1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
|
# -*- tcl -*-
# Grammar / FA / Operations
# ### ### ### ######### ######### #########
## Package description
# ### ### ### ######### ######### #########
## Requisites
package require struct::list ; # Extended list operations.
package require struct::set ; # Extended set operations.
# ### ### ### ######### ######### #########
## Implementation
namespace eval ::grammar::fa::op {
# ### ### ### ######### ######### #########
## API. Structure / Language / Compilation
proc reverse {fa} {}
proc complete {fa {sink {}}} {}
proc remove_eps {fa} {}
proc trim {fa {what !reachable|!useful}} {}
proc determinize {fa {mapvar {}} {idstart 0}} {}
proc minimize {fa {mapvar {}}} {}
proc complement {fa} {}
proc kleene {fa} {}
proc optional {fa} {}
proc union {fa fb {mapvar {}}} {}
proc intersect {fa fb {mapvar {}} {idstart 0}} {}
proc difference {fa fb {mapvar {}}} {}
proc concatenate {fa fb {mapvar {}}} {}
proc fromRegex {fa regex {over {}}} {}
proc toRegexp {fa} {}
proc toRegexp2 {fa} {}
proc simplifyRegexp {rex} {}
proc toTclRegexp {rex symdict} {}
# ### ### ### ######### ######### #########
namespace export reverse complete remove_eps trim \
determinize minimize complement kleene \
optional union intersect difference \
concatenate fromRegex toRegexp toRegexp2 \
simplifyRegexp toTclRegexp
# ### ### ### ######### ######### #########
## Internal data structures.
variable cons {}
# ### ### ### ######### ######### #########
}
# ### ### ### ######### ######### #########
## API implementation. Structure
proc ::grammar::fa::op::reverse {fa} {
# Reversal means that all transitions change their direction
# and start and final states are swapped.
# Note that reversed FA might not be deterministic, even if the FA
# itself was.
# One loop is not enough for this. If we reverse the
# transitions for a state immediately we may modify a state
# which has not been processed yet. And when we come to this
# state we reverse already reversed transitions, creating a
# complete mess. Thus two loops, one to collect the current
# transitions (and also remove them), and a second to insert
# the reversed transitions.
set tmp [$fa finalstates]
$fa final set [$fa startstates]
$fa start set $tmp
# FUTURE : Method to retrieve all transitions
# FUTURE : Method to delete all transitions
set trans {}
foreach s [$fa states] {
foreach sym [$fa symbols@ $s] {
lappend trans $s $sym [$fa next $s $sym]
$fa !next $s $sym
}
}
foreach {s sym destinations} $trans {
foreach d $destinations {
$fa next $d $sym --> $s
}
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::complete {fa {sink {}}} {
if {[$fa is complete]} return
# We have an incomplete FA.
if {$sink eq ""} {
set sink [FindNewState $fa sink]
} elseif {[$fa state exists $sink]} {
return -code error "The chosen sink state exists already"
}
$fa state add $sink
# Add transitions to it from all states which are not
# complete. The sink state itself loops on all inputs. IOW it is a
# non-useful state.
set symbols [$fa symbols]
foreach sym $symbols {
$fa next $sink $sym --> $sink
}
if {[$fa is epsilon-free]} {
foreach s [$fa states] {
foreach missing [struct::set difference \
$symbols \
[$fa symbols@ $s]] {
$fa next $s $missing --> $sink
}
}
} else {
# For an FA with epsilon-transitions we cannot simply look at
# the direct transitions to find the used symbols. We have to
# determine this for the epsilon-closure of the state in
# question. Oh, and we have to defer actually adding the
# transitions after we have picked them all, or otherwise the
# newly added transitions throw the symbol calculations for
# epsilon closures off.
set new {}
foreach s [$fa states] {
foreach missing [struct::set difference \
$symbols \
[$fa symbols@set [$fa epsilon_closure $s]]] {
lappend new $s $missing
}
}
foreach {s missing} $new {
$fa next $s $missing --> $sink
}
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::remove_eps {fa} {
# We eliminate all epsilon transitions by duplicating a number
# of regular transitions, which we get through the epsilon
# closure of the states having epsilon transitions. We do
# nothing if the FA is epsilon free to begin with.
if {[$fa is epsilon-free]} return
# Note: Epsilon transitions touching start and final states
# propagate the start markers forward and final markers
# backward. We do this first by propagating start markers twice,
# once with a reversed FA. This also gives us some
# epsilon-closures as well.
foreach n {1 2} {
foreach s [$fa startstates] {
foreach e [$fa epsilon_closure $s] {
$fa start add $e
}
}
reverse $fa
}
# Now duplicate all transitions which are followed or preceeded by
# epsilon transitions of any number greater than zero.
# Note: The closure computations done by the FA are cached in the
# FA, so doing it multiple times is no big penalty.
# FUTURE : Retrieve all transitions on one command.
# FUTURE : Different algorithm ...
# Retrieve non-eps transitions for all states ...
# Iterate this list. Compute e-closures for endpoints, cache
# them. Duplicate the transition if needed, in that case add it to
# the end of the list, for possible more duplication (may touch
# different e-closures). Stop when the list is empty again.
set changed 1
while {$changed} {
set changed 0
foreach s [$fa states] {
foreach sym [$fa symbols@ $s] {
set dest [$fa next $s $sym]
if {$sym eq ""} {
# Epsilon transitions.
# Get the closure, and duplicate all transitions for all
# non-empty symbols as transitions of the original state.
# This may lead to parallel transitions between states, hence
# the catch. It prevents the generated error from stopping the
# action, and no actual parallel transitions are created.
set clos [$fa epsilon_closure $s]
foreach csym [$fa symbols@set $clos] {
if {$csym eq ""} continue
foreach d [$fa nextset $clos $csym] {
if {![catch {$fa next $s $csym --> $d} msg]} {
set changed 1
}
}
}
} else {
# Regular transition. Go through all destination
# states, compute their closures and replicate the
# transition if the closure contains more than the
# destination itself, to all states in the closure.
foreach d $dest {
set clos [$fa epsilon_closure $d]
if {[llength $clos] > 1} {
foreach e $clos {
if {![catch {$fa next $s $sym --> $e}]} {
set changed 1
}
}
}
}
}
}
}
}
# At last, drop the epsilons for all states. Only now is this
# possible because otherwise we might compute bad epsilon
# closures in the previous loop.
foreach s [$fa states] {
$fa !next $s ""
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::trim {fa {what !reachable|!useful}} {
# Remove various unwanted pices from the FA.
switch -exact -- $what {
!reachable {
set remove [$fa unreachable_states]
}
!useful {
set remove [$fa unuseful_states]
}
!reachable&!useful -
!(reachable|useful) {
set remove [struct::set intersect [$fa unreachable_states] [$fa unuseful_states]]
}
!reachable|!useful -
!(reachable&useful) {
set remove [struct::set union [$fa unreachable_states] [$fa unuseful_states]]
}
default {
return -code error "Expected !reachable, !useful, !reachable&!useful, !(reachable|useful), !reachable|!useful, or !(reachable&useful), got \"$what\""
}
}
foreach s $remove {
$fa state delete $s
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::determinize {fa {mapvar {}} {idstart 0}} {
# We do the operation in several stages instead of jumping
# directly in the subset construction. Basically we try the less
# expensive operations first to see if they are enough. It does
# help that they will us also bring nearer to the ultimate goal
# even if they are not enough.
set hasmap 0
if {$mapvar ne ""} {
upvar 1 $mapvar map ; set hasmap 1
}
# First, is the input already deterministic ?
# There is nothing to do in that case.
if {[$fa is deterministic]} {
if {$hasmap} {set map {}}
return
}
# Second, trim unreachable and unuseables. We are done if only
# they carried the non-determinism. Otherwise we might have made
# the FA smaller and was less time consuming to convert.
if {[llength [$fa startstates]]} {trim $fa !reachable}
if {[llength [$fa finalstates]]} {trim $fa !useful}
if {[$fa is deterministic]} {
if {$hasmap} {set map {}}
return
}
# Third, remove any epsilon transitions, and stop if that was
# enough. Of course, weed out again states which have become
# irrelevant. The removal of the epsilons will at least ensure
# that the subset construction won't have to deal with
# closures. I.e. simpler.
remove_eps $fa
if {[llength [$fa startstates]]} {trim $fa !reachable}
if {[llength [$fa finalstates]]} {trim $fa !useful}
if {[$fa is deterministic]} {
if {$hasmap} {set map {}}
return
}
# Fourth. There is no way to avoid the subset construction.
# Dive in. This is the only part of the algorithm which requires
# us to keep a map. We construct the dfa in a transient container
# and copy the result back to fa when completed.
array set subsets {}
set id $idstart
set pending {}
set dfa [[cons] %AUTO%]
# FUTURE : $dfa symbol set [$fa symbols]
foreach sym [$fa symbols] {$dfa symbol add $sym}
# If we have start states we can initialize the algorithm with
# their set. Otherwise we have to the single-element sets of all
# states as the beginning.
set starts [$fa startstates]
if {[llength $starts] > 0} {
# Make the set of start states the initial stae of the result.
set starts [lsort $starts] ; # Sort to get canonical form.
$dfa state add $id
$dfa start add $id
# The start may also be a final state
if {[$fa final?set $starts]} {
$dfa final add $id
}
set subsets(dfa,$starts) $id
set subsets(nfa,$id) $starts
lappend pending $id
incr id
} else {
# Convert all states of the input into sets (of one element)
# in the output. Do not forget to mark all final states we
# come by. No start states, otherwise we wouldn't be here.
foreach s [$fa states] {
set nfaset [list $s]
$dfa state add $id
if {[$fa final? $s]} {
$dfa final add $id
}
set subsets(dfa,$nfaset) $id
set subsets(nfa,$id) $nfaset
lappend pending $id
incr id
}
}
while {[llength $pending]} {
set dfastate [struct::list shift pending]
# We have to compute the transition function for this dfa state.
set nfaset $subsets(nfa,$dfastate)
foreach sym [$fa symbols@set $nfaset] {
set nfanext [lsort [$fa nextset $nfaset $sym]]
if {![info exists subsets(dfa,$nfanext)]} {
# Unknown destination. Add it as a new state.
$dfa state add $id
if {[$fa final?set $nfanext]} {
$dfa final add $id
}
set subsets(dfa,$nfanext) $id
set subsets(nfa,$id) $nfanext
# Schedule the calculation of the transition function
# of the new state.
lappend pending $id
incr id
}
# Add the transition
$dfa next $dfastate $sym --> $subsets(dfa,$nfanext)
}
}
if {[llength [$fa startstates]]} {trim $fa !reachable}
if {[llength [$fa finalstates]]} {trim $fa !useful}
if {$hasmap} {
# The map is from new dfa states to the sets of nfa states.
set map {}
foreach s [$dfa states] {
lappend map $s $subsets(nfa,$s)
}
}
$fa = $dfa
$dfa destroy
# ASSERT : $fa is deterministic
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::minimize {fa {mapvar {}}} {
# Brzozowski's method:
# Reverse, determinize, reverse again, determinize again.
reverse $fa
determinize $fa mapa
reverse $fa
determinize $fa mapb
if {$mapvar ne ""} {
upvar 1 $mapvar map
if {![llength $mapa] && ![llength $mapb]} {
# No state reorganizations, signal up
set map {}
} elseif {[llength $mapa] && ![llength $mapb]} {
# Only one reorg, this is the combined reorg as well.
set map $mapa
} elseif {![llength $mapa] && [llength $mapb]} {
# Only one reorg, this is the combined reorg as well.
set map $mapb
} else {
# Two reorgs. Compose the maps into the final map signaled
# up.
# mapb : final state -> set of states in mapa -> sets of original states.
set map {}
array set tmp $mapa
foreach {b aset} $mapb {
set compose {}
foreach a $aset {foreach o $tmp($a) {lappend compose $o}}
lappend map $b [lsort -uniq $compose]
}
}
}
# The FA is implicitly trimmed by the determinize's.
return
}
# ### ### ### ######### ######### #########
## API implementation. Language.
proc ::grammar::fa::op::complement {fa} {
# Complementing is possible if and only if the FA is complete,
# and accomplished by swapping the final and non-final states.
if {![$fa is complete]} {
return -code error "Unable to complement incomplete FA"
}
if {![$fa is deterministic]} {
return -code error "Unable to complement non-deterministic FA"
}
set newfinal [struct::set difference [$fa states] [$fa finalstates]]
$fa final set $newfinal
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::kleene {fa} {
# The Kleene Closure of the FA makes no sense if we don't have
# start and final states we can work from.
set start [$fa startstates]
set final [$fa finalstates]
if {![llength $start] || ![llength $final]} {
return -code error "Unable to add Kleene's closure to a FA without start/final states"
}
# FUTURE :: If final states have no outgoing transitions, and start
# FUTURE :: states have no input transitions, then place the new
# FUTURE :: transitions directly between start and final
# FUTURE :: states. In that case we don't need new states.
# We need new start/final states, like for optional (see below)
set ns [NewState $fa s]
set nf [NewState $fa f]
foreach s $start {$fa next $ns "" --> $s}
foreach f $final {$fa next $f "" --> $nf}
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
$fa next $ns "" --> $nf ; # Optionality
$fa next $nf "" --> $ns ; # Loop for closure
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::optional {fa} {
# The Optionality of the FA makes no sense if we don't have
# start and final states we can work from.
set start [$fa startstates]
set final [$fa finalstates]
if {![llength $start] || ![llength $final]} {
return -code error "Unable to make a FA without start/final states optional"
}
# We have to introduce new start and final states to ensure
# that we do not get additional recognized words from the FA
# due to epsilon transitions. IOW just placing epsilons from
# all start to all final states is wrong. Consider unreachable
# final states, they become reachable. Or final states able to
# reach final states from. Again the epsilons would extend the
# language. We have to detach our optional epsilon from anything
# in the existing start/final states. Hence the new start/final.
# FUTURE : Recognize if there are no problems with placing direct
# FUTURE : epsilons from start to final.
set ns [NewState $fa s]
set nf [NewState $fa f]
foreach s $start {$fa next $ns "" --> $s}
foreach f $final {$fa next $f "" --> $nf}
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
$fa next $ns "" --> $nf ; # This is the transition which creates the optionality.
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::union {fa fb {mapvar {}}} {
# We union the input symbols, then add the states and
# transitions of the second FA to the first, adding in
# epsilons for the start and final states as well. When
# adding states we make sure that the new states do not
# intersect with the existing states.
struct::list assign \
[MergePrepare $fa $fb union smap] \
astart afinal bstart bfinal
if {$mapvar ne ""} {
upvar 1 $mapvar map
set map $smap
}
# And now the new start & final states
set ns [NewState $fa s]
set nf [NewState $fa f]
eLink1N $fa $ns $astart
eLink1N $fa $ns $bstart
eLinkN1 $fa $afinal $nf
eLinkN1 $fa $bfinal $nf
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::intersect {fa fb {mapvar {}} {idstart 0}} {
# Intersection has to run the two automata in parallel, using
# paired states. If we have start states we begin the
# construction with them. This leads to a smaller result as we
# do not have create a full cross-crossproduct. The latter is
# unfortunately required if there are no start states.
struct::list assign [CrossPrepare $fa $fb intersection] tmp res
# The start states of the new FA consist of the cross-product of
# the start states of fa with fb. These are also the states used
# to seed DoCross.
set id $idstart
set smap {}
set bstart [$tmp startstates]
foreach a [$fa startstates] {
foreach b $bstart {
set pair [list $a $b]
lappend smap $id $pair
lappend pending $pair $id
$res state add $id
$res start add $id
incr id
}
}
set cp [DoCross $fa $tmp $res $id $pending smap]
foreach {id pair} $smap {
struct::list assign $pair a b
if {[$fa final? $a] && [$tmp final? $b]} {
$res final add $id
}
}
# Remove excess states (generated because of the sinks).
trim $res
if {$mapvar ne ""} {
upvar 1 $mapvar map
# The loop is required to filter out the mappings for all
# states which were trimmed off.
set map {}
foreach {id pair} $smap {
if {![$res state exists $id]} continue
lappend map $id $pair
}
}
# Copy result into permanent storage and delete all intermediaries
$fa = $res
$res destroy
if {$tmp ne $fb} {$tmp destroy}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::difference {fa fb {mapvar {}}} {
# Difference has to run the two automata in parallel, using
# paired states. Only the final states are defined differently
# than for intersection. It has to be final in fa and _not_ final
# in fb to be a final state of the result. <=> Accepted by A, but
# not B, to be in the difference.
struct::list assign [CrossPrepare $fa $fb difference] tmp res
# The start states of the new FA consist of the cross-product of
# the start states of fa with fb. These are also the states used
# to seed DoCross.
set id 0
set smap {}
set bstart [$tmp startstates]
foreach a [$fa startstates] {
foreach b $bstart {
set pair [list $a $b]
lappend smap $id $pair
lappend pending $pair $id
$res state add $id
$res start add $id
incr id
}
}
set cp [DoCross $fa $tmp $res $id $pending smap]
foreach {id pair} $smap {
struct::list assign $pair a b
if {[$fa final? $a] && ![$tmp final? $b]} {
$res final add $id
}
}
# Remove excess states (generated because of the sinks).
trim $res
if {$mapvar ne ""} {
upvar 1 $mapvar map
# The loop is required to filter out the mappings for all
# states which were trimmed off.
set map {}
foreach {id pair} $smap {
if {![$res state exists $id]} continue
lappend map $id $pair
}
}
# Copy result into permanent storage and delete all intermediaries
$fa = $res
$res destroy
if {$tmp ne $fb} {$tmp destroy}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::concatenate {fa fb {mapvar {}}} {
# Like union, only the interconnect between existing and new FA is different.
struct::list assign \
[MergePrepare $fa $fb concatenate smap] \
astart afinal bstart bfinal
if {$mapvar ne ""} {
upvar 1 $mapvar map
set map $smap
}
set ns [NewState $fa s]
set nm [NewState $fa m] ;# Midpoint.
set nf [NewState $fa f]
eLink1N $fa $ns $astart
eLinkN1 $fa $afinal $nm
eLink1N $fa $nm $bstart
eLinkN1 $fa $bfinal $nf
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
return
}
# ### ### ### ######### ######### #########
## API implementation. Compilation (regexp -> FA).
proc ::grammar::fa::op::fromRegex {fa regex {over {}}} {
# Convert a regular expression into a FA. The regex is given as
# parse tree in the form of a nested list.
# {. A B ...} ... Concatenation (accepts zero|one arguments).
# {| A B ...} ... Alternatives (accepts zero|one arguments).
# {? A} ... Optional.
# {* A} ... Kleene.
# {+ A} ... Pos.Kleene.
# {! A} ... Complement/Negation.
# {S Symbol} ... Atom, Symbol
#
# Recursive descent with a helper ...
if {![llength $regex]} {
$fa clear
return
}
set tmp [[cons] %AUTO%]
if {![llength $over]} {
set over [lsort -uniq [RESymbols $regex]]
}
foreach sym $over {
$tmp symbol add $sym
}
set id 0
struct::list assign [Regex $tmp $regex id] s f
$tmp start set [list $s]
$tmp final set [list $f]
$fa = $tmp
$tmp destroy
return
}
# ### ### ### ######### ######### #########
## Internal helpers.
proc ::grammar::fa::op::RESymbols {regex} {
set cmd [lindex $regex 0]
switch -exact -- $cmd {
? - * - ! - + {
return [RESymbols [lindex $regex 1]]
}
. - | - & {
set res {}
foreach sub [lrange $regex 1 end] {
foreach sym [RESymbols $sub] {lappend res $sym}
}
return $res
}
S {
return [list [lindex $regex 1]]
}
default {
return -code error "Expected . ! ? * | &, or S, got \"$cmd\""
}
}
}
proc ::grammar::fa::op::Regex {fa regex idvar} {
upvar 1 $idvar id
set cmd [lindex $regex 0]
switch -exact -- $cmd {
? {
# Optional
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
struct::list assign [Regex $fa [lindex $regex 1] id] s f
$fa next $a "" --> $s
$fa next $f "" --> $b
$fa next $a "" --> $b
}
* {
# Kleene
set a $id ; incr id ; $fa state add $a
set b $a
struct::list assign [Regex $fa [lindex $regex 1] id] s f
$fa next $a "" --> $s
$fa next $f "" --> $a ;# == b
}
+ {
# Pos. Kleene
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
struct::list assign [Regex $fa [lindex $regex 1] id] s f
$fa next $a "" --> $s
$fa next $f "" --> $b
$fa next $b "" --> $a
}
! {
# Complement.
# Build up in a temp FA, complement, and
# merge nack into the current
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
set tmp [[cons] %AUTO%]
foreach sym [$fa symbols] {$tmp symbol add $sym}
struct::list assign [Regex $tmp [lindex $regex 1] id] s f
$tmp start add $s
$tmp final add $f
determinize $tmp {} $id
incr id [llength [$tmp states]]
if {![$tmp is complete]} {
complete $tmp $id
incr id
}
complement $tmp
# Merge and link.
$fa deserialize_merge [$tmp serialize]
eLink1N $fa $a [$tmp startstates]
eLinkN1 $fa [$tmp finalstates] $b
$tmp destroy
}
& {
# Intersection ... /And
if {[llength $regex] < 3} {
# Optimized path. Intersection of one sub-expression
# is the sub-expression itself.
struct::list assign [Regex $fa [lindex $regex 1] id] a b
} else {
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
set tmp [[cons] %AUTO%]
foreach sym [$fa symbols] {$tmp symbol add $sym}
set idsub 0
struct::list assign [Regex $tmp [lindex $regex 1] idsub] s f
$tmp start add $s
$tmp final add $f
set beta [[cons] %AUTO%]
foreach sub [lrange $regex 2 end] {
foreach sym [$fa symbols] {$beta symbol add $sym}
struct::list assign [Regex $beta $sub idsub] s f
$beta start add $s
$beta final add $f
intersect $tmp $beta {} $id
}
$beta destroy
determinize $tmp {} $id
incr id [llength [$tmp states]]
# Merge and link.
$fa deserialize_merge [$tmp serialize]
eLink1N $fa $a [$tmp startstates]
eLinkN1 $fa [$tmp finalstates] $b
$tmp destroy
}
}
. {
# Concatenation ...
if {[llength $regex] == 1} {
# Optimized path. No sub-expressions. This represents
# language containing only the empty string, aka
# epsilon.
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
$fa next $a "" --> $b
} elseif {[llength $regex] == 2} {
# Optimized path. Concatenation of one sub-expression
# is the sub-expression itself.
struct::list assign [Regex $fa [lindex $regex 1] id] a b
} else {
set first 1
set last {}
foreach sub [lrange $regex 1 end] {
struct::list assign [Regex $fa $sub id] s f
if {$first} {set first 0 ; set a $s}
if {$last != {}} {
$fa next $last "" --> $s
}
set last $f
}
set b $f
}
}
| {
# Alternatives ... (Union)
if {[llength $regex] == 1} {
# Optimized path. No sub-expressions. This represents
# the empty language, i.e. the language without words.
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
} elseif {[llength $regex] == 2} {
# Optimized path. Choice/Union of one sub-expression
# is the sub-expression itself.
struct::list assign [Regex $fa [lindex $regex 1] id] a b
} else {
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
foreach sub [lrange $regex 1 end] {
struct::list assign [Regex $fa $sub id] s f
$fa next $a "" --> $s
$fa next $f "" --> $b
}
}
}
S {
# Atom, base transition.
set sym [lindex $regex 1]
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
$fa next $a $sym --> $b
}
default {
return -code error "Expected . ! ? * | &, or S, got \"$cmd\""
}
}
return [list $a $b]
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::CrossPrepare {fa fb label} {
set starta [$fa startstates]
set finala [$fa finalstates]
set startb [$fb startstates]
set finalb [$fb finalstates]
if {
![llength $starta] || ![llength $finala] ||
![llength $startb] || ![llength $finalb]
} {
return -code error "Unable to perform the $label of two FAs without start/final states"
}
# The inputs are made complete over the union of their symbol
# sets. A temp. container is used for the second input if necessary.
set totals [struct::set union [$fa symbols] [$fb symbols]]
foreach sym [struct::set difference $totals [$fa symbols]] {
$fa symbol add $sym
}
if {![$fa is epsilon-free]} {
remove_eps $fa
trim $fa
}
if {![$fa is complete]} {
complete $fa
}
set tmp $fb
set bnew [struct::set difference $totals [$fb symbols]]
if {[llength $bnew]} {
set tmp [[cons] %AUTO% = $fb]
foreach sym $bnew {
$tmp symbol add $sym
}
}
if {![$fb is epsilon-free]} {
if {$tmp eq $fb} {set tmp [[cons] %AUTO% = $fb]}
remove_eps $tmp
trim $tmp
}
if {![$fb is complete]} {
if {$tmp eq $fb} {set tmp [[cons] %AUTO% = $fb]}
complete $tmp
}
set res [[cons] %AUTO%]
foreach sym $totals {
$res symbol add $sym
}
return [list $tmp $res]
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::DoCross {fa fb res id seed smapvar} {
upvar 1 $smapvar smap
set symbols [$fa symbols]
array set tmp $seed
set pending $seed
while {[llength $pending]} {
set cpair [struct::list shift pending]
set cid [struct::list shift pending]
struct::list assign $cpair a b
# ASSERT: /res state exists /cid
# Generate the transitions for the pair, add the resulting
# destinations to the FA, and schedule them for a visit if
# they are new.
foreach sym $symbols {
set adestinations [$fa next $a $sym]
set bdestinations [$fb next $b $sym]
foreach ad $adestinations {
foreach bd $bdestinations {
set dest [list $ad $bd]
if {![info exists tmp($dest)]} {
$res state add $id
lappend smap $id $dest
lappend pending $dest $id
set tmp($dest) $id
incr id
}
$res next $cid $sym --> $tmp($dest)
}
}
}
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::MergePrepare {fa fb label mapvar} {
upvar 1 $mapvar map
set starta [$fa startstates]
set finala [$fa finalstates]
set startb [$fb startstates]
set finalb [$fb finalstates]
if {
![llength $starta] || ![llength $finala] ||
![llength $startb] || ![llength $finalb]
} {
return -code error "Unable to $label FAs without start/final states"
}
# FUTURE: add {*}[symbols], ignore dup's
foreach sym [$fb symbols] {catch {$fa symbol add $sym}}
set dup [struct::set intersect [$fa states] [$fb states]]
if {![llength $dup]} {
# The states do not overlap. A plain merge of fb is enough to
# copy the information.
$fa deserialize_merge [$fb serialize]
set map {}
} else {
# We have duplicate states, therefore we have to remap fb to
# prevent interference between the two.
set map {}
set tmp [[cons] %AUTO% = $fb]
set id 0
foreach s $dup {
# The renaming process has to ensure that the new name is
# in neither fa, nor already in fb as well.
while {
[$fa state exists $id] ||
[$tmp state exists $id]
} {incr id}
$tmp state rename $s $id
lappend map $id $s
incr id
}
set startb [$tmp startstates]
set finalb [$tmp finalstates]
$fa deserialize_merge [$tmp serialize]
$tmp destroy
}
return [list $starta $finala $startb $finalb]
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::eLink1N {fa from states} {
foreach s $states {
$fa next $from "" --> $s
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::eLinkN1 {fa states to} {
foreach s $states {
$fa next $s "" --> $to
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::NewState {fa prefix} {
set newstate [FindNewState $fa $prefix]
$fa state add $newstate
return $newstate
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::FindNewState {fa prefix} {
#if {![$fa state exists $prefix]} {return $prefix}
set n 0
while {[$fa state exists ${prefix}.$n]} {incr n}
return ${prefix}.$n
}
# ### ### ### ######### ######### #########
## API implementation. Decompilation (FA -> regexp).
proc ::grammar::fa::op::toRegexp {fa} {
# NOTE: FUTURE - Do not go through the serialization, nor through
# a matrix. The algorithm can be expressed more directly as
# operations on the automaton (states and transitions).
set ET [ser_to_ematrix [$fa serialize]]
while {[llength $ET] > 2} {
set ET [matrix_drop_state $ET]
}
return [lindex $ET 0 1]
}
proc ::grammar::fa::op::toRegexp2 {fa} {
# NOTE: FUTURE - See above.
set ET [ser_to_ematrix [$fa serialize]]
while {[llength $ET] > 2} {
set ET [matrix_drop_state $ET re2]
}
return [lindex $ET 0 1]
}
# ### ### ### ######### ######### #########
## Internal helpers.
proc ::grammar::fa::op::ser_to_ematrix {ser} {
if {[lindex $ser 0] ne "grammar::fa"} then {
error "Expected grammar::fa automaton serialisation"
}
set stateL {}
set n 2; foreach {state des} [lindex $ser 2] {
lappend stateL $state
set N($state) $n
incr n
}
set row0 {}
for {set k 0} {$k<$n} {incr k} {lappend row0 [list |]}
set res [list $row0 $row0]
foreach {from des} [lindex $ser 2] {
set row [lrange $row0 0 1]
if {[lindex $des 0]} then {lset res 0 $N($from) [list .]}
if {[lindex $des 1]} then {lset row 1 [list .]}
foreach to $stateL {set S($to) [list |]}
foreach {symbol targetL} [lindex $des 2] {
if {$symbol eq ""} then {
set atom [list .]
} else {
set atom [list S $symbol]
}
foreach to $targetL {lappend S($to) $atom}
}
foreach to $stateL {
if {[llength $S($to)] == 2} then {
lappend row [lindex $S($to) 1]
} else {
lappend row $S($to)
}
}
lappend res $row
}
return $res
}
proc ::grammar::fa::op::matrix_drop_state {T_in {ns re1}} {
set sumcmd ${ns}::|
set prodcmd ${ns}::.
set T1 {}
set lastcol {}
foreach row $T_in {
lappend T1 [lreplace $row end end]
lappend lastcol [lindex $row end]
}
set lastrow [lindex $T1 end]
set T1 [lreplace $T1 end end]
set b [${ns}::* [lindex $lastcol end]]
set lastcol [lreplace $lastcol end end]
set res {}
foreach row $T1 a $lastcol {
set newrow {}
foreach pos $row c $lastrow {
lappend newrow [$sumcmd $pos [$prodcmd $a $b $c]]
}
lappend res $newrow
}
return $res
}
# ### ### ### ######### ######### #########
## Internal helpers. Regexp simplification I.
namespace eval ::grammar::fa::op::re1 {
namespace export | . {\*}
}
proc ::grammar::fa::op::re1::| {args} {
set L {}
# | = Choices.
# Sub-choices are lifted into the top expression (foreach).
# Identical choices are reduced to a single term (lsort -uniq).
foreach re $args {
switch -- [lindex $re 0] "|" {
foreach term [lrange $re 1 end] {lappend L $term}
} default {
lappend L $re
}
}
set L [lsort -unique $L]
if {[llength $L] == 1} then {
return [lindex $L 0]
} else {
return [linsert $L 0 |]
}
}
proc ::grammar::fa::op::re1::. {args} {
set L {}
# . = Sequence.
# One element sub-choices are lifted into the top expression.
# Sub-sequences are lifted into the top expression.
foreach re $args {
switch -- [lindex $re 0] "." {
foreach term [lrange $re 1 end] {lappend L $term}
} "|" {
if {[llength $re] == 1} then {return $re}
lappend L $re
} default {
lappend L $re
}
}
if {[llength $L] == 1} then {
return [lindex $L 0]
} else {
return [linsert $L 0 .]
}
}
proc ::grammar::fa::op::re1::* {re} {
# * = Kleene closure.
# Sub-closures are lifted into the top expression.
# One-element sub-(choices,sequences) are lifted into the top expression.
switch -- [lindex $re 0] "|" - "." {
if {[llength $re] == 1} then {
return [list .]
} else {
return [list * $re]
}
} "*" {
return $re
} default {
return [list * $re]
}
}
# ### ### ### ######### ######### #########
## Internal helpers. Regexp simplification II.
namespace eval ::grammar::fa::op::re2 {
# Inherit choices and kleene-closure from the basic simplifier.
namespace import [namespace parent]::re1::|
namespace import [namespace parent]::re1::\\*
}
proc ::grammar::fa::op::re2::. {args} {
# . = Sequences
# Sub-sequences are lifted into the top expression.
# Sub-choices are multiplied out.
# <Example a(b|c) => ab|ac >
set L {}
set n -1
foreach re $args {
incr n
switch -- [lindex $re 0] "." {
foreach term [lrange $re 1 end] {lappend L $term}
} "|" {
set res [list |]
set L2 [lreplace $args 0 $n]
foreach term [lrange $re 1 end] {
lappend res [eval [list .] $L [list $term] $L2]
}
return [eval $res]
} default {
lappend L $re
}
}
if {[llength $L] == 1} then {
return [lindex $L 0]
} else {
return [linsert $L 0 .]
}
}
# ### ### ### ######### ######### #########
## API. Simplification of regular expressions.
proc ::grammar::fa::op::simplifyRegexp {RE0} {
set RE1 [namespace inscope nonnull $RE0]
if {[lindex $RE1 0] eq "S" || $RE1 eq "." || $RE1 eq "|"} then {
return $RE1
}
set tmp [grammar::fa %AUTO% fromRegex $RE1]
$tmp minimize
set RE1 [toRegexp $tmp]
$tmp destroy
if {[string length $RE1] < [string length $RE0]} then {
set RE0 $RE1
}
if {[lindex $RE0 0] eq "S"} then {return $RE0}
set res [lrange $RE0 0 0]
foreach branch [lrange $RE0 1 end] {
lappend res [simplifyRegexp $branch]
}
return $res
}
# ### ### ### ######### ######### #########
## Internal helpers.
namespace eval ::grammar::fa::op::nonnull {}
proc ::grammar::fa::op::nonnull::| {args} {
set also_empty false
set res [list |]
foreach branch $args {
set RE [eval $branch]
if {[lindex $RE 0] eq "?"} then {
set also_empty true
set RE [lindex $RE 1]
}
switch -- [lindex $RE 0] "|" {
eval [lreplace $RE 0 0 lappend res]
} "." {
if {[llength $RE] == 1} then {
set also_empty true
} else {
lappend res $RE
}
} default {
lappend res $RE
}
}
if {!$also_empty} then {return $res}
foreach branch [lrange $res 1 end] {
if {[lindex $branch 0] eq "*"} then {return $res}
}
if {[llength $res] == 1} then {
return [list .]
} elseif {[llength $res] == 2} then {
return [lreplace $res 0 0 ?]
} else {
return [list ? $res]
}
}
proc ::grammar::fa::op::nonnull::. {args} {
set res [list .]
foreach branch $args {
set RE [eval $branch]
switch -- [lindex $RE 0] "|" {
if {[llength $RE] == 1} then {return $RE}
lappend res $RE
} "." {
eval [lreplace $RE 0 0 lappend res]
} default {
lappend res $RE
}
}
return $res
}
proc ::grammar::fa::op::nonnull::* {sub} {
set RE [eval $sub]
switch -- [lindex $RE 0] "*" - "?" - "+" {
return [lreplace $RE 0 0 *]
} default {
return [list * $RE]
}
}
proc ::grammar::fa::op::nonnull::+ {sub} {
set RE [eval $sub]
switch -- [lindex $RE 0] "+" {
return $RE
} "*" - "?" {
return [lreplace $RE 0 0 *]
} default {
return [list * $RE]
}
}
proc ::grammar::fa::op::nonnull::? {sub} {
set RE [eval $sub]
switch -- [lindex $RE 0] "?" - "*" {
return $RE
} "+" {
return [lreplace $RE 0 0 *]
} default {
return [list ? $RE]
}
}
proc ::grammar::fa::op::nonnull::S {name} {
return [list S $name]
}
# ### ### ### ######### ######### #########
## API. Translate RE of this package to Tcl REs
proc ::grammar::fa::op::toTclRegexp {re symdict} {
return [lindex [namespace inscope tclre $re $symdict] 1]
}
# ### ### ### ######### ######### #########
## Internal helpers.
namespace eval ::grammar::fa::op::tclre {}
proc ::grammar::fa::op::tclre::S {name dict} {
array set A $dict
if {[info exists A($name)]} then {
return $A($name)
} elseif {[string length $name] == 1} then {
if {[regexp {[\\\[\]{}.()*+?^$]} $name]} then {
return [list char \\$name]
} else {
return [list char $name]
}
} else {
return [list class "\[\[:${name}:\]\]"]
}
}
proc ::grammar::fa::op::tclre::. {args} {
set suffix [lrange $args end end]
set L {}
foreach factor [lrange $args 0 end-1] {
set pair [eval $factor $suffix]
switch -- [lindex $pair 0] "sum" {
lappend L ([lindex $pair 1])
} default {
lappend L [lindex $pair 1]
}
}
return [list prod [join $L ""]]
}
proc ::grammar::fa::op::tclre::* {re dict} {
set pair [eval $re [list $dict]]
switch -- [lindex $pair 0] "sum" - "prod" {
return [list prod "([lindex $pair 1])*"]
} default {
return [list prod "[lindex $pair 1]*"]
}
}
proc ::grammar::fa::op::tclre::+ {re dict} {
set pair [eval $re [list $dict]]
switch -- [lindex $pair 0] "sum" - "prod" {
return [list prod "([lindex $pair 1])+"]
} default {
return [list prod "[lindex $pair 1]+"]
}
}
proc ::grammar::fa::op::tclre::? {re dict} {
set pair [eval $re [list $dict]]
switch -- [lindex $pair 0] "sum" - "prod" {
return [list prod "([lindex $pair 1])?"]
} default {
return [list prod "[lindex $pair 1]?"]
}
}
proc ::grammar::fa::op::tclre::| {args} {
set suffix [lrange $args end end]
set charL {}
set classL {}
set prodL {}
foreach factor [lrange $args 0 end-1] {
set pair [eval $factor $suffix]
switch -- [lindex $pair 0] "char" {
lappend charL [lindex $pair 1]
} "class" {
lappend classL [string range [lindex $pair 1] 1 end-1]
} default {
lappend prodL [lindex $pair 1]
}
}
if {[llength $charL]>1 || [llength $classL]>0} then {
while {[set n [lsearch $charL -]] >= 0} {
lset charL $n {\-}
}
set bracket "\[[join $charL ""][join $classL ""]\]"
if {![llength $prodL]} then {
return [list atom $bracket]
}
lappend prodL $bracket
} else {
eval [list lappend prodL] $charL
}
return [list sum [join $prodL |]]
}
proc ::grammar::fa::op::tclre::& {args} {
error "Cannot express language intersection in Tcl-RE's"
# Note: This can be translated by constructing an automaton for
# the intersection, and then translating its conversion to a
# regular expression.
}
proc ::grammar::fa::op::tclre::! {args} {
error "Cannot express language complementation in Tcl-RE's"
# Note: This can be translated by constructing an automaton for
# the complement, and then translating its conversion to a regular
# expression. This however requires knowledge regarding the set of
# symbols. Large (utf-8) for Tcl regexes.
}
# ### ### ### ######### ######### #########
proc ::grammar::fa::op::constructor {cmd} {
variable cons $cmd
return
}
proc ::grammar::fa::op::cons {} {
variable cons
if {$cons ne ""} {return $cons}
return -code error "No constructor for FA container was established."
}
# ### ### ### ######### ######### #########
## Package Management
package provide grammar::fa::op 0.4.1
|