return [expr {$D * (sqrt($n) - 0.01 + 0.831/sqrt($n))}]
}

# pnorm --
#     Calculate the cumulative distribution function (cdf)
#     for the standard normal distribution like in the statistical
#     software 'R' (mean=0 and sd=1)
#
# Arguments:
#     x               Value fro which the cdf should be calculated
#
# Result:
#     Value of the statistic D
#
proc ::math::statistics::pnorm {x} {
    #
    # cumulative distribution function (cdf)
    # for the standard normal distribution like in the statistical software 'R'
    # (mean=0 and sd=1)
    #
    # x -> value for which the cdf should be calculated
    #
    set sum [expr {double($x)}]
    set oldSum 0.0
    set i 1
    set denom 1.0
    while {$sum != $oldSum} {
            set oldSum $sum
            incr i 2
            set denom [expr {$denom*$i}]
            #puts "$i - $denom"
            set sum [expr {$oldSum + pow($x,$i)/$denom}]
    }
    return [expr {0.5 + $sum * exp(-0.5 * $x*$x - 0.91893853320467274178)}]
}

# pnorm_quicker --
#     Calculate the cumulative distribution function (cdf)
#     for the standard normal distribution - quicker alternative
#     (less accurate)
#
# Arguments:
#     x               Value for which the cdf should be calculated
#
# Result:
#     Value of the statistic D
#
proc ::math::statistics::pnorm_quicker {x} {

    set n [expr {abs($x)}]
    set n [expr {1.0 + $n*(0.04986735 + $n*(0.02114101 + $n*(0.00327763 \
            + $n*(0.0000380036 + $n*(0.0000488906 + $n*0.000005383)))))}]
    set n [expr {1.0/pow($n,16)}]
    #
    if {$x >= 0} {
        return [expr {1 - $n/2.0}]
    } else {
        return [expr {$n/2.0}]
    }
}

# test-normal --
#     Test for normality (using method Lilliefors)
#
# Arguments:
#     data            Values that need to be tested
#     confidence      ...
#
# Result:
#     1 if of the statistic D
#
proc ::math::statistics::test-normal {data confidence} {
    set D [lillieforsFit $data]

    set Dcrit --
    if { abs($confidence-0.80) < 0.0001 } {
        set Dcrit 0.741
    }
    if { abs($confidence-0.85) < 0.0001 } {
        set Dcrit 0.775
    }
    if { abs($confidence-0.90) < 0.0001 } {
        set Dcrit 0.819
    }
    if { abs($confidence-0.95) < 0.0001 } {
        set Dcrit 0.895
    }
    if { abs($confidence-0.99) < 0.0001 } {
        set Dcrit 1.035
    }
    if { $Dcrit != "--" } {
        return [expr {$D > $Dcrit ? 1 : 0 }]
    } else {
        return -code error "Confidence level must be one of: 0.80, 0.85, 0.90, 0.95 or 0.99"
    }
}

# t-test-mean --
#    Test whether the mean value of a sample is in accordance with the
#    estimated normal distribution with a certain level of confidence
#    (Student's t test)
#
# Arguments:
#    data         List of raw data values (small sample)
#    est_mean     Estimated mean of the distribution
#    est_stdev    Estimated stdev of the distribution
#    confidence   Confidence level (0.95 or 0.99 for instance)
#
# Result:
#    1 if the test is positive, 0 otherwise. If there are too few data,
#    returns an empty string
#
proc ::math::statistics::t-test-mean { data est_mean est_stdev confidence } {
    variable NEGSTDEV
    variable TOOFEWDATA

    if { $est_stdev <= 0.0 } {
	return -code error -errorcode ARG -errorinfo $NEGSTDEV $NEGSTDEV
    }

    set allstats        [BasicStats all $data]

    set conf2           [expr {(1.0+$confidence)/2.0}]

    set sample_mean     [lindex $allstats 0]
    set sample_number   [lindex $allstats 3]

    if { $sample_number > 1 } {
	set tzero   [expr {abs($sample_mean-$est_mean)/$est_stdev * \
		sqrt($sample_number-1)}]
	set degrees [expr {$sample_number-1}]
	set prob    [cdf-students-t $degrees $tzero]

	return [expr {$prob<$conf2}]

    } else {
	return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }
}

# interval-mean-stdev --
#    Return the interval containing the mean value and one
#    containing the standard deviation with a certain
#    level of confidence (assuming a normal distribution)
#
# Arguments:
#    data         List of raw data values
#    confidence   Confidence level (0.95 or 0.99 for instance)
#
# Result:
#    List having the following elements: lower and upper bounds of
#    mean, lower and upper bounds of stdev
#
#
proc ::math::statistics::interval-mean-stdev { data confidence } {
    variable TOOFEWDATA
    variable student_t_table

    set allstats [BasicStats all $data]

    set conf2    [expr {(1.0+$confidence)/2.0}]
    set mean     [lindex $allstats 0]
    set number   [lindex $allstats 3]
    set stdev    [lindex $allstats 4]

    if { $number > 1 } {
	set degrees    [expr {$number-1}]
	set student_t \
		[::math::interpolation::interpolate2d $student_t_table \
		$degrees $conf2]
	set mean_lower [expr {$mean-$student_t*$stdev/sqrt($number)}]
	set mean_upper [expr {$mean+$student_t*$stdev/sqrt($number)}]
	set stdev_lower {}
	set stdev_upper {}
	return [list $mean_lower $mean_upper $stdev_lower $stdev_upper]
    } else {
	return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }
}

# quantiles --
#    Return the quantiles for a given set of data or histogram
#
# Arguments:
#    (two arguments)
#    data         List of raw data values
#    confidence   Confidence level (0.95 or 0.99 for instance)
#    (three arguments)
#    limits       List of upper limits from histogram
#    counts       List of counts for for each interval in histogram
#    confidence   Confidence level (0.95 or 0.99 for instance)
#
# Result:
#    List of quantiles
#
proc ::math::statistics::quantiles { arg1 arg2 {arg3 {}} } {
    variable TOOFEWDATA

    if { [catch {
	if { $arg3 == {} } {
	    set result \
		    [::math::statistics::QuantilesRawData $arg1 $arg2]
	} else {
	    set result \
		    [::math::statistics::QuantilesHistogram $arg1 $arg2 $arg3]
	}
    } msg] } {
	return -code error -errorcode $msg $msg
    }
    return $result
}

# QuantilesRawData --
#    Return the quantiles based on raw data
#
# Arguments:
#    data         List of raw data values
#    confidence   Confidence level (0.95 or 0.99 for instance)
#
# Result:
#    List of quantiles
#
proc ::math::statistics::QuantilesRawData { data confidence } {
    variable TOOFEWDATA
    variable OUTOFRANGE

    if { [llength $confidence] <= 0 } {
	return -code error -errorcode ARG "$TOOFEWDATA - quantiles"
    }

    if { [llength $data] <= 0 } {
	return -code error -errorcode ARG "$TOOFEWDATA - raw data"
    }

    foreach cond $confidence {
	if { $cond <= 0.0 || $cond >= 1.0 } {
	    return -code error -errorcode ARG "$OUTOFRANGE - quantiles"
	}
    }

    #
    # Sort the data first
    #
    set sorted_data [lsort -real -increasing $data]

    #
    # Determine the list element lower or equal to the quantile
    # and return the corresponding value
    #
    set result      {}
    set number_data [llength $sorted_data]
    foreach cond $confidence {
	set elem [expr {round($number_data*$cond)-1}]
	if { $elem < 0 } {
	    set elem 0
	}
	lappend result [lindex $sorted_data $elem]
    }

    return $result
}

# QuantilesHistogram --
#    Return the quantiles based on histogram information only
#
# Arguments:
#    limits       Upper limits for histogram intervals
#    counts       Counts for each interval
#    confidence   Confidence level (0.95 or 0.99 for instance)
#
# Result:
#    List of quantiles
#
proc ::math::statistics::QuantilesHistogram { limits counts confidence } {
    variable TOOFEWDATA
    variable OUTOFRANGE

    if { [llength $confidence] <= 0 } {
	return -code error -errorcode ARG "$TOOFEWDATA - quantiles"
    }

    if { [llength $confidence] <= 0 } {
	return -code error -errorcode ARG "$TOOFEWDATA - histogram limits"
    }

    if { [llength $counts] <= [llength $limits] } {
	return -code error -errorcode ARG "$TOOFEWDATA - histogram counts"
    }

    foreach cond $confidence {
	if { $cond <= 0.0 || $cond >= 1.0 } {
	    return -code error -errorcode ARG "$OUTOFRANGE - quantiles"
	}
    }

    #
    # Accumulate the histogram counts first
    #
    set sum 0
    set accumulated_counts {}
    foreach count $counts {
	set sum [expr {$sum+$count}]
	lappend accumulated_counts $sum
    }
    set total_counts $sum

    #
    # Determine the list element lower or equal to the quantile
    # and return the corresponding value (use interpolation if
    # possible)
    #
    set result      {}
    foreach cond $confidence {
	set found       0
	set bound       [expr {round($total_counts*$cond)}]
	set lower_limit {}
	set lower_count 0
	foreach acc_count $accumulated_counts limit $limits {
	    if { $acc_count >= $bound } {
		set found 1
		break
	    }
	    set lower_limit $limit
	    set lower_count $acc_count
	}

	if { $lower_limit == {} || $limit == {} || $found == 0 } {
	    set quant $limit
	    if { $limit == {} } {
		set quant $lower_limit
	    }
	} else {
	    set quant [expr {$limit+($lower_limit-$limit) *
	    ($acc_count-$bound)/($acc_count-$lower_count)}]
	}
	lappend result $quant
    }

    return $result
}

# autocorr --
#    Return the autocorrelation function (assuming equidistance between
#    samples)
#
# Arguments:
#    data         Raw data for which the autocorrelation must be determined
#
# Result:
#    List of autocorrelation values (about 1/2 the number of raw data)
#
proc ::math::statistics::autocorr { data } {
    variable TOOFEWDATA

    if { [llength $data] <= 1 } {
	return -code error -errorcode ARG "$TOOFEWDATA"
    }

    return [crosscorr $data $data]
}

# crosscorr --
#    Return the cross-correlation function (assuming equidistance
#    between samples)
#
# Arguments:
#    data1        First set of raw data
#    data2        Second set of raw data
#
# Result:
#    List of cross-correlation values (about 1/2 the number of raw data)
#
# Note:
#    The number of data pairs is not kept constant - because tests
#    showed rather awkward results when it was kept constant.
#
proc ::math::statistics::crosscorr { data1 data2 } {
    variable TOOFEWDATA

    if { [llength $data1] <= 1 || [llength $data2] <= 1 } {
	return -code error -errorcode ARG "$TOOFEWDATA"
    }

    #
    # First determine the number of data pairs
    #
    set number1 [llength $data1]
    set number2 [llength $data2]

    set basic_stat1 [basic-stats $data1]
    set basic_stat2 [basic-stats $data2]
    set vmean1      [lindex $basic_stat1 0]
    set vmean2      [lindex $basic_stat2 0]
    set vvar1       [lindex $basic_stat1 end]
    set vvar2       [lindex $basic_stat2 end]

    set number_pairs $number1
    if { $number1 > $number2 } {
	set number_pairs $number2
    }
    set number_values $number_pairs
    set number_delays [expr {$number_values/2.0}]

    set scale [expr {sqrt($vvar1*$vvar2)}]

    set result {}
    for { set delay 0 } { $delay < $number_delays } { incr delay } {
	set sumcross 0.0
	set no_cross 0
	for { set idx 0 } { $idx < $number_values } { incr idx } {
	    set value1 [lindex $data1 $idx]
	    set value2 [lindex $data2 [expr {$idx+$delay}]]
	    if { $value1 != {} && $value2 != {} } {
		set  sumcross \
			[expr {$sumcross+($value1-$vmean1)*($value2-$vmean2)}]
		incr no_cross
	    }
	}
	lappend result [expr {$sumcross/($no_cross*$scale)}]

	incr number_values -1
    }

    return $result
}

# mean-histogram-limits
#    Determine reasonable limits based on mean and standard deviation
#    for a histogram
#
# Arguments:
#    mean         Mean of the data
#    stdev        Standard deviation
#    number       Number of limits to generate (defaults to 8)
#
# Result:
#    List of limits
#
proc ::math::statistics::mean-histogram-limits { mean stdev {number 8} } {
    variable NEGSTDEV

    if { $stdev <= 0.0 } {
	return -code error -errorcode ARG "$NEGSTDEV"
    }
    if { $number < 1 } {
	return -code error -errorcode ARG "Number of limits must be positive"
    }

    #
    # Always: between mean-3.0*stdev and mean+3.0*stdev
    # number = 2: -0.25, 0.25
    # number = 3: -0.25, 0, 0.25
    # number = 4: -1, -0.25, 0.25, 1
    # number = 5: -1, -0.25, 0, 0.25, 1
    # number = 6: -2, -1, -0.25, 0.25, 1, 2
    # number = 7: -2, -1, -0.25, 0, 0.25, 1, 2
    # number = 8: -3, -2, -1, -0.25, 0.25, 1, 2, 3
    #
    switch -- $number {
	"1" { set limits {0.0} }
	"2" { set limits {-0.25 0.25} }
	"3" { set limits {-0.25 0.0 0.25} }
	"4" { set limits {-1.0 -0.25 0.25 1.0} }
	"5" { set limits {-1.0 -0.25 0.0 0.25 1.0} }
	"6" { set limits {-2.0 -1.0 -0.25 0.25 1.0 2.0} }
	"7" { set limits {-2.0 -1.0 -0.25 0.0 0.25 1.0 2.0} }
	"8" { set limits {-3.0 -2.0 -1.0 -0.25 0.25 1.0 2.0 3.0} }
	"9" { set limits {-3.0 -2.0 -1.0 -0.25 0.0 0.25 1.0 2.0 3.0} }
	default {
	    set dlim [expr {6.0/double($number-1)}]
	    for {set i 0} {$i <$number} {incr i} {
		lappend limits [expr {$dlim*($i-($number-1)/2.0)}]
	    }
	}
    }

    set result {}
    foreach limit $limits {
	lappend result [expr {$mean+$limit*$stdev}]
    }

    return $result
}

# minmax-histogram-limits
#    Determine reasonable limits based on minimum and maximum bounds
#    for a histogram
#
# Arguments:
#    min          Estimated minimum
#    max          Estimated maximum
#    number       Number of limits to generate (defaults to 8)
#
# Result:
#    List of limits
#
proc ::math::statistics::minmax-histogram-limits { min max {number 8} } {
    variable NEGSTDEV

    if { $number < 1 } {
	return -code error -errorcode ARG "Number of limits must be positive"
    }
    if { $min >= $max } {
	return -code error -errorcode ARG "Minimum must be lower than maximum"
    }

    set result {}
    set dlim [expr {($max-$min)/double($number-1)}]
    for {set i 0} {$i <$number} {incr i} {
	lappend result [expr {$min+$dlim*$i}]
    }

    return $result
}

# linear-model
#    Determine the coefficients for a linear regression between
#    two series of data (the model: Y = A + B*X)
#
# Arguments:
#    xdata        Series of independent (X) data
#    ydata        Series of dependent (Y) data
#    intercept    Whether to use an intercept or not (optional)
#
# Result:
#    List of the following items:
#    - (Estimate of) Intercept A
#    - (Estimate of) Slope B
#    - Standard deviation of Y relative to fit
#    - Correlation coefficient R2
#    - Number of degrees of freedom df
#    - Standard error of the intercept A
#    - Significance level of A
#    - Standard error of the slope B
#    - Significance level of B
#
#
proc ::math::statistics::linear-model { xdata ydata {intercept 1} } {
   variable TOOFEWDATA

   if { [llength $xdata] < 3 } {
      return -code error -errorcode ARG "$TOOFEWDATA: not enough independent data"
   }
   if { [llength $ydata] < 3 } {
      return -code error -errorcode ARG "$TOOFEWDATA: not enough dependent data"
   }
   if { [llength $xdata] != [llength $ydata] } {
      return -code error -errorcode ARG "$TOOFEWDATA: number of dependent data differs from number of independent data"
   }

   set sumx  0.0
   set sumy  0.0
   set sumx2 0.0
   set sumy2 0.0
   set sumxy 0.0
   set df    0
   foreach x $xdata y $ydata {
      if { $x != "" && $y != "" } {
         set sumx  [expr {$sumx+$x}]
         set sumy  [expr {$sumy+$y}]
         set sumx2 [expr {$sumx2+$x*$x}]
         set sumy2 [expr {$sumy2+$y*$y}]
         set sumxy [expr {$sumxy+$x*$y}]
         incr df
      }
   }

   if { $df <= 2 } {
      return -code error -errorcode ARG "$TOOFEWDATA: too few valid data"
   }
   if { $sumx2 == 0.0 } {
      return -code error -errorcode ARG "$TOOFEWDATA: independent values are all the same"
   }

   #
   # Calculate the intermediate quantities
   #
   set sx  [expr {$sumx2-$sumx*$sumx/$df}]
   set sy  [expr {$sumy2-$sumy*$sumy/$df}]
   set sxy [expr {$sumxy-$sumx*$sumy/$df}]

   #
   # Calculate the coefficients
   #
   if { $intercept } {
      set B [expr {$sxy/$sx}]
      set A [expr {($sumy-$B*$sumx)/$df}]
   } else {
      set B [expr {$sumxy/$sumx2}]
      set A 0.0
   }

   #
   # Calculate the error estimates
   #
   set stdevY 0.0
   set varY   0.0

   if { $intercept } {
      set ve [expr {$sy-$B*$sxy}]
      if { $ve >= 0.0 } {
         set varY [expr {$ve/($df-2)}]
      }
   } else {
      set ve [expr {$sumy2-$B*$sumxy}]
      if { $ve >= 0.0 } {
         set varY [expr {$ve/($df-1)}]
      }
   }
   set seY [expr {sqrt($varY)}]

   if { $intercept } {
      set R2    [expr {$sxy*$sxy/($sx*$sy)}]
      set seA   [expr {$seY*sqrt(1.0/$df+$sumx*$sumx/($sx*$df*$df))}]
      set seB   [expr {sqrt($varY/$sx)}]
      set tA    {}
      set tB    {}
      if { $seA != 0.0 } {
         set tA    [expr {$A/$seA*sqrt($df-2)}]
      }
      if { $seB != 0.0 } {
         set tB    [expr {$B/$seB*sqrt($df-2)}]
      }
   } else {
      set R2    [expr {$sumxy*$sumxy/($sumx2*$sumy2)}]
      set seA   {}
      set tA    {}
      set tB    {}
      set seB   [expr {sqrt($varY/$sumx2)}]
      if { $seB != 0.0 } {
         set tB    [expr {$B/$seB*sqrt($df-1)}]
      }
   }

   #
   # Return the list of parameters
   #
   return [list $A $B $seY $R2 $df $seA $tA $seB $tB]
}

# linear-residuals
#    Determine the difference between actual data and predicted from
#    the linear model
#
# Arguments:
#    xdata        Series of independent (X) data
#    ydata        Series of dependent (Y) data
#    intercept    Whether to use an intercept or not (optional)
#
# Result:
#    List of differences
#
proc ::math::statistics::linear-residuals { xdata ydata {intercept 1} } {
   variable TOOFEWDATA

   if { [llength $xdata] < 3 } {
      return -code error -errorcode ARG "$TOOFEWDATA: no independent data"
   }
   if { [llength $ydata] < 3 } {
      return -code error -errorcode ARG "$TOOFEWDATA: no dependent data"
   }
   if { [llength $xdata] != [llength $ydata] } {
      return -code error -errorcode ARG "$TOOFEWDATA: number of dependent data differs from number of independent data"
   }

   foreach {A B} [linear-model $xdata $ydata $intercept] {break}

   set result {}
   foreach x $xdata y $ydata {
      set residue [expr {$y-$A-$B*$x}]
      lappend result $residue
   }
   return $result
}

# median
#    Determine the median from a list of data
#
# Arguments:
#    data         (Unsorted) list of data
#
# Result:
#    Median (either the middle value or the mean of two values in the
#    middle)
#
# Note:
#    Adapted from the Wiki page "Stats", code provided by JPS
#
proc ::math::statistics::median { data } {
    set org_data $data
    set data     {}
    foreach value $org_data {
        if { $value != {} } {
            lappend data $value
        }
    }
    set len [llength $data]

    set data [lsort -real $data]
    if { $len % 2 } {
        lindex $data [expr {($len-1)/2}]
    } else {
        expr {([lindex $data [expr {($len / 2) - 1}]] \
		+ [lindex $data [expr {$len / 2}]]) / 2.0}
    }
}

# test-2x2 --
#     Compute the chi-square statistic for a 2x2 table
#
# Arguments:
#     a           Element upper-left
#     b           Element upper-right
#     c           Element lower-left
#     d           Element lower-right
# Return value:
#     Chi-square
# Note:
#     There is only one degree of freedom - this is important
#     when comparing the value to the tabulated values
#     of chi-square
#
proc ::math::statistics::test-2x2 { a b c d } {
    set ab     [expr {$a+$b}]
    set ac     [expr {$a+$c}]
    set bd     [expr {$b+$d}]
    set cd     [expr {$c+$d}]
    set N      [expr {$a+$b+$c+$d}]
    set det    [expr {$a*$d-$b*$c}]
    set result [expr {double($N*$det*$det)/double($ab*$cd*$ac*$bd)}]
}

# print-2x2 --
#     Print a 2x2 table
#
# Arguments:
#     a           Element upper-left
#     b           Element upper-right
#     c           Element lower-left
#     d           Element lower-right
# Return value:
#     Printed version with marginals
#
proc ::math::statistics::print-2x2 { a b c d } {
    set ab     [expr {$a+$b}]
    set ac     [expr {$a+$c}]
    set bd     [expr {$b+$d}]
    set cd     [expr {$c+$d}]
    set N      [expr {$a+$b+$c+$d}]
    set chisq  [test-2x2 $a $b $c $d]

    set    line   [string repeat - 10]
    set    result [format "%10d%10d | %10d\n" $a $b $ab]
    append result [format "%10d%10d | %10d\n" $c $d $cd]
    append result [format "%10s%10s + %10s\n" $line $line $line]
    append result [format "%10d%10d | %10d\n" $ac $bd $N]
    append result "Chisquare = $chisq\n"
    append result "Difference is significant?\n"
    append result "   at 95%: [expr {$chisq<3.84146? "no":"yes"}]\n"
    append result "   at 99%: [expr {$chisq<6.63490? "no":"yes"}]"
}

# control-xbar --
#     Determine the control lines for an x-bar chart
#
# Arguments:
#     data        List of observed values (at least 20*nsamples)
#     nsamples    Number of data per subsamples (default: 4)
# Return value:
#     List of: mean, lower limit, upper limit, number of data per
#     subsample. Can be used in the test-xbar procedure
#
proc ::math::statistics::control-xbar { data {nsamples 4} } {
    variable TOOFEWDATA
    variable control_factors

    #
    # Check the number of data
    #
    if { $nsamples <= 1 } {
        return -code error -errorcode DATA -errorinfo $OUTOFRANGE \
            "Number of data per subsample must be at least 2"
    }
    if { [llength $data] < 20*$nsamples } {
        return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }

    set nogroups [expr {[llength $data]/$nsamples}]
    set mrange   0.0
    set xmeans   0.0
    for { set i 0 } { $i < $nogroups } { incr i } {
        set subsample [lrange $data [expr {$i*$nsamples}] [expr {$i*$nsamples+$nsamples-1}]]

        set xmean 0.0
        set xmin  [lindex $subsample 0]
        set xmax  $xmin
        foreach d $subsample {
            set xmean [expr {$xmean+$d}]
            set xmin  [expr {$xmin<$d? $xmin : $d}]
            set xmax  [expr {$xmax>$d? $xmax : $d}]
        }
        set xmean [expr {$xmean/double($nsamples)}]

        set xmeans [expr {$xmeans+$xmean}]
        set mrange [expr {$mrange+($xmax-$xmin)}]
    }

    #
    # Determine the control lines
    #
    set xmeans [expr {$xmeans/double($nogroups)}]
    set mrange [expr {$mrange/double($nogroups)}]
    set A2     [lindex [lindex $control_factors 1] $nsamples]
    if { $A2 == "" } { set A2 [lindex [lindex $control_factors 1] end] }

    return [list $xmeans [expr {$xmeans-$A2*$mrange}] \
                         [expr {$xmeans+$A2*$mrange}] $nsamples]
}

# test-xbar --
#     Determine if any data points lie outside the x-bar control limits
#
# Arguments:
#     control     List returned by control-xbar with control data
#     data        List of observed values
# Return value:
#     Indices of any subsamples that violate the control limits
#
proc ::math::statistics::test-xbar { control data } {
    foreach {xmean xlower xupper nsamples} $control {break}

    if { [llength $data] < 1 } {
        return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }

    set nogroups [expr {[llength $data]/$nsamples}]
    if { $nogroups <= 0 } {
        set nogroup  1
        set nsamples [llength $data]
    }

    set result {}

    for { set i 0 } { $i < $nogroups } { incr i } {
        set subsample [lrange $data [expr {$i*$nsamples}] [expr {$i*$nsamples+$nsamples-1}]]

        set xmean 0.0
        foreach d $subsample {
            set xmean [expr {$xmean+$d}]
        }
        set xmean [expr {$xmean/double($nsamples)}]

        if { $xmean < $xlower } { lappend result $i }
        if { $xmean > $xupper } { lappend result $i }
    }

    return $result
}

# control-Rchart --
#     Determine the control lines for an R chart
#
# Arguments:
#     data        List of observed values (at least 20*nsamples)
#     nsamples    Number of data per subsamples (default: 4)
# Return value:
#     List of: mean range, lower limit, upper limit, number of data per
#     subsample. Can be used in the test-Rchart procedure
#
proc ::math::statistics::control-Rchart { data {nsamples 4} } {
    variable TOOFEWDATA
    variable control_factors

    #
    # Check the number of data
    #
    if { $nsamples <= 1 } {
        return -code error -errorcode DATA -errorinfo $OUTOFRANGE \
            "Number of data per subsample must be at least 2"
    }
    if { [llength $data] < 20*$nsamples } {
        return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }

    set nogroups [expr {[llength $data]/$nsamples}]
    set mrange   0.0
    for { set i 0 } { $i < $nogroups } { incr i } {
        set subsample [lrange $data [expr {$i*$nsamples}] [expr {$i*$nsamples+$nsamples-1}]]

        set xmin  [lindex $subsample 0]
        set xmax  $xmin
        foreach d $subsample {
            set xmin  [expr {$xmin<$d? $xmin : $d}]
            set xmax  [expr {$xmax>$d? $xmax : $d}]
        }
        set mrange [expr {$mrange+($xmax-$xmin)}]
    }

    #
    # Determine the control lines
    #
    set mrange [expr {$mrange/double($nogroups)}]
    set D3     [lindex [lindex $control_factors 3] $nsamples]
    set D4     [lindex [lindex $control_factors 5] $nsamples]
    if { $D3 == "" } { set D3 [lindex [lindex $control_factors 3] end] }
    if { $D4 == "" } { set D4 [lindex [lindex $control_factors 5] end] }

    return [list $mrange [expr {$D3*$mrange}] \
                         [expr {$D4*$mrange}] $nsamples]
}

# test-Rchart --
#     Determine if any data points lie outside the R-chart control limits
#
# Arguments:
#     control     List returned by control-xbar with control data
#     data        List of observed values
# Return value:
#     Indices of any subsamples that violate the control limits
#
proc ::math::statistics::test-Rchart { control data } {
    foreach {rmean rlower rupper nsamples} $control {break}

    #
    # Check the number of data
    #
    if { [llength $data] < 1 } {
        return -code error -errorcode DATA -errorinfo $TOOFEWDATA $TOOFEWDATA
    }

    set nogroups [expr {[llength $data]/$nsamples}]

    set result {}
    for { set i 0 } { $i < $nogroups } { incr i } {
        set subsample [lrange $data [expr {$i*$nsamples}] [expr {$i*$nsamples+$nsamples-1}]]

        set xmin  [lindex $subsample 0]
        set xmax  $xmin
        foreach d $subsample {
            set xmin  [expr {$xmin<$d? $xmin : $d}]
            set xmax  [expr {$xmax>$d? $xmax : $d}]
        }
        set range [expr {$xmax-$xmin}]

        if { $range < $rlower } { lappend result $i }
        if { $range > $rupper } { lappend result $i }
    }

    return $result
}



#
# Load the auxiliary scripts
#
source [file join [file dirname [info script]] pdf_stat.tcl]
source [file join [file dirname [info script]] plotstat.tcl]
source [file join [file dirname [info script]] liststat.tcl]
source [file join [file dirname [info script]] mvlinreg.tcl]

#
# Define the tables
#
namespace eval ::math::statistics {
    variable student_t_table

    #   set student_t_table [::math::interpolation::defineTable student_t
    #          {X        80%    90%    95%    98%    99%}
    #          {X      0.80   0.90   0.95   0.98   0.99
    #           1      3.078  6.314 12.706 31.821 63.657
    #           2      1.886  2.920  4.303  6.965  9.925
    #           3      1.638  2.353  3.182  4.541  5.841
    #           5      1.476  2.015  2.571  3.365  4.032
    #          10      1.372  1.812  2.228  2.764  3.169
    #          15      1.341  1.753  2.131  2.602  2.947
    #          20      1.325  1.725  2.086  2.528  2.845
    #          30      1.310  1.697  2.042  2.457  2.750
    #          60      1.296  1.671  2.000  2.390  2.660
    #         1.0e9    1.282  1.645  1.960  2.326  2.576 }]

    # PM
    #set chi_squared_table [::math::interpolation::defineTable chi_square
    #   ...
}

#
# Simple test code
#
if { [info exists ::argv0] && ([file tail [info script]] == [file tail $::argv0]) } {

    console show
    puts [interp aliases]

    set values {1 1 1 1 {}}
    puts [::math::statistics::basic-stats $values]
    set values {1 2 3 4}
    puts [::math::statistics::basic-stats $values]
    set values {1 -1 1 -2}
    puts [::math::statistics::basic-stats $values]
    puts [::math::statistics::mean   $values]
    puts [::math::statistics::min    $values]
    puts [::math::statistics::max    $values]
    puts [::math::statistics::number $values]
    puts [::math::statistics::stdev  $values]
    puts [::math::statistics::var    $values]

    set novals 100
    #set maxvals 100001
    set maxvals 1001
    while { $novals < $maxvals } {
	set values {}
	for { set i 0 } { $i < $novals } { incr i } {
	    lappend values [expr {rand()}]
	}
	puts [::math::statistics::basic-stats $values]
	puts [::math::statistics::histogram {0.0 0.2 0.4 0.6 0.8 1.0} $values]
	set novals [expr {$novals*10}]
    }

    puts "Normal distribution:"
    puts "X=0:  [::math::statistics::pdf-normal 0.0 1.0 0.0]"
    puts "X=1:  [::math::statistics::pdf-normal 0.0 1.0 1.0]"
    puts "X=-1: [::math::statistics::pdf-normal 0.0 1.0 -1.0]"

    set data1 {0.0 1.0 3.0 4.0 100.0 -23.0}
    set data2 {1.0 2.0 4.0 5.0 101.0 -22.0}
    set data3 {0.0 2.0 6.0 8.0 200.0 -46.0}
    set data4 {2.0 6.0 8.0 200.0 -46.0 1.0}
    set data5 {100.0 99.0 90.0 93.0 5.0 123.0}
    puts "Correlation data1 and data1: [::math::statistics::corr $data1 $data1]"
    puts "Correlation data1 and data2: [::math::statistics::corr $data1 $data2]"
    puts "Correlation data1 and data3: [::math::statistics::corr $data1 $data3]"
    puts "Correlation data1 and data4: [::math::statistics::corr $data1 $data4]"
    puts "Correlation data1 and data5: [::math::statistics::corr $data1 $data5]"

    #   set data {1.0 2.0 2.3 4.0 3.4 1.2 0.6 5.6}
    #   puts [::math::statistics::basicStats $data]
    #   puts [::math::statistics::interval-mean-stdev $data 0.90]
    #   puts [::math::statistics::interval-mean-stdev $data 0.95]
    #   puts [::math::statistics::interval-mean-stdev $data 0.99]

    #   puts "\nTest mean values:"
    #   puts [::math::statistics::test-mean $data 2.0 0.1 0.90]
    #   puts [::math::statistics::test-mean $data 2.0 0.5 0.90]
    #   puts [::math::statistics::test-mean $data 2.0 1.0 0.90]
    #   puts [::math::statistics::test-mean $data 2.0 2.0 0.90]

    set rc [catch {
	set m [::math::statistics::mean {}]
    } msg ] ; # {}
    puts "Result: $rc $msg"

    puts "\nTest quantiles:"
    set data      {1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0}
    set quantiles {0.11 0.21 0.51 0.91 0.99}
    set limits    {2.1 4.1 6.1 8.1}
    puts [::math::statistics::quantiles $data $quantiles]

    set histogram [::math::statistics::histogram $limits $data]
    puts [::math::statistics::quantiles $limits $histogram $quantiles]

    puts "\nTest autocorrelation:"
    set data      {1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0}
    puts [::math::statistics::autocorr $data]
    set data      {1.0 -1.1 2.0 -0.6 3.0 -4.0 0.5 0.9 -1.0}
    puts [::math::statistics::autocorr $data]

    puts "\nTest histogram limits:"
    puts [::math::statistics::mean-histogram-limits   1.0 1.0]
    puts [::math::statistics::mean-histogram-limits   1.0 1.0 4]
    puts [::math::statistics::minmax-histogram-limits 1.0 10.0 10]

}

#
# Test xbar/R-chart procedures
#
if { 0 } {
    set data {}
    for { set i 0 } { $i < 500 } { incr i } {
        lappend data [expr {rand()}]
    }
    set limits [::math::statistics::control-xbar $data]
    puts $limits

    puts "Outliers? [::math::statistics::test-xbar $limits $data]"

    set newdata {1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 10.0 10.0 10.0 10.0}
    puts "Outliers? [::math::statistics::test-xbar $limits $newdata] -- 0 2"

    set limits [::math::statistics::control-Rchart $data]
    puts $limits

    puts "Outliers? [::math::statistics::test-Rchart $limits $data]"

    set newdata {0.0 1.0 2.0 1.0 0.4 0.5 0.6 0.5 10.0  0.0 10.0 10.0}
    puts "Outliers? [::math::statistics::test-Rchart $limits $newdata] -- 0 2"
}