File: fa.n

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (936 lines) | stat: -rw-r--r-- 30,913 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
'\"
'\" Generated from file 'fa\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004-2009 Andreas Kupries <andreas_kupries@users\&.sourceforge\&.net>
'\"
.TH "grammar::fa" n 0\&.4 tcllib "Finite automaton operations and usage"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
grammar::fa \- Create and manipulate finite automatons
.SH SYNOPSIS
package require \fBTcl  8\&.4\fR
.sp
package require \fBsnit  1\&.3\fR
.sp
package require \fBstruct::list \fR
.sp
package require \fBstruct::set \fR
.sp
package require \fBgrammar::fa::op  ?0\&.2?\fR
.sp
package require \fBgrammar::fa  ?0\&.4?\fR
.sp
\fB::grammar::fa\fR \fIfaName\fR ?\fB=\fR|\fB:=\fR|\fB<--\fR|\fBas\fR|\fBdeserialize\fR \fIsrc\fR|\fBfromRegex\fR \fIre\fR ?\fIover\fR??
.sp
\fBfaName\fR \fIoption\fR ?\fIarg arg \&.\&.\&.\fR?
.sp
\fIfaName\fR \fBdestroy\fR
.sp
\fIfaName\fR \fBclear\fR
.sp
\fIfaName\fR \fB=\fR \fIsrcFA\fR
.sp
\fIfaName\fR \fB-->\fR \fIdstFA\fR
.sp
\fIfaName\fR \fBserialize\fR
.sp
\fIfaName\fR \fBdeserialize\fR \fIserialization\fR
.sp
\fIfaName\fR \fBstates\fR
.sp
\fIfaName\fR \fBstate\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstate\fR \fBdelete\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstate\fR \fBexists\fR \fIs\fR
.sp
\fIfaName\fR \fBstate\fR \fBrename\fR \fIs\fR \fIsnew\fR
.sp
\fIfaName\fR \fBstartstates\fR
.sp
\fIfaName\fR \fBstart\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstart\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstart?\fR \fIs\fR
.sp
\fIfaName\fR \fBstart?set\fR \fIstateset\fR
.sp
\fIfaName\fR \fBfinalstates\fR
.sp
\fIfaName\fR \fBfinal\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBfinal\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBfinal?\fR \fIs\fR
.sp
\fIfaName\fR \fBfinal?set\fR \fIstateset\fR
.sp
\fIfaName\fR \fBsymbols\fR
.sp
\fIfaName\fR \fBsymbols@\fR \fIs\fR ?\fId\fR?
.sp
\fIfaName\fR \fBsymbols@set\fR \fIstateset\fR
.sp
\fIfaName\fR \fBsymbol\fR \fBadd\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBsymbol\fR \fBdelete\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBsymbol\fR \fBrename\fR \fIsym\fR \fInewsym\fR
.sp
\fIfaName\fR \fBsymbol\fR \fBexists\fR \fIsym\fR
.sp
\fIfaName\fR \fBnext\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
.sp
\fIfaName\fR \fB!next\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
.sp
\fIfaName\fR \fBnextset\fR \fIstateset\fR \fIsym\fR
.sp
\fIfaName\fR \fBis\fR \fBdeterministic\fR
.sp
\fIfaName\fR \fBis\fR \fBcomplete\fR
.sp
\fIfaName\fR \fBis\fR \fBuseful\fR
.sp
\fIfaName\fR \fBis\fR \fBepsilon-free\fR
.sp
\fIfaName\fR \fBreachable_states\fR
.sp
\fIfaName\fR \fBunreachable_states\fR
.sp
\fIfaName\fR \fBreachable\fR \fIs\fR
.sp
\fIfaName\fR \fBuseful_states\fR
.sp
\fIfaName\fR \fBunuseful_states\fR
.sp
\fIfaName\fR \fBuseful\fR \fIs\fR
.sp
\fIfaName\fR \fBepsilon_closure\fR \fIs\fR
.sp
\fIfaName\fR \fBreverse\fR
.sp
\fIfaName\fR \fBcomplete\fR
.sp
\fIfaName\fR \fBremove_eps\fR
.sp
\fIfaName\fR \fBtrim\fR ?\fIwhat\fR?
.sp
\fIfaName\fR \fBdeterminize\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBminimize\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBcomplement\fR
.sp
\fIfaName\fR \fBkleene\fR
.sp
\fIfaName\fR \fBoptional\fR
.sp
\fIfaName\fR \fBunion\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBintersect\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBdifference\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBconcatenate\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBfromRegex\fR \fIregex\fR ?\fIover\fR?
.sp
.BE
.SH DESCRIPTION
.PP
This package provides a container class for
\fIfinite automatons\fR (Short: FA)\&.
It allows the incremental definition of the automaton, its
manipulation and querying of the definition\&.
While the package provides complex operations on the automaton
(via package \fBgrammar::fa::op\fR), it does not have the
ability to execute a definition for a stream of symbols\&.
Use the packages
\fBgrammar::fa::dacceptor\fR and
\fBgrammar::fa::dexec\fR for that\&.
Another package related to this is \fBgrammar::fa::compiler\fR\&. It
turns a FA into an executor class which has the definition of the FA
hardwired into it\&. The output of this package is configurable to suit
a large number of different implementation languages and paradigms\&.
.PP
For more information about what a finite automaton is see section
\fBFINITE AUTOMATONS\fR\&.
.SH API
The package exports the API described here\&.
.TP
\fB::grammar::fa\fR \fIfaName\fR ?\fB=\fR|\fB:=\fR|\fB<--\fR|\fBas\fR|\fBdeserialize\fR \fIsrc\fR|\fBfromRegex\fR \fIre\fR ?\fIover\fR??
Creates a new finite automaton with an associated global Tcl command
whose name is \fIfaName\fR\&. This command may be used to invoke various
operations on the automaton\&. It has the following general form:
.RS
.TP
\fBfaName\fR \fIoption\fR ?\fIarg arg \&.\&.\&.\fR?
\fIOption\fR and the \fIarg\fRs determine the exact behavior of the
command\&. See section \fBFA METHODS\fR for more explanations\&. The
new automaton will be empty if no \fIsrc\fR is specified\&. Otherwise
it will contain a copy of the definition contained in the \fIsrc\fR\&.
The \fIsrc\fR has to be a FA object reference for all operators except
\fBdeserialize\fR and \fBfromRegex\fR\&. The \fBdeserialize\fR
operator requires \fIsrc\fR to be the serialization of a FA instead,
and \fBfromRegex\fR takes a regular expression in the form a of a
syntax tree\&. See \fB::grammar::fa::op::fromRegex\fR for more detail on
that\&.
.RE
.PP
.SH "FA METHODS"
.PP
All automatons provide the following methods for their manipulation:
.TP
\fIfaName\fR \fBdestroy\fR
Destroys the automaton, including its storage space and associated
command\&.
.TP
\fIfaName\fR \fBclear\fR
Clears out the definition of the automaton contained in \fIfaName\fR,
but does \fInot\fR destroy the object\&.
.TP
\fIfaName\fR \fB=\fR \fIsrcFA\fR
Assigns the contents of the automaton contained
in \fIsrcFA\fR to \fIfaName\fR, overwriting any
existing definition\&.
This is the assignment operator for automatons\&. It copies the
automaton contained in the FA object \fIsrcFA\fR over the automaton
definition in \fIfaName\fR\&. The old contents of \fIfaName\fR are
deleted by this operation\&.
.sp
This operation is in effect equivalent to
.sp
.CS


    \fIfaName\fR \fBdeserialize\fR [\fIsrcFA\fR \fBserialize\fR]

.CE
.TP
\fIfaName\fR \fB-->\fR \fIdstFA\fR
This is the reverse assignment operator for automatons\&. It copies the
automation contained in the object \fIfaName\fR over the automaton
definition in the object \fIdstFA\fR\&.
The old contents of \fIdstFA\fR are deleted by this operation\&.
.sp
This operation is in effect equivalent to
.sp
.CS


    \fIdstFA\fR \fBdeserialize\fR [\fIfaName\fR \fBserialize\fR]

.CE
.TP
\fIfaName\fR \fBserialize\fR
This method serializes the automaton stored in \fIfaName\fR\&. In other
words it returns a tcl \fIvalue\fR completely describing that
automaton\&.
This allows, for example, the transfer of automatons over arbitrary
channels, persistence, etc\&.
This method is also the basis for both the copy constructor and the
assignment operator\&.
.sp
The result of this method has to be semantically identical over all
implementations of the \fBgrammar::fa\fR interface\&. This is what
will enable us to copy automatons between different implementations of
the same interface\&.
.sp
The result is a list of three elements with the following structure:
.RS
.IP [1]
The constant string \fBgrammar::fa\fR\&.
.IP [2]
A list containing the names of all known input symbols\&. The order of
elements in this list is not relevant\&.
.IP [3]
The last item in the list is a dictionary, however the order of the
keys is important as well\&. The keys are the states of the serialized
FA, and their order is the order in which to create the states when
deserializing\&. This is relevant to preserve the order relationship
between states\&.
.sp
The value of each dictionary entry is a list of three elements
describing the state in more detail\&.
.RS
.IP [1]
A boolean flag\&. If its value is \fBtrue\fR then the state is a
start state, otherwise it is not\&.
.IP [2]
A boolean flag\&. If its value is \fBtrue\fR then the state is a
final state, otherwise it is not\&.
.IP [3]
The last element is a dictionary describing the transitions for the
state\&. The keys are symbols (or the empty string), and the values are
sets of successor states\&.
.RE
.RE
.sp
Assuming the following FA (which describes the life of a truck driver
in a very simple way :)
.sp
.CS


    Drive -- yellow --> Brake -- red --> (Stop) -- red/yellow --> Attention -- green --> Drive
    (\&.\&.\&.) is the start state\&.

.CE
.sp
a possible serialization is
.sp
.CS


    grammar::fa \\
    {yellow red green red/yellow} \\
    {Drive     {0 0 {yellow     Brake}} \\
     Brake     {0 0 {red        Stop}} \\
     Stop      {1 0 {red/yellow Attention}} \\
     Attention {0 0 {green      Drive}}}

.CE
.sp
A possible one, because I did not care about creation order here
.TP
\fIfaName\fR \fBdeserialize\fR \fIserialization\fR
This is the complement to \fBserialize\fR\&. It replaces the
automaton definition in \fIfaName\fR with the automaton described by
the \fIserialization\fR value\&. The old contents of \fIfaName\fR are
deleted by this operation\&.
.TP
\fIfaName\fR \fBstates\fR
Returns the set of all states known to \fIfaName\fR\&.
.TP
\fIfaName\fR \fBstate\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Adds the states \fIs1\fR, \fIs2\fR, et cetera to the FA definition in
\fIfaName\fR\&. The operation will fail any of the new states is already
declared\&.
.TP
\fIfaName\fR \fBstate\fR \fBdelete\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Deletes the state \fIs1\fR, \fIs2\fR, et cetera, and all associated
information from the FA definition in \fIfaName\fR\&. The latter means
that the information about in- or outbound transitions is deleted as
well\&. If the deleted state was a start or final state then this
information is invalidated as well\&. The operation will fail if the
state \fIs\fR is not known to the FA\&.
.TP
\fIfaName\fR \fBstate\fR \fBexists\fR \fIs\fR
A predicate\&. It tests whether the state \fIs\fR is known to the FA in
\fIfaName\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state \fIs\fR is known, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBstate\fR \fBrename\fR \fIs\fR \fIsnew\fR
Renames the state \fIs\fR to \fIsnew\fR\&. Fails if \fIs\fR is not a
known state\&. Also fails if \fIsnew\fR is already known as a state\&.
.TP
\fIfaName\fR \fBstartstates\fR
Returns the set of states which are marked as \fIstart\fR states,
also known as \fIinitial\fR states\&.
See \fBFINITE AUTOMATONS\fR for explanations what this means\&.
.TP
\fIfaName\fR \fBstart\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fIstart\fR (aka \fIinitial\fR)\&.
.TP
\fIfaName\fR \fBstart\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fInot start\fR (aka \fInot accepting\fR)\&.
.TP
\fIfaName\fR \fBstart?\fR \fIs\fR
A predicate\&. It tests if the state \fIs\fR in the FA \fIfaName\fR is
\fIstart\fR or not\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state \fIs\fR is \fIstart\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBstart?set\fR \fIstateset\fR
A predicate\&. It tests if the set of states \fIstateset\fR contains at
least one start state\&. They operation will fail if the set contains an
element which is not a known state\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if a
start state is present in \fIstateset\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBfinalstates\fR
Returns the set of states which are marked as \fIfinal\fR states,
also known as \fIaccepting\fR states\&.
See \fBFINITE AUTOMATONS\fR for explanations what this means\&.
.TP
\fIfaName\fR \fBfinal\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fIfinal\fR (aka \fIaccepting\fR)\&.
.TP
\fIfaName\fR \fBfinal\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fInot final\fR (aka \fInot accepting\fR)\&.
.TP
\fIfaName\fR \fBfinal?\fR \fIs\fR
A predicate\&. It tests if the state \fIs\fR in the FA \fIfaName\fR is
\fIfinal\fR or not\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state \fIs\fR is \fIfinal\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBfinal?set\fR \fIstateset\fR
A predicate\&. It tests if the set of states \fIstateset\fR contains at
least one final state\&. They operation will fail if the set contains an
element which is not a known state\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if a
final state is present in \fIstateset\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBsymbols\fR
Returns the set of all symbols known to the FA \fIfaName\fR\&.
.TP
\fIfaName\fR \fBsymbols@\fR \fIs\fR ?\fId\fR?
Returns the set of all symbols for which the state \fIs\fR has transitions\&.
If the empty symbol is present then \fIs\fR has epsilon transitions\&. If two
states are specified the result is the set of symbols which have transitions
from \fIs\fR to \fIt\fR\&. This set may be empty if there are no transitions
between the two specified states\&.
.TP
\fIfaName\fR \fBsymbols@set\fR \fIstateset\fR
Returns the set of all symbols for which at least one state in the set
of states \fIstateset\fR has transitions\&.
In other words, the union of [\fIfaName\fR \fBsymbols@\fR \fBs\fR]
for all states \fBs\fR in \fIstateset\fR\&.
If the empty symbol is present then at least one state contained in
\fIstateset\fR has epsilon transitions\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBadd\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
Adds the symbols \fIsym1\fR, \fIsym2\fR, et cetera to the FA
definition in \fIfaName\fR\&. The operation will fail any of the symbols
is already declared\&. The empty string is not allowed as a value for the symbols\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBdelete\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
Deletes the symbols \fIsym1\fR, \fIsym2\fR et cetera, and all
associated information from the FA definition in \fIfaName\fR\&. The
latter means that all transitions using the symbols are deleted as
well\&. The operation will fail if any of the symbols is not known to
the FA\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBrename\fR \fIsym\fR \fInewsym\fR
Renames the symbol \fIsym\fR to \fInewsym\fR\&. Fails if \fIsym\fR is
not a known symbol\&. Also fails if \fInewsym\fR is already known as a
symbol\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBexists\fR \fIsym\fR
A predicate\&. It tests whether the symbol \fIsym\fR is known to the FA
in \fIfaName\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
symbol \fIsym\fR is known, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBnext\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
Define or query transition information\&.
.sp
If \fInext\fR is specified, then the method will add a transition from
the state \fIs\fR to the \fIsuccessor\fR state \fInext\fR labeled with
the symbol \fIsym\fR to the FA contained in \fIfaName\fR\&. The
operation will fail if \fIs\fR, or \fInext\fR are not known states, or
if \fIsym\fR is not a known symbol\&. An exception to the latter is that
\fIsym\fR is allowed to be the empty string\&. In that case the new
transition is an \fIepsilon transition\fR which will not consume
input when traversed\&. The operation will also fail if the combination
of (\fIs\fR, \fIsym\fR, and \fInext\fR) is already present in the FA\&.
.sp
If \fInext\fR was not specified, then the method will return
the set of states which can be reached from \fIs\fR through
a single transition labeled with symbol \fIsym\fR\&.
.TP
\fIfaName\fR \fB!next\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
Remove one or more transitions from the Fa in \fIfaName\fR\&.
.sp
If \fInext\fR was specified then the single transition from the state
\fIs\fR to the state \fInext\fR labeled with the symbol \fIsym\fR is
removed from the FA\&. Otherwise \fIall\fR transitions originating in
state \fIs\fR and labeled with the symbol \fIsym\fR will be removed\&.
.sp
The operation will fail if \fIs\fR and/or \fInext\fR are not known as
states\&. It will also fail if a non-empty \fIsym\fR is not known as
symbol\&. The empty string is acceptable, and allows the removal of
epsilon transitions\&.
.TP
\fIfaName\fR \fBnextset\fR \fIstateset\fR \fIsym\fR
Returns the set of states which can be reached by a single transition
originating in a state in the set \fIstateset\fR and labeled with the
symbol \fIsym\fR\&.
.sp
In other words, this is the union of
[\fIfaName\fR next \fBs\fR \fIsymbol\fR]
for all states \fBs\fR in \fIstateset\fR\&.
.TP
\fIfaName\fR \fBis\fR \fBdeterministic\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is a
deterministic FA or not\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBis\fR \fBcomplete\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is a complete FA
or not\&. A FA is complete if it has at least one transition per state
and symbol\&. This also means that a FA without symbols, or states is
also complete\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.sp
Note: When a FA has epsilon-transitions transitions over a symbol for
a state S can be indirect, i\&.e\&. not attached directly to S, but to a
state in the epsilon-closure of S\&. The symbols for such indirect
transitions count when computing completeness\&.
.TP
\fIfaName\fR \fBis\fR \fBuseful\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is an useful FA
or not\&. A FA is useful if all states are \fIreachable\fR
and \fIuseful\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBis\fR \fBepsilon-free\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is an
epsilon-free FA or not\&. A FA is epsilon-free if it has no epsilon
transitions\&. This definition means that all deterministic FAs are
epsilon-free as well, and epsilon-freeness is a necessary
pre-condition for deterministic'ness\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBreachable_states\fR
Returns the set of states which are reachable from a start state by
one or more transitions\&.
.TP
\fIfaName\fR \fBunreachable_states\fR
Returns the set of states which are not reachable from any start state
by any number of transitions\&. This is
.sp
.CS


	 [faName states] - [faName reachable_states]

.CE
.TP
\fIfaName\fR \fBreachable\fR \fIs\fR
A predicate\&. It tests whether the state \fIs\fR in the FA \fIfaName\fR
can be reached from a start state by one or more transitions\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state can be reached, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBuseful_states\fR
Returns the set of states which are able to reach a final state by
one or more transitions\&.
.TP
\fIfaName\fR \fBunuseful_states\fR
Returns the set of states which are not able to reach a final state by
any number of transitions\&. This is
.sp
.CS


	 [faName states] - [faName useful_states]

.CE
.TP
\fIfaName\fR \fBuseful\fR \fIs\fR
A predicate\&. It tests whether the state \fIs\fR in the FA \fIfaName\fR
is able to reach a final state by one or more transitions\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state is useful, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBepsilon_closure\fR \fIs\fR
Returns the set of states which are reachable from the state \fIs\fR
in the FA \fIfaName\fR by one or more epsilon transitions, i\&.e
transitions over the empty symbol, transitions which do not consume
input\&. This is called the \fIepsilon closure\fR of \fIs\fR\&.
.TP
\fIfaName\fR \fBreverse\fR
.TP
\fIfaName\fR \fBcomplete\fR
.TP
\fIfaName\fR \fBremove_eps\fR
.TP
\fIfaName\fR \fBtrim\fR ?\fIwhat\fR?
.TP
\fIfaName\fR \fBdeterminize\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBminimize\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBcomplement\fR
.TP
\fIfaName\fR \fBkleene\fR
.TP
\fIfaName\fR \fBoptional\fR
.TP
\fIfaName\fR \fBunion\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBintersect\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBdifference\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBconcatenate\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBfromRegex\fR \fIregex\fR ?\fIover\fR?
These methods provide more complex operations on the FA\&.  Please see
the same-named commands in the package \fBgrammar::fa::op\fR for
descriptions of what they do\&.
.PP
.PP
.SH EXAMPLES
.PP
.SH "FINITE AUTOMATONS"
.PP
For the mathematically inclined, a FA is a 5-tuple (S,Sy,St,Fi,T) where
.IP \(bu
S is a set of \fIstates\fR,
.IP \(bu
Sy a set of \fIinput symbols\fR,
.IP \(bu
St is a subset of S, the set of \fIstart\fR states, also known as
\fIinitial\fR states\&.
.IP \(bu
Fi is a subset of S, the set of \fIfinal\fR states, also known as
\fIaccepting\fR\&.
.IP \(bu
T is a function from S x (Sy + epsilon) to {S}, the \fItransition function\fR\&.
Here \fBepsilon\fR denotes the empty input symbol and is distinct
from all symbols in Sy; and {S} is the set of subsets of S\&. In other
words, T maps a combination of State and Input (which can be empty) to
a set of \fIsuccessor states\fR\&.
.PP
.PP
In computer theory a FA is most often shown as a graph where the nodes
represent the states, and the edges between the nodes encode the
transition function: For all n in S' = T (s, sy) we have one edge
between the nodes representing s and n resp\&., labeled with sy\&. The
start and accepting states are encoded through distinct visual
markers, i\&.e\&. they are attributes of the nodes\&.
.PP
FA's are used to process streams of symbols over Sy\&.
.PP
A specific FA is said to \fIaccept\fR a finite stream sy_1 sy_2
\&.\&.\&. sy_n if there is a path in the graph of the FA beginning at a
state in St and ending at a state in Fi whose edges have the labels
sy_1, sy_2, etc\&. to sy_n\&.
The set of all strings accepted by the FA is the \fIlanguage\fR of
the FA\&. One important equivalence is that the set of languages which
can be accepted by an FA is the set of \fIregular languages\fR\&.
.PP
Another important concept is that of deterministic FAs\&. A FA is said
to be \fIdeterministic\fR if for each string of input symbols there
is exactly one path in the graph of the FA beginning at the start
state and whose edges are labeled with the symbols in the string\&.
While it might seem that non-deterministic FAs to have more power of
recognition, this is not so\&. For each non-deterministic FA we can
construct a deterministic FA which accepts the same language (-->
Thompson's subset construction)\&.
.PP
While one of the premier applications of FAs is in \fIparsing\fR,
especially in the \fIlexer\fR stage (where symbols == characters),
this is not the only possibility by far\&.
.PP
Quite a lot of processes can be modeled as a FA, albeit with a
possibly large set of states\&. For these the notion of accepting states
is often less or not relevant at all\&. What is needed instead is the
ability to act to state changes in the FA, i\&.e\&. to generate some
output in response to the input\&.
This transforms a FA into a \fIfinite transducer\fR, which has an
additional set OSy of \fIoutput symbols\fR and also an additional
\fIoutput function\fR O which maps from "S x (Sy + epsilon)" to
"(Osy + epsilon)", i\&.e a combination of state and input, possibly
empty to an output symbol, or nothing\&.
.PP
For the graph representation this means that edges are additional
labeled with the output symbol to write when this edge is traversed
while matching input\&. Note that for an application "writing an output
symbol" can also be "executing some code"\&.
.PP
Transducers are not handled by this package\&. They will get their own
package in the future\&.
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fIgrammar_fa\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
automaton, finite automaton, grammar, parsing, regular expression, regular grammar, regular languages, state, transducer
.SH CATEGORY
Grammars and finite automata
.SH COPYRIGHT
.nf
Copyright (c) 2004-2009 Andreas Kupries <andreas_kupries@users\&.sourceforge\&.net>

.fi