1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
%
% \iffalse
%
%<*pkg>
%% Copyright (c) 2010 by Lars Hellstrom. All rights reserved.
%% See the file "license.terms" for information on usage and redistribution
%% of this file, and for a DISCLAIMER OF ALL WARRANTIES.
%</pkg>
%<*driver>
\documentclass{tclldoc}
\usepackage{amsmath,amsfonts}
\usepackage{url}
\newcommand{\Tcl}{\Tcllogo}
\begin{document}
\DocInput{numtheory.dtx}
\end{document}
%</driver>
% \fi
%
% \title{Number theory package}
% \author{Lars Hellstr\"om}
% \date{30 May 2010}
% \maketitle
%
% \begin{abstract}
% This package provides a command to test whether an integer is a
% prime, but may in time come to house also other number-theoretic
% operations.
% \end{abstract}
%
% \tableofcontents
%
% \section*{Preliminaries}
%
% \begin{tcl}
%<*pkg>
package require Tcl 8.5
% \end{tcl}
% \Tcl~8.4 is seriously broken with respect to arithmetic overflow,
% so we require 8.5. There are (as yet) no explicit 8.5-isms in the
% code, however.
% \begin{tcl}
package provide math::numtheory 1.0
namespace eval ::math::numtheory {
namespace export isprime
}
%</pkg>
% \end{tcl}
% \setnamespace{math::numtheory}
%
% \Tcl lib has its own test file boilerplate.
% \begin{tcl}
%<*test>
source [file join\
[file dirname [file dirname [file join [pwd] [info script]]]]\
devtools testutilities.tcl]
testsNeedTcl 8.5
testsNeedTcltest 2
testing {useLocal numtheory.tcl math::numtheory}
%</test>
% \end{tcl}
%
% And the same is true for the manpage.
% \begin{tcl}
%<*man>
[manpage_begin math::numtheory n 1.0]
[copyright "2010 Lars Hellstr\u00F6m\
<Lars dot Hellstrom at residenset dot net>"]
[moddesc {Tcl Math Library}]
[titledesc {Number Theory}]
[category Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt 1.0]]
[description]
[para]
This package is for collecting various number-theoretic operations,
though at the moment it only provides that of testing whether an
integer is a prime.
[list_begin definitions]
%</man>
% \end{tcl}
%
%
% \section{Primes}
%
% The first (and so far only) operation provided is |isprime|, which
% tests if an integer is a prime.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::isprime] [arg N] [
opt "[arg option] [arg value] ..."
]]
The [cmd isprime] command tests whether the integer [arg N] is a
prime, returning a boolean true value for prime [arg N] and a
boolean false value for non-prime [arg N]. The formal definition of
'prime' used is the conventional, that the number being tested is
greater than 1 and only has trivial divisors.
[para]
To be precise, the return value is one of [const 0] (if [arg N] is
definitely not a prime), [const 1] (if [arg N] is definitely a
prime), and [const on] (if [arg N] is probably prime); the latter
two are both boolean true values. The case that an integer may be
classified as "probably prime" arises because the Miller-Rabin
algorithm used in the test implementation is basically probabilistic,
and may if we are unlucky fail to detect that a number is in fact
composite. Options may be used to select the risk of such
"false positives" in the test. [const 1] is returned for "small"
[arg N] (which currently means [arg N] < 118670087467), where it is
known that no false positives are possible.
[para]
The only option currently defined is:
[list_begin options]
[opt_def -randommr [arg repetitions]]
which controls how many times the Miller-Rabin test should be
repeated with randomly chosen bases. Each repetition reduces the
probability of a false positive by a factor at least 4. The
default for [arg repetitions] is 4.
[list_end]
Unknown options are silently ignored.
%</man>
% \end{tcl}
%
%
% \subsection{Trial division}
%
% As most books on primes will tell you, practical primality
% testing algorithms typically start with trial division by a list
% of small known primes to weed out the low hanging fruit. This is
% also an opportunity to handle special cases that might arise for
% very low numbers (e.g.\ $2$ is a prime despite being even).
%
% \begin{proc}{prime_trialdivision}
% This procedure is meant to be called as
% \begin{quote}
% |prime_trialdivision| \word{$n$}
% \end{quote}
% from \emph{within} a procedure that returns |1| if $n$ is a prime
% and |0| if it is not. It does not return anything particular, but
% \emph{it causes its caller to return provided} it is able to
% decide what its result should be. This means one can slap it in
% as the first line of a primality checker procedure, and then on
% lines two and forth worry only about the nontrivial cases.
% \begin{tcl}
%<*pkg>
proc ::math::numtheory::prime_trialdivision {n} {
if {$n<2} then {return -code return 0}
% \end{tcl}
% Integers less than $2$ aren't primes.\footnote{
% Well, at least as one usually defines the term for integers.
% When considering the concept of prime in more general rings,
% one may have to settle with accepting all associates of primes
% as primes as well.
% } This saves us many worries by excluding negative numbers from
% further considerations.
% \begin{tcl}
if {$n<4} then {return -code return 1}
% \end{tcl}
% Everything else below \(2^2 = 4\) (i.e., $2$ and $3$) are primes.
% \begin{tcl}
if {$n%2 == 0} then {return -code return 0}
% \end{tcl}
% Remaining even numbers are then composite.
% \begin{tcl}
if {$n<9} then {return -code return 1}
% \end{tcl}
% Now everything left below \(3^2 = 9\) (i.e., $5$ and $7$) are
% primes. Having decided those, we can now do trial division with
% $3$, $5$, and $7$ in one go.
% \begin{tcl}
if {$n%3 == 0} then {return -code return 0}
if {$n%5 == 0} then {return -code return 0}
if {$n%7 == 0} then {return -code return 0}
% \end{tcl}
% Any numbers less that \(11^2 = 121\) not yet eliminated are
% primes; above that we know nothing.
% \begin{tcl}
if {$n<121} then {return -code return 1}
}
%</pkg>
% \end{tcl}
% This procedure could be extended with more primes, pushing the
% limit of what can be decided further up, but the returns are
% diminishing, so we might be better off with a different method
% for testing primality. No analysis of where the cut-off point
% lies have been conducted (i.e., $7$ as last prime for trial
% division was picked arbitrarily), but note that the optimum
% probably depends on what distribution the input values will have.
%
% \begin{tcl}
%<*test>
test prime_trialdivision-1 "Trial division of 1" -body {
::math::numtheory::prime_trialdivision 1
} -returnCodes 2 -result 0
test prime_trialdivision-2 "Trial division of 2" -body {
::math::numtheory::prime_trialdivision 2
} -returnCodes 2 -result 1
test prime_trialdivision-3 "Trial division of 6" -body {
::math::numtheory::prime_trialdivision 6
} -returnCodes 2 -result 0
test prime_trialdivision-4 "Trial division of 7" -body {
::math::numtheory::prime_trialdivision 7
} -returnCodes 2 -result 1
test prime_trialdivision-5 "Trial division of 101" -body {
::math::numtheory::prime_trialdivision 101
} -returnCodes 2 -result 1
test prime_trialdivision-6 "Trial division of 105" -body {
::math::numtheory::prime_trialdivision 105
} -returnCodes 2 -result 0
% \end{tcl}
% Note that extending the number of primes for trial division is
% likely to change the results in the following two tests ($121$
% is composite, $127$ is prime).
% \begin{tcl}
test prime_trialdivision-7 "Trial division of 121" -body {
::math::numtheory::prime_trialdivision 121
} -returnCodes 0 -result ""
test prime_trialdivision-8 "Trial division of 127" -body {
::math::numtheory::prime_trialdivision 127
} -returnCodes 0 -result ""
%</test>
% \end{tcl}
% \end{proc}
%
%
% \subsection{Pseudoprimality tests}
%
% After trial division, the next thing tried is usually to test the
% claim of Fermat's little theorem: if $n$ is a prime, then \(a^{n-1}
% \equiv 1 \pmod{n}\) for all integers $a$ that are not multiples of
% $n$, in particular those \(0 < a < n\); one picks such an $a$ (more
% or less at random) and computes $a^{n-1} \bmod n$. Numbers that
% pass are said to be \emph{(Fermat) pseudoprimes (to base $a$)}.
% Most composite numbers quickly fail this test.
% (One particular class that fails are the powers of primes, since
% the group of invertible elements in $\mathbb{Z}_n$ for \(n = p^{k+1}\)
% is cyclic\footnote{
% The easiest way to see that it is cyclic is probably to exhibit
% an element of order $(p -\nobreak 1) p^k$. A good start is to
% pick a primitive root $a$ of $\mathbb{Z}_p$ and compute its order
% modulo $p^{k+1}$; this has to be a number on the form $(p
% -\nobreak 1) p^r$. If \(r=k\) then $a$ is a primitive root and we're
% done, otherwise $(p +\nobreak 1) a$ will be a primitive root
% because $p+1$ can be shown to have order $p^k$ modulo $n$ and the
% least common multiple of $(p -\nobreak 1) p^r$ and $p^k$ is
% $(p -\nobreak 1) p^k$. To exhibit the order of $p+1$, one may
% use induction on $k$ to show that \( (1 +\nobreak p)^N \equiv 1
% \pmod{p^{k+1}}\) implies \(p^k \mid N\); in \((1 +\nobreak p)^N =
% \sum_{i=0}^N \binom{N}{i} p^i\), the induction hypothesis implies
% all terms with \(i>1\) vanish modulo $p^{k+1}$, leaving just
% \(1+Np \equiv 1 \pmod{p^{k+1}}\).
% } of order $(p -\nobreak 1) p^k$ rather than order $p^{k+1}-1$.
% Therefore it is only to bases $a$ of order dividing $p-1$ (i.e., a
% total of $p-1$ out of $p^{k+1}-1$) that prime powers are
% pseudoprimes. The chances of picking one of these are generally
% rather slim.)
%
% Unfortunately, there are also numbers (the so-called \emph{Carmichael
% numbers}) which are pseudoprimes to every base $a$ they are coprime
% with. While the above trial division by $2$, $3$, $5$, and $7$ would
% already have eliminated all Carmichael numbers below \(29341 = 13
% \cdot 37 \cdot 61\), their existence means that there is a
% population of nonprimes which a Fermat pseudoprimality test is very
% likely to mistake for primes; this would usually not be acceptable.
%
% \begin{proc}{Miller--Rabin}
% The Miller--Rabin test is a slight variation on the Fermat test,
% where the computation of $a^{n-1} \bmod n$ is structured so that
% additional consequences of $n$ being a prime can be tested.
% Rabin~\cite{Rabin}
% proved that any composite $n$ will for this test be revealed as
% such by at least $3/4$ of all bases $a$, thus making it a valid
% probabilistic test. (Miller~\cite{Miller} had first designed it as
% a deterministic polynomial algorithm, but in that case the proof
% that it works relies on the generalised Riemann hypothesis.)
%
% Given natural numbers $s$ and $d$ such that \(n-1 = 2^s d\), the
% computation of $a^{n-1}$ is organised as $(a^d)^{2^s}$, where the
% $s$ part is conveniently performed by squaring $s$ times. This is
% of little consequence when $n$ is not a pseudoprime since one
% will simply arrive at some \(a^{n-1} \not\equiv 1 \pmod{n}\), but
% in the case that $n$ is a pseudoprime these repeated squarings will
% exhibit some $x$ such that \(x^2 \equiv 1 \pmod{n}\), and this
% makes it possible to test another property $n$ must have if it is
% prime, namely that such an \(x \equiv \pm 1 \pmod{n}\).
%
% That implication is of course well known for real (and complex)
% numbers, but even though what we're dealing with here is rather
% residue classes modulo an integer, the proof that it holds is
% basically the same. If $n$ is a prime, then the residue class
% ring $\mathbb{Z}_n$ is a field, and hence the ring
% $\mathbb{Z}_n[x]$ of polynomials over that field is a Unique
% Factorisation Domain. As it happens, \(x^2 \equiv 1 \pmod{n}\) is
% a polynomial equation, and $x^2-1$ has the known factorisation
% \((x -\nobreak 1) (x +\nobreak 1)\). Since factorisations are
% unique, and any zero $a$ of $x^2-1$ would give rise to a factor
% $x-a$, it follows that \(x^2 \equiv 1 \pmod{n}\) implies \(x
% \equiv 1 \pmod{n}\) or \(x \equiv -1 \pmod{n}\), as claimed.
% But this assumes $n$ is a prime.
%
% If instead \(n = pq\) where \(p,q > 2\) are coprime, then there
% will be additional solutions to \(x^2 \equiv 1 \pmod{n}\).
% For example, if \(x \equiv 1 \pmod{p}\) and \(x \equiv -1
% \pmod{q}\) (and such $x$ exist by the Chinese Remainder Theorem),
% then \(x^2 \equiv 1 \pmod{p}\) and \(x^2 \equiv 1 \pmod{q}\),
% from which follows \(x^2 \equiv 1 \pmod{pq}\), but \(x \not\equiv
% 1 \pmod{n}\) since \(x-1 \equiv -2 \not\equiv 0 \pmod{q}\), and
% \(x \not\equiv -1 \pmod{n}\) since \(x+1 \equiv 2 \not\equiv 0
% \pmod{p}\). The same argument applies when \(x \equiv -1 \pmod{p}\)
% and \(x \equiv 1 \pmod{q}\), and in general, if $n$ has $k$
% distinct odd prime factors then one may construct $2^k$ distinct
% solutions \(0<x<n\) to \(x^2 \equiv 1 \pmod{n}\). It is thus not
% too hard to imagine that a ``random'' $a^d$ squaring to $1$
% modulo $n$ will be one of the nonstandard square roots of~$1$
% when $n$ is not a prime, even if the above is not a proof that
% at least $3/4$ of all $a$ are witnesses to the compositeness
% of~$n$.
%
% Getting down to the implementation, the actual procedure has the
% call syntax
% \begin{quote}
% |Miller--Rabin| \word{n} \word{s} \word{d} \word{a}
% \end{quote}
% where all arguments should be integers such that \(n-1 = d2^s\),
% \(d,s \geq 1\), and \(0 < a < n\). The procedure computes
% $(a^d)^{2^s} \mod n$, and if in the course of doing this the
% Miller--Rabin test detects that $n$ is composite then this procedure
% will return |1|, otherwise it returns |0|.
%
% The first part of the procedure merely computes \(x = a^d \bmod n\),
% using exponentiation by squaring. $x$, $a$, and $d$ are modified in
% the loop, but $xa^d \bmod n$ would be an invariant quantity.
% Correctness presumes the initial \(d \geq 1\).
% \begin{tcl}
%<*pkg>
proc ::math::numtheory::Miller--Rabin {n s d a} {
set x 1
while {$d>1} {
if {$d & 1} then {set x [expr {$x*$a % $n}]}
set a [expr {$a*$a % $n}]
set d [expr {$d >> 1}]
}
set x [expr {$x*$a % $n}]
% \end{tcl}
% The second part will $s-1$ times square $x$, while checking each
% value for being \(\equiv \pm 1 \pmod{n}\). For most part, $-1$
% means everything is OK (any subsequent square would only
% yield~$1$) whereas $1$ arrived at without a previous $-1$ signals
% that $n$ cannot be prime. The only exception to the latter is
% that $1$ before the first squaring (already \(a^d \equiv 1
% \pmod{n}\)) is OK as well.
% \begin{tcl}
if {$x == 1} then {return 0}
for {} {$s>1} {incr s -1} {
if {$x == $n-1} then {return 0}
set x [expr {$x*$x % $n}]
if {$x == 1} then {return 1}
}
% \end{tcl}
% There is no need to square $x$ the $s$th time, because if at this
% point \(x \not\equiv -1 \pmod{n}\) then $n$ cannot be a prime; if
% \(x^2 \not\equiv 1 \pmod{n}\) it would fail to be a pseudoprime
% and if \(x^2 \equiv 1 \pmod{n}\) then $x$ would be a nonstandard
% square root of $1 \pmod{n}$, but it is not necessary to find out
% which of these cases is at hand.
% \begin{tcl}
return [expr {$x != $n-1}]
}
%</pkg>
% \end{tcl}
%
% As for testing, the minimal allowed value of $n$ is $3$, which
% is a prime.
% \begin{tcl}
%<*test>
test Miller--Rabin-1.1 "Miller--Rabin 3" -body {
list [::math::numtheory::Miller--Rabin 3 1 1 1]\
[::math::numtheory::Miller--Rabin 3 1 1 2]
} -result {0 0}
% \end{tcl}
% To exercise the first part of the procedure, one may consider the
% case \(s=1\) and \(d = 2^2+2^0 = 5\), i.e., \(n=11\). Here, \(2^5
% \equiv -1 \pmod{11}\) whereas \(4^5 \equiv 1^5 \equiv 1
% \pmod{11}\). A bug on the lines of not using the right factors in
% the computation of $a^d$ would most likely end up with something
% different here.
% \begin{tcl}
test Miller--Rabin-1.2 "Miller--Rabin 11" -body {
list [::math::numtheory::Miller--Rabin 11 1 5 1]\
[::math::numtheory::Miller--Rabin 11 1 5 2]\
[::math::numtheory::Miller--Rabin 11 1 5 4]
} -result {0 0 0}
% \end{tcl}
% $27$ will on the other hand be exposed as composite by most bases,
% but $1$ and $-1$ do not spot it. It is known from the argument
% about prime powers above that at least one of $2$ and \(8 = (3
% +\nobreak 1) \cdot 2\) is a primitive root of $1$ in
% $\mathbb{Z}_{27}$; it turns out to be $2$.
% \begin{tcl}
test Miller--Rabin-1.3 "Miller--Rabin 27" -body {
list [::math::numtheory::Miller--Rabin 27 1 13 1]\
[::math::numtheory::Miller--Rabin 27 1 13 2]\
[::math::numtheory::Miller--Rabin 27 1 13 3]\
[::math::numtheory::Miller--Rabin 27 1 13 4]\
[::math::numtheory::Miller--Rabin 27 1 13 8]\
[::math::numtheory::Miller--Rabin 27 1 13 26]
} -result {0 1 1 1 1 0}
% \end{tcl}
% Taking \(n = 65 = 1 + 2^6 = 5 \cdot 13\) instead focuses on the
% second part of the procedure. By carefully choosing the base, it
% is possible to force the result to come from:
% \begin{tcl}
test Miller--Rabin-1.4 "Miller--Rabin 65" -body {
% \end{tcl}
% The first |return|
% \begin{tcl}
list [::math::numtheory::Miller--Rabin 65 6 1 1]\
% \end{tcl}
% the second |return|, first iteration
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 64]\
% \end{tcl}
% the third |return|, first iteration---\(14 \equiv 1 \pmod{13}\)
% but \(14 \equiv -1 \pmod{5}\)
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 14]\
% \end{tcl}
% the second |return|, second iteration
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 8]\
% \end{tcl}
% the third |return|, second iteration---\(27 \equiv 1 \pmod{13}\)
% but \(27^2 \equiv 2^2 \equiv -1 \pmod{5}\)
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 27]\
% \end{tcl}
% the final |return|
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 2]
} -result {0 0 1 0 1 1}
% \end{tcl}
% There does however not seem to be any \(n=65\) choice of $a$ which
% would get a |0| out of the final |return|.
%
% An $n$ which allows fully exercising the second part of the
% procedure is \(17 \cdot 257 = 4369\), for which \(s=4\)
% and \(d=273\). In order to have \(x^{2^{s-1}} \equiv -1
% \pmod{n}\), it is necessary to have \(x^8 \equiv -1\) modulo both
% $17$ and $257$, which is possible since the invertible elements
% of $\mathbb{Z}_{17}$ form a cyclic group of order $16$ and the
% invertible elements of $\mathbb{Z}_{257}$ form a cyclic group of
% order $256$. Modulo $17$, an element of order $16$ is $3$,
% whereas modulo $257$, an element of order $16$ is $2$.
%
% There is an extra complication in that what the caller can
% specify is not the $x$ to be repeatedly squared, but the $a$
% which satisfies \(x \equiv a^d \pmod{n}\). Since \(d=273\) is
% odd, raising something to that power is an invertible operation
% modulo both $17$ and $257$, but it is necessary to figure out
% what the inverse is. Since \(273 \equiv 1 \pmod{16}\), it turns
% out that \(a^d \equiv a \pmod{17}\), and \(x=3\) becomes \(a=3\).
% From \(273 \equiv 17 \pmod{256}\), it instead follows that \(x
% \equiv a^d \pmod{257}\) is equivalent to \(a \equiv x^e
% \pmod{257}\), where \(17e \equiv 1 \pmod{256}\). This has the
% solution \(e = 241\), so the $a$ which makes \(x=2\) is \(a
% = 2^{241} \bmod 257\). However, since \(x=2\) was picked on
% account of having order $16$, hence \(2^{16} \equiv 1
% \pmod{257}\), and \(241 \equiv 1 \pmod{16}\), it again turns out
% that \(x=2\) becomes \(a=2\).
%
% For \(a = 2\), one may observe that \(a^{2^1} \equiv 4
% \pmod{257}\), \(a^{2^2} \equiv 16 \pmod{257}\), \(a^{2^3} \equiv
% -1 \pmod{257}\), and \(a^{2^4} \equiv 1 \pmod{257}\). For
% \(a=3\), one may observe that \(a^{2^1} \equiv 9 \pmod{17}\),
% \(a^{2^2} \equiv 13 \pmod{17}\), \(a^{2^3} \equiv -1 \pmod{17}\),
% and \(a^{2^4} \equiv 1 \pmod{17}\). For solving simultaneous
% equivalences, it is furthermore useful to observe that \(2057
% \equiv 1 \pmod{257}\) and \(2057 \equiv 0 \pmod{17}\) whereas
% \(2313 \equiv 1 \pmod{17}\) and \(2313 \equiv 0 \pmod{257}\).
% \begin{tcl}
test Miller--Rabin-1.5 "Miller--Rabin 17*257" -body {
% \end{tcl}
% In order to end up at the first |return|, it is necessary to take
% \(a \equiv 1 \pmod{17}\) and \(a \equiv 1 \pmod{257}\); the
% solution \(a=1\) is pretty obvious.
% \begin{tcl}
list [::math::numtheory::Miller--Rabin 4369 4 273 1]\
% \end{tcl}
% In order to end up at the second |return| of the first iteration,
% it is necessary to take \(a \equiv -1 \pmod{17}\) and
% \(a \equiv -1 \pmod{257}\); the solution \(a \equiv -1 \pmod{n}\)
% is again pretty obvious.
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 4368]\
% \end{tcl}
% Hitting the third |return| at the first iteration can be achieved
% with \(a \equiv -1 \pmod{17}\) and \(a \equiv 1 \pmod{257}\);
% now a solution is \(a \equiv 2057 - 2313 \equiv 4113 \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 4113]\
% \end{tcl}
% Hitting the second |return| at the second iteration happens if
% \(a^2 \equiv -1\) modulo both prime factors, i.e., for \(a \equiv
% 16 \pmod{257}\) and \(a \equiv 13 \pmod{17}\). This has the
% solution \(a \equiv 16 \cdot 2057 + 13 \cdot 2313 \equiv 1815
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 1815]\
% \end{tcl}
% To hit the third |return| at the second iteration, one may keep
% \(a \equiv 16 \pmod{257}\) but take \(a \equiv 1 \pmod{17}\). This
% has the solution \(a \equiv 16 \cdot 2057 + 1 \cdot 2313 \equiv 273
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 273]\
% \end{tcl}
% Hitting the second |return| at the third and final iteration happens
% if \(a^4 \equiv -1\) modulo both prime factors, i.e., for \(a \equiv
% 4 \pmod{257}\) and \(a \equiv 9 \pmod{17}\). This has the
% solution \(a \equiv 4 \cdot 2057 + 9 \cdot 2313 \equiv 2831
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 2831]\
% \end{tcl}
% And as before, to hit the third |return| at the third and final
% iteration one may keep the above \(a \equiv 9 \pmod{17}\) but
% change the other to \(a \equiv 1 \pmod{257}\). This has the
% solution \(a \equiv 1 \cdot 2057 + 9 \cdot 2313 \equiv 1029
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 1029]\
% \end{tcl}
% To get a |0| out of the fourth |return|, one takes \(a \equiv
% 2 \pmod{257}\) and \(a \equiv 3 \pmod{17}\); this means \(a \equiv
% 2 \cdot 2057 + 3 \cdot 2313 \equiv 2315 \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 2315]\
% \end{tcl}
% Finally, to get a |1| out of the fourth |return|, one may take
% \(a \equiv 1 \pmod{257}\) and \(a \equiv 3 \pmod{17}\); this means
% \(a \equiv 1 \cdot 2057 + 3 \cdot 2313 \equiv 258 \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 258]
} -result {0 0 1 0 1 0 1 0 1}
% \end{tcl}
% It would have been desirable from a testing point of view to also
% find a value of $a$ that would make \(a^{n-1} \equiv -1
% \pmod{n}\), since such an $a$ would catch an implementation error
% of running the squaring loop one step too far, but that does not
% seem possible; picking \(n=pq\) such that both $p-1$ and $q-1$
% are divisible by some power of $2$ implies that $n-1$ is
% divisible by the same power of $2$.
% \end{proc}
%
% A different kind of test is to verify some exceptional numbers and
% boundaries that the |isprime| procedure relies on. First, $1373653$
% appears prime when \(a=2\) or \(a=3\), but \(a=5\) is a witness to
% its compositeness.
% \begin{tcl}
test Miller--Rabin-2.1 "Miller--Rabin 1373653" -body {
list\
[::math::numtheory::Miller--Rabin 1373653 2 343413 2]\
[::math::numtheory::Miller--Rabin 1373653 2 343413 3]\
[::math::numtheory::Miller--Rabin 1373653 2 343413 5]
} -result {0 0 1}
% \end{tcl}
% $25326001$ is looking like a prime also to \(a=5\), but \(a=7\)
% exposes it.
% \begin{tcl}
test Miller--Rabin-2.2 "Miller--Rabin 25326001" -body {
list\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 2]\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 3]\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 5]\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 7]
} -result {0 0 0 1}
% \end{tcl}
% $3215031751$ is a tricky composite that isn't exposed even by
% \(a=7\), but \(a=11\) will see through it.
% \begin{tcl}
test Miller--Rabin-2.3 "Miller--Rabin 3215031751" -body {
list\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 2]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 3]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 5]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 7]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 11]
} -result {0 0 0 0 1}
% \end{tcl}
% Otherwise the lowest composite that these four will fail for is
% $118670087467$.
% \begin{tcl}
test Miller--Rabin-2.4 "Miller--Rabin 118670087467" -body {
list\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 2]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 3]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 5]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 7]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 11]
} -result {0 0 0 0 1}
%</test>
% \end{tcl}
%
%
% \subsection{Putting it all together}
%
% \begin{proc}{isprime}
% The user level command for testing primality of an integer $n$ is
% |isprime|. It has the call syntax
% \begin{quote}
% |math::numtheory::isprime| \word{n}
% \begin{regblock}[\regstar]\word{option}
% \word{value}\end{regblock}
% \end{quote}
% where the options may be used to influence the exact algorithm
% being used. The call returns
% \begin{description}
% \item[0] if $n$ is found to be composite,
% \item[1] if $n$ is found to be prime, and
% \item[on] if $n$ is probably prime.
% \end{description}
% The reason there might be \emph{some} uncertainty is that the
% primality test used is basically a probabilistic test for
% compositeness---it may fail to find a witness for the
% compositeness of a composite number $n$, even if the probability
% of doing so is fairly low---and to be honest with the user, the
% outcomes of ``definitely prime'' and ``probably prime'' return
% different results. Since |on| is true when used as a boolean, you
% usually need not worry about this fine detail. Also, for \(n <
% 10^{11}\) (actually a little more) the primality test is
% deterministic, so you only encounter the ``probably prime''
% result for fairly high $n$.
%
% At present, the only option that is implemented is |-randommr|,
% which controls how many rounds (by default 4) of the |Miller--Rabin|
% test with random bases are run before returing |on|. Other options
% are silently ignored.
%
% \begin{tcl}
%<*pkg>
proc ::math::numtheory::isprime {n args} {
prime_trialdivision $n
% \end{tcl}
% Implementation-wise, |isprime| begins with |prime_trialdivision|,
% but relies on the Miller--Rabin test after that. To that end, it
% must compute $s$ and $d$ such that \(n = d 2^s + 1\); while this
% is fairly quick, it's nice not having to do it more than once,
% which is why this step wasn't made part of the |Miller--Rabin|
% procedure.
% \begin{tcl}
set d [expr {$n-1}]; set s 0
while {($d&1) == 0} {
incr s
set d [expr {$d>>1}]
}
% \end{tcl}
% The deterministic sequence of Miller--Rabin tests combines
% information from \cite{PSW80,Jaeschke}, but most of these
% numbers may also be found on Wikipedia~\cite{Wikipedia}.
% \begin{tcl}
if {[Miller--Rabin $n $s $d 2]} then {return 0}
if {$n < 2047} then {return 1}
if {[Miller--Rabin $n $s $d 3]} then {return 0}
if {$n < 1373653} then {return 1}
if {[Miller--Rabin $n $s $d 5]} then {return 0}
if {$n < 25326001} then {return 1}
if {[Miller--Rabin $n $s $d 7] || $n==3215031751} then {return 0}
if {$n < 118670087467} then {return 1}
% \end{tcl}
% \(3215031751 = 151 \cdot 751 \cdot 28351\) is a Carmichael
% number~\cite[p.\,1022]{PSW80}.
%
% Having exhausted this list of limits below which |Miller--Rabin|
% for \(a=2,3,5,7\) detects all composite numbers, we now have to
% resort to picking bases at random and hoping we find one which
% would reveal a composite $n$. In the future, one might want to
% add the possibility of using a deterministic test (such as the
% AKR~\cite{CL84} or AKS~\cite{AKS04} test) here instead.
%
% \begin{tcl}
array set O {-randommr 4}
array set O $args
for {set i $O(-randommr)} {$i >= 1} {incr i -1} {
if {[Miller--Rabin $n $s $d [expr {(
% \end{tcl}
%
% The probabilistic sequence of Miller--Rabin tests employs
% \Tcl's built-in pseudorandom number generator |rand()| for
% choosing bases, as this does not seem to be an application that
% requires high quality randomness. It may however be observed
% that since by now \(n > 10^{11}\), the space of possible bases $a$
% is always several times larger than the state space of |rand()|,
% so there may be a point in tweaking the PRNG to avoid some less
% useful values of $a$.
%
% It is a trivial observation that the intermediate $x$ values
% computed by |Miller--Rabin| for \(a=a_1a_2\) are simply the
% products of the corresponding values computed for \(a=a_1\) and
% \(a=a_2\) respectively---hence chances are that if no
% compositeness was detected for \(a=a_1\) or \(a=a_2\) then it
% won't be detected for \(a=a_1a_2\) either. There is a slight
% chance that something interesting could happen if \(a_1^{d2^k}
% \equiv -1 \equiv a_2^{d2^k} \pmod{n}\) for some \(k>0\), since in
% that case \((a_1a_2)^{d2^k} \equiv 1 \pmod{n}\) whereas no direct
% conclusion can be reached about $(a_1a_2)^{d2^{k-1}}$, but this
% seems a rather special case (and cannot even occur if \(n
% \equiv 3 \pmod{4}\) since in that case \(s=1\)), so it seems
% natural to prefer $a$ that are primes. Generating only prime $a$
% would be much work, but avoiding numbers divisible by $2$ or $3$
% is feasible.
%
% First turn |rand()| back into the integer it internally is, and
% adjust it to be from $0$ and up.
% \begin{tcl}
(round(rand()*0x100000000)-1)
% \end{tcl}
% Then multiply by $3$ and set the last bit. This has the effect
% that the range of the PRNG is now $\{1,3,7,9,13,15,\dotsb,
% 6n +\nobreak 1, 6n +\nobreak 3, \dotsb \}$.
% \begin{tcl}
*3 | 1)
% \end{tcl}
% Finally add $10$ so that we get $11$, $13$, $17$, $19$, \dots
% \begin{tcl}
+ 10
}]]} then {return 0}
}
% \end{tcl}
% That ends the |for| loop for |Miller--Rabin| with random bases.
% At this point, since the number in question passed the requested
% number of Miller--Rabin rounds, it is proclaimed to be ``probably
% prime''.
% \begin{tcl}
return on
}
%</pkg>
% \end{tcl}
%
% Tests of |isprime| would mostly be asking ``is $n$ a prime'' for
% various interesting $n$. Several values of $n$ should be the same
% as the previous tests:
% \begin{tcl}
%<*test>
test isprime-1.1 "1 is not prime" -body {
::math::numtheory::isprime 1
} -result 0
test isprime-1.2 "0 is not prime" -body {
::math::numtheory::isprime 0
} -result 0
test isprime-1.3 "-2 is not prime" -body {
::math::numtheory::isprime -2
} -result 0
test isprime-1.4 "2 is prime" -body {
::math::numtheory::isprime 2
} -result 1
test isprime-1.5 "6 is not prime" -body {
::math::numtheory::isprime 6
} -result 0
test isprime-1.6 "7 is prime" -body {
::math::numtheory::isprime 7
} -result 1
test isprime-1.7 "101 is prime" -body {
::math::numtheory::isprime 101
} -result 1
test isprime-1.8 "105 is not prime" -body {
::math::numtheory::isprime 105
} -result 0
test isprime-1.9 "121 is not prime" -body {
::math::numtheory::isprime 121
} -result 0
test isprime-1.10 "127 is prime" -body {
::math::numtheory::isprime 127
} -result 1
test isprime-1.11 "4369 is not prime" -body {
::math::numtheory::isprime 4369
} -result 0
test isprime-1.12 "1373653 is not prime" -body {
::math::numtheory::isprime 1373653
} -result 0
test isprime-1.13 "25326001 is not prime" -body {
::math::numtheory::isprime 25326001
} -result 0
test isprime-1.14 "3215031751 is not prime" -body {
::math::numtheory::isprime 3215031751
} -result 0
% \end{tcl}
% To get consistent results for large non-primes, it is necessary
% to reduce the number of random rounds and\slash or reset the PRNG.
% \begin{tcl}
test isprime-1.15 "118670087467 may appear prime, but isn't" -body {
expr srand(1)
list\
[::math::numtheory::isprime 118670087467 -randommr 0]\
[::math::numtheory::isprime 118670087467 -randommr 1]
} -result {on 0}
% \end{tcl}
% However, a few new can be added. On~\cite[p.\,925]{Jaeschke} we
% can read that \(p=22 \mkern1mu 754 \mkern1mu 930 \mkern1mu 352
% \mkern1mu 733\) is a prime, and $p (3p -\nobreak 2)\) is a
% composite number that looks prime to |Miller--Rabin| for all
% \(a \in \{2,3,5,7,11,13,17,19,23,29\}\).
% \begin{tcl}
test isprime-1.16 "Jaeschke psi_10" -body {
expr srand(1)
set p 22754930352733
set n [expr {$p * (3*$p-2)}]
list\
[::math::numtheory::isprime $p -randommr 25]\
[::math::numtheory::isprime $n -randommr 0]\
[::math::numtheory::isprime $n -randommr 1]
} -result {on on 0}
% \end{tcl}
% On the same page it is stated that \(p=137 \mkern1mu 716 \mkern1mu
% 125 \mkern1mu 329 \mkern1mu 053\) is a prime such that
% $p (3p -\nobreak 2)\) is a composite number that looks prime to
% |Miller--Rabin| for all \(a \in
% \{2,3,5,7,11,13,17,19,23,29,31\}\).
% \begin{tcl}
test isprime-1.17 "Jaeschke psi_11" -body {
expr srand(1)
set p 137716125329053
set n [expr {$p * (3*$p-2)}]
list\
[::math::numtheory::isprime $p -randommr 25]\
[::math::numtheory::isprime $n -randommr 0]\
[::math::numtheory::isprime $n -randommr 1]\
[::math::numtheory::isprime $n -randommr 2]
} -result {on on on 0}
% \end{tcl}
% RFC~2409~\cite{RFC2409} lists a number of primes (and primitive
% generators of their respective multiplicative groups). The
% smallest of these is defined as \(p = 2^{768} - 2^{704} - 1 +
% 2^{64} \cdot \left( [2^{638} \pi] + 149686 \right)\) (where the
% brackets probably denote rounding to the nearest integer), but
% since high precision (roughly $200$ decimal digits would be
% required) values of \(\pi = 3.14159\dots\) are a bit awkward to
% get hold of, we might as well use the stated hexadecimal digit
% expansion for~$p$. It might also be a good idea to verify that
% this is given with most significant digit first.
% \begin{tcl}
test isprime-1.18 "OAKLEY group 1 prime" -body {
set digits [join {
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF
} ""]
expr srand(1)
list\
[::math::numtheory::isprime 0x$digits]\
[::math::numtheory::isprime 0x[string reverse $digits]]
} -result {on 0}
% \end{tcl}
%
% A quite different thing to test is that the tweaked PRNG really
% produces only \(a \equiv 1,5 \pmod{6}\).
% \begin{tcl}
test isprime-2.0 "PRNG tweak" -setup {
namespace eval ::math::numtheory {
rename Miller--Rabin _orig_Miller--Rabin
proc Miller--Rabin {n s d a} {
expr {$a>7 && $a%6!=1 && $a%6!=5}
}
}
} -body {
::math::numtheory::isprime 118670087467 -randommr 500
} -result on -cleanup {
namespace eval ::math::numtheory {
rename Miller--Rabin ""
rename _orig_Miller--Rabin Miller--Rabin
}
}
%</test>
% \end{tcl}
% \end{proc}
%
%
% \section*{Closings}
%
% \begin{tcl}
%<*man>
[list_end]
[keywords {number theory} prime]
[manpage_end]
%</man>
% \end{tcl}
%
% \begin{tcl}
%<test>testsuiteCleanup
% \end{tcl}
%
%
% \begin{thebibliography}{9}
%
% \bibitem{AKS04}
% Manindra Agrawal, Neeraj Kayal, and Nitin Saxena:
% PRIMES is in P,
% \textit{Annals of Mathematics} \textbf{160} (2004), no. 2,
% 781--793.
%
% \bibitem{CL84}
% Henri Cohen and Hendrik W. Lenstra, Jr.:
% Primality testing and Jacobi sums,
% \textit{Mathematics of Computation} \textbf{42} (165) (1984),
% 297--330.
% \texttt{doi:10.2307/2007581}
%
% \bibitem{RFC2409}
% Dan Harkins and Dave Carrel.
% \textit{The Internet Key Exchange (IKE)},
% \textbf{RFC 2409} (1998).
%
% \bibitem{Jaeschke}
% Gerhard Jaeschke: On strong pseudoprimes to several bases,
% \textit{Mathematics of Computation} \textbf{61} (204), 1993,
% 915--926.
% \texttt{doi:\,10.2307/2153262}
%
% \bibitem{Miller}
% Gary L. Miller:
% Riemann's Hypothesis and Tests for Primality,
% \textit{Journal of Computer and System Sciences} \textbf{13} (3)
% (1976), 300--317. \texttt{doi:10.1145/800116.803773}
%
% \bibitem{PSW80}
% C.~Pomerance, J.~L.~Selfridge, and S.~S.~Wagstaff~Jr.:
% The pseudoprimes to $25 \cdot 10^9$,
% \textit{Mathematics of Computation} \textbf{35} (151), 1980,
% 1003--1026.
% \texttt{doi: 10.2307/2006210}
%
% \bibitem{Rabin}
% Michael O. Rabin:
% Probabilistic algorithm for testing primality,
% \textit{Journal of Number Theory} \textbf{12} (1) (1980),
% 128--138. \texttt{doi:10.1016/0022-314X(80)90084-0}
%
% \bibitem{Wikipedia}
% Wikipedia contributors:
% Miller--Rabin primality test,
% \textit{Wikipedia, The Free Encyclopedia}, 2010.
% Online, accessed 10 September 2010,
% \url{http://en.wikipedia.org/w/index.php?title=Miller%E2%80%93Rabin_primality_test&oldid=383901104}
%
% \end{thebibliography}
%
\endinput
|