1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
|
'\"
'\" Generated from file 'fa\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004-2009 Andreas Kupries <andreas_kupries@users\&.sourceforge\&.net>
'\"
.TH "grammar::fa" n 0\&.4 tcllib "Finite automaton operations and usage"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
grammar::fa \- Create and manipulate finite automatons
.SH SYNOPSIS
package require \fBTcl 8\&.4\fR
.sp
package require \fBsnit 1\&.3\fR
.sp
package require \fBstruct::list \fR
.sp
package require \fBstruct::set \fR
.sp
package require \fBgrammar::fa::op ?0\&.2?\fR
.sp
package require \fBgrammar::fa ?0\&.4?\fR
.sp
\fB::grammar::fa\fR \fIfaName\fR ?\fB=\fR|\fB:=\fR|\fB<--\fR|\fBas\fR|\fBdeserialize\fR \fIsrc\fR|\fBfromRegex\fR \fIre\fR ?\fIover\fR??
.sp
\fBfaName\fR \fIoption\fR ?\fIarg arg \&.\&.\&.\fR?
.sp
\fIfaName\fR \fBdestroy\fR
.sp
\fIfaName\fR \fBclear\fR
.sp
\fIfaName\fR \fB=\fR \fIsrcFA\fR
.sp
\fIfaName\fR \fB-->\fR \fIdstFA\fR
.sp
\fIfaName\fR \fBserialize\fR
.sp
\fIfaName\fR \fBdeserialize\fR \fIserialization\fR
.sp
\fIfaName\fR \fBstates\fR
.sp
\fIfaName\fR \fBstate\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstate\fR \fBdelete\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstate\fR \fBexists\fR \fIs\fR
.sp
\fIfaName\fR \fBstate\fR \fBrename\fR \fIs\fR \fIsnew\fR
.sp
\fIfaName\fR \fBstartstates\fR
.sp
\fIfaName\fR \fBstart\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstart\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBstart?\fR \fIs\fR
.sp
\fIfaName\fR \fBstart?set\fR \fIstateset\fR
.sp
\fIfaName\fR \fBfinalstates\fR
.sp
\fIfaName\fR \fBfinal\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBfinal\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBfinal?\fR \fIs\fR
.sp
\fIfaName\fR \fBfinal?set\fR \fIstateset\fR
.sp
\fIfaName\fR \fBsymbols\fR
.sp
\fIfaName\fR \fBsymbols@\fR \fIs\fR ?\fId\fR?
.sp
\fIfaName\fR \fBsymbols@set\fR \fIstateset\fR
.sp
\fIfaName\fR \fBsymbol\fR \fBadd\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBsymbol\fR \fBdelete\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
.sp
\fIfaName\fR \fBsymbol\fR \fBrename\fR \fIsym\fR \fInewsym\fR
.sp
\fIfaName\fR \fBsymbol\fR \fBexists\fR \fIsym\fR
.sp
\fIfaName\fR \fBnext\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
.sp
\fIfaName\fR \fB!next\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
.sp
\fIfaName\fR \fBnextset\fR \fIstateset\fR \fIsym\fR
.sp
\fIfaName\fR \fBis\fR \fBdeterministic\fR
.sp
\fIfaName\fR \fBis\fR \fBcomplete\fR
.sp
\fIfaName\fR \fBis\fR \fBuseful\fR
.sp
\fIfaName\fR \fBis\fR \fBepsilon-free\fR
.sp
\fIfaName\fR \fBreachable_states\fR
.sp
\fIfaName\fR \fBunreachable_states\fR
.sp
\fIfaName\fR \fBreachable\fR \fIs\fR
.sp
\fIfaName\fR \fBuseful_states\fR
.sp
\fIfaName\fR \fBunuseful_states\fR
.sp
\fIfaName\fR \fBuseful\fR \fIs\fR
.sp
\fIfaName\fR \fBepsilon_closure\fR \fIs\fR
.sp
\fIfaName\fR \fBreverse\fR
.sp
\fIfaName\fR \fBcomplete\fR
.sp
\fIfaName\fR \fBremove_eps\fR
.sp
\fIfaName\fR \fBtrim\fR ?\fIwhat\fR?
.sp
\fIfaName\fR \fBdeterminize\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBminimize\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBcomplement\fR
.sp
\fIfaName\fR \fBkleene\fR
.sp
\fIfaName\fR \fBoptional\fR
.sp
\fIfaName\fR \fBunion\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBintersect\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBdifference\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBconcatenate\fR \fIfa\fR ?\fImapvar\fR?
.sp
\fIfaName\fR \fBfromRegex\fR \fIregex\fR ?\fIover\fR?
.sp
.BE
.SH DESCRIPTION
.PP
This package provides a container class for
\fIfinite automatons\fR (Short: FA)\&.
It allows the incremental definition of the automaton, its
manipulation and querying of the definition\&.
While the package provides complex operations on the automaton
(via package \fBgrammar::fa::op\fR), it does not have the
ability to execute a definition for a stream of symbols\&.
Use the packages
\fBgrammar::fa::dacceptor\fR and
\fBgrammar::fa::dexec\fR for that\&.
Another package related to this is \fBgrammar::fa::compiler\fR\&. It
turns a FA into an executor class which has the definition of the FA
hardwired into it\&. The output of this package is configurable to suit
a large number of different implementation languages and paradigms\&.
.PP
For more information about what a finite automaton is see section
\fBFINITE AUTOMATONS\fR\&.
.SH API
The package exports the API described here\&.
.TP
\fB::grammar::fa\fR \fIfaName\fR ?\fB=\fR|\fB:=\fR|\fB<--\fR|\fBas\fR|\fBdeserialize\fR \fIsrc\fR|\fBfromRegex\fR \fIre\fR ?\fIover\fR??
Creates a new finite automaton with an associated global Tcl command
whose name is \fIfaName\fR\&. This command may be used to invoke various
operations on the automaton\&. It has the following general form:
.RS
.TP
\fBfaName\fR \fIoption\fR ?\fIarg arg \&.\&.\&.\fR?
\fIOption\fR and the \fIarg\fRs determine the exact behavior of the
command\&. See section \fBFA METHODS\fR for more explanations\&. The
new automaton will be empty if no \fIsrc\fR is specified\&. Otherwise
it will contain a copy of the definition contained in the \fIsrc\fR\&.
The \fIsrc\fR has to be a FA object reference for all operators except
\fBdeserialize\fR and \fBfromRegex\fR\&. The \fBdeserialize\fR
operator requires \fIsrc\fR to be the serialization of a FA instead,
and \fBfromRegex\fR takes a regular expression in the form a of a
syntax tree\&. See \fB::grammar::fa::op::fromRegex\fR for more detail on
that\&.
.RE
.PP
.SH "FA METHODS"
.PP
All automatons provide the following methods for their manipulation:
.TP
\fIfaName\fR \fBdestroy\fR
Destroys the automaton, including its storage space and associated
command\&.
.TP
\fIfaName\fR \fBclear\fR
Clears out the definition of the automaton contained in \fIfaName\fR,
but does \fInot\fR destroy the object\&.
.TP
\fIfaName\fR \fB=\fR \fIsrcFA\fR
Assigns the contents of the automaton contained
in \fIsrcFA\fR to \fIfaName\fR, overwriting any
existing definition\&.
This is the assignment operator for automatons\&. It copies the
automaton contained in the FA object \fIsrcFA\fR over the automaton
definition in \fIfaName\fR\&. The old contents of \fIfaName\fR are
deleted by this operation\&.
.sp
This operation is in effect equivalent to
.sp
.CS
\fIfaName\fR \fBdeserialize\fR [\fIsrcFA\fR \fBserialize\fR]
.CE
.TP
\fIfaName\fR \fB-->\fR \fIdstFA\fR
This is the reverse assignment operator for automatons\&. It copies the
automation contained in the object \fIfaName\fR over the automaton
definition in the object \fIdstFA\fR\&.
The old contents of \fIdstFA\fR are deleted by this operation\&.
.sp
This operation is in effect equivalent to
.sp
.CS
\fIdstFA\fR \fBdeserialize\fR [\fIfaName\fR \fBserialize\fR]
.CE
.TP
\fIfaName\fR \fBserialize\fR
This method serializes the automaton stored in \fIfaName\fR\&. In other
words it returns a tcl \fIvalue\fR completely describing that
automaton\&.
This allows, for example, the transfer of automatons over arbitrary
channels, persistence, etc\&.
This method is also the basis for both the copy constructor and the
assignment operator\&.
.sp
The result of this method has to be semantically identical over all
implementations of the \fBgrammar::fa\fR interface\&. This is what
will enable us to copy automatons between different implementations of
the same interface\&.
.sp
The result is a list of three elements with the following structure:
.RS
.IP [1]
The constant string \fBgrammar::fa\fR\&.
.IP [2]
A list containing the names of all known input symbols\&. The order of
elements in this list is not relevant\&.
.IP [3]
The last item in the list is a dictionary, however the order of the
keys is important as well\&. The keys are the states of the serialized
FA, and their order is the order in which to create the states when
deserializing\&. This is relevant to preserve the order relationship
between states\&.
.sp
The value of each dictionary entry is a list of three elements
describing the state in more detail\&.
.RS
.IP [1]
A boolean flag\&. If its value is \fBtrue\fR then the state is a
start state, otherwise it is not\&.
.IP [2]
A boolean flag\&. If its value is \fBtrue\fR then the state is a
final state, otherwise it is not\&.
.IP [3]
The last element is a dictionary describing the transitions for the
state\&. The keys are symbols (or the empty string), and the values are
sets of successor states\&.
.RE
.RE
.sp
Assuming the following FA (which describes the life of a truck driver
in a very simple way :)
.sp
.CS
Drive -- yellow --> Brake -- red --> (Stop) -- red/yellow --> Attention -- green --> Drive
(\&.\&.\&.) is the start state\&.
.CE
.sp
a possible serialization is
.sp
.CS
grammar::fa \\
{yellow red green red/yellow} \\
{Drive {0 0 {yellow Brake}} \\
Brake {0 0 {red Stop}} \\
Stop {1 0 {red/yellow Attention}} \\
Attention {0 0 {green Drive}}}
.CE
.sp
A possible one, because I did not care about creation order here
.TP
\fIfaName\fR \fBdeserialize\fR \fIserialization\fR
This is the complement to \fBserialize\fR\&. It replaces the
automaton definition in \fIfaName\fR with the automaton described by
the \fIserialization\fR value\&. The old contents of \fIfaName\fR are
deleted by this operation\&.
.TP
\fIfaName\fR \fBstates\fR
Returns the set of all states known to \fIfaName\fR\&.
.TP
\fIfaName\fR \fBstate\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Adds the states \fIs1\fR, \fIs2\fR, et cetera to the FA definition in
\fIfaName\fR\&. The operation will fail any of the new states is already
declared\&.
.TP
\fIfaName\fR \fBstate\fR \fBdelete\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Deletes the state \fIs1\fR, \fIs2\fR, et cetera, and all associated
information from the FA definition in \fIfaName\fR\&. The latter means
that the information about in- or outbound transitions is deleted as
well\&. If the deleted state was a start or final state then this
information is invalidated as well\&. The operation will fail if the
state \fIs\fR is not known to the FA\&.
.TP
\fIfaName\fR \fBstate\fR \fBexists\fR \fIs\fR
A predicate\&. It tests whether the state \fIs\fR is known to the FA in
\fIfaName\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state \fIs\fR is known, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBstate\fR \fBrename\fR \fIs\fR \fIsnew\fR
Renames the state \fIs\fR to \fIsnew\fR\&. Fails if \fIs\fR is not a
known state\&. Also fails if \fIsnew\fR is already known as a state\&.
.TP
\fIfaName\fR \fBstartstates\fR
Returns the set of states which are marked as \fIstart\fR states,
also known as \fIinitial\fR states\&.
See \fBFINITE AUTOMATONS\fR for explanations what this means\&.
.TP
\fIfaName\fR \fBstart\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fIstart\fR (aka \fIinitial\fR)\&.
.TP
\fIfaName\fR \fBstart\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fInot start\fR (aka \fInot accepting\fR)\&.
.TP
\fIfaName\fR \fBstart?\fR \fIs\fR
A predicate\&. It tests if the state \fIs\fR in the FA \fIfaName\fR is
\fIstart\fR or not\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state \fIs\fR is \fIstart\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBstart?set\fR \fIstateset\fR
A predicate\&. It tests if the set of states \fIstateset\fR contains at
least one start state\&. They operation will fail if the set contains an
element which is not a known state\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if a
start state is present in \fIstateset\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBfinalstates\fR
Returns the set of states which are marked as \fIfinal\fR states,
also known as \fIaccepting\fR states\&.
See \fBFINITE AUTOMATONS\fR for explanations what this means\&.
.TP
\fIfaName\fR \fBfinal\fR \fBadd\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fIfinal\fR (aka \fIaccepting\fR)\&.
.TP
\fIfaName\fR \fBfinal\fR \fBremove\fR \fIs1\fR ?\fIs2\fR \&.\&.\&.?
Mark the states \fIs1\fR, \fIs2\fR, et cetera in the FA \fIfaName\fR
as \fInot final\fR (aka \fInot accepting\fR)\&.
.TP
\fIfaName\fR \fBfinal?\fR \fIs\fR
A predicate\&. It tests if the state \fIs\fR in the FA \fIfaName\fR is
\fIfinal\fR or not\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state \fIs\fR is \fIfinal\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBfinal?set\fR \fIstateset\fR
A predicate\&. It tests if the set of states \fIstateset\fR contains at
least one final state\&. They operation will fail if the set contains an
element which is not a known state\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if a
final state is present in \fIstateset\fR, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBsymbols\fR
Returns the set of all symbols known to the FA \fIfaName\fR\&.
.TP
\fIfaName\fR \fBsymbols@\fR \fIs\fR ?\fId\fR?
Returns the set of all symbols for which the state \fIs\fR has transitions\&.
If the empty symbol is present then \fIs\fR has epsilon transitions\&. If two
states are specified the result is the set of symbols which have transitions
from \fIs\fR to \fIt\fR\&. This set may be empty if there are no transitions
between the two specified states\&.
.TP
\fIfaName\fR \fBsymbols@set\fR \fIstateset\fR
Returns the set of all symbols for which at least one state in the set
of states \fIstateset\fR has transitions\&.
In other words, the union of [\fIfaName\fR \fBsymbols@\fR \fBs\fR]
for all states \fBs\fR in \fIstateset\fR\&.
If the empty symbol is present then at least one state contained in
\fIstateset\fR has epsilon transitions\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBadd\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
Adds the symbols \fIsym1\fR, \fIsym2\fR, et cetera to the FA
definition in \fIfaName\fR\&. The operation will fail any of the symbols
is already declared\&. The empty string is not allowed as a value for the symbols\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBdelete\fR \fIsym1\fR ?\fIsym2\fR \&.\&.\&.?
Deletes the symbols \fIsym1\fR, \fIsym2\fR et cetera, and all
associated information from the FA definition in \fIfaName\fR\&. The
latter means that all transitions using the symbols are deleted as
well\&. The operation will fail if any of the symbols is not known to
the FA\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBrename\fR \fIsym\fR \fInewsym\fR
Renames the symbol \fIsym\fR to \fInewsym\fR\&. Fails if \fIsym\fR is
not a known symbol\&. Also fails if \fInewsym\fR is already known as a
symbol\&.
.TP
\fIfaName\fR \fBsymbol\fR \fBexists\fR \fIsym\fR
A predicate\&. It tests whether the symbol \fIsym\fR is known to the FA
in \fIfaName\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
symbol \fIsym\fR is known, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBnext\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
Define or query transition information\&.
.sp
If \fInext\fR is specified, then the method will add a transition from
the state \fIs\fR to the \fIsuccessor\fR state \fInext\fR labeled with
the symbol \fIsym\fR to the FA contained in \fIfaName\fR\&. The
operation will fail if \fIs\fR, or \fInext\fR are not known states, or
if \fIsym\fR is not a known symbol\&. An exception to the latter is that
\fIsym\fR is allowed to be the empty string\&. In that case the new
transition is an \fIepsilon transition\fR which will not consume
input when traversed\&. The operation will also fail if the combination
of (\fIs\fR, \fIsym\fR, and \fInext\fR) is already present in the FA\&.
.sp
If \fInext\fR was not specified, then the method will return
the set of states which can be reached from \fIs\fR through
a single transition labeled with symbol \fIsym\fR\&.
.TP
\fIfaName\fR \fB!next\fR \fIs\fR \fIsym\fR ?\fB-->\fR \fInext\fR?
Remove one or more transitions from the Fa in \fIfaName\fR\&.
.sp
If \fInext\fR was specified then the single transition from the state
\fIs\fR to the state \fInext\fR labeled with the symbol \fIsym\fR is
removed from the FA\&. Otherwise \fIall\fR transitions originating in
state \fIs\fR and labeled with the symbol \fIsym\fR will be removed\&.
.sp
The operation will fail if \fIs\fR and/or \fInext\fR are not known as
states\&. It will also fail if a non-empty \fIsym\fR is not known as
symbol\&. The empty string is acceptable, and allows the removal of
epsilon transitions\&.
.TP
\fIfaName\fR \fBnextset\fR \fIstateset\fR \fIsym\fR
Returns the set of states which can be reached by a single transition
originating in a state in the set \fIstateset\fR and labeled with the
symbol \fIsym\fR\&.
.sp
In other words, this is the union of
[\fIfaName\fR next \fBs\fR \fIsymbol\fR]
for all states \fBs\fR in \fIstateset\fR\&.
.TP
\fIfaName\fR \fBis\fR \fBdeterministic\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is a
deterministic FA or not\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBis\fR \fBcomplete\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is a complete FA
or not\&. A FA is complete if it has at least one transition per state
and symbol\&. This also means that a FA without symbols, or states is
also complete\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.sp
Note: When a FA has epsilon-transitions transitions over a symbol for
a state S can be indirect, i\&.e\&. not attached directly to S, but to a
state in the epsilon-closure of S\&. The symbols for such indirect
transitions count when computing completeness\&.
.TP
\fIfaName\fR \fBis\fR \fBuseful\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is an useful FA
or not\&. A FA is useful if all states are \fIreachable\fR
and \fIuseful\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBis\fR \fBepsilon-free\fR
A predicate\&. It tests whether the FA in \fIfaName\fR is an
epsilon-free FA or not\&. A FA is epsilon-free if it has no epsilon
transitions\&. This definition means that all deterministic FAs are
epsilon-free as well, and epsilon-freeness is a necessary
pre-condition for deterministic'ness\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
FA is deterministic, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBreachable_states\fR
Returns the set of states which are reachable from a start state by
one or more transitions\&.
.TP
\fIfaName\fR \fBunreachable_states\fR
Returns the set of states which are not reachable from any start state
by any number of transitions\&. This is
.sp
.CS
[faName states] - [faName reachable_states]
.CE
.TP
\fIfaName\fR \fBreachable\fR \fIs\fR
A predicate\&. It tests whether the state \fIs\fR in the FA \fIfaName\fR
can be reached from a start state by one or more transitions\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state can be reached, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBuseful_states\fR
Returns the set of states which are able to reach a final state by
one or more transitions\&.
.TP
\fIfaName\fR \fBunuseful_states\fR
Returns the set of states which are not able to reach a final state by
any number of transitions\&. This is
.sp
.CS
[faName states] - [faName useful_states]
.CE
.TP
\fIfaName\fR \fBuseful\fR \fIs\fR
A predicate\&. It tests whether the state \fIs\fR in the FA \fIfaName\fR
is able to reach a final state by one or more transitions\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
state is useful, and \fBfalse\fR otherwise\&.
.TP
\fIfaName\fR \fBepsilon_closure\fR \fIs\fR
Returns the set of states which are reachable from the state \fIs\fR
in the FA \fIfaName\fR by one or more epsilon transitions, i\&.e
transitions over the empty symbol, transitions which do not consume
input\&. This is called the \fIepsilon closure\fR of \fIs\fR\&.
.TP
\fIfaName\fR \fBreverse\fR
.TP
\fIfaName\fR \fBcomplete\fR
.TP
\fIfaName\fR \fBremove_eps\fR
.TP
\fIfaName\fR \fBtrim\fR ?\fIwhat\fR?
.TP
\fIfaName\fR \fBdeterminize\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBminimize\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBcomplement\fR
.TP
\fIfaName\fR \fBkleene\fR
.TP
\fIfaName\fR \fBoptional\fR
.TP
\fIfaName\fR \fBunion\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBintersect\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBdifference\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBconcatenate\fR \fIfa\fR ?\fImapvar\fR?
.TP
\fIfaName\fR \fBfromRegex\fR \fIregex\fR ?\fIover\fR?
These methods provide more complex operations on the FA\&. Please see
the same-named commands in the package \fBgrammar::fa::op\fR for
descriptions of what they do\&.
.PP
.PP
.SH EXAMPLES
.PP
.SH "FINITE AUTOMATONS"
.PP
For the mathematically inclined, a FA is a 5-tuple (S,Sy,St,Fi,T) where
.IP \(bu
S is a set of \fIstates\fR,
.IP \(bu
Sy a set of \fIinput symbols\fR,
.IP \(bu
St is a subset of S, the set of \fIstart\fR states, also known as
\fIinitial\fR states\&.
.IP \(bu
Fi is a subset of S, the set of \fIfinal\fR states, also known as
\fIaccepting\fR\&.
.IP \(bu
T is a function from S x (Sy + epsilon) to {S}, the \fItransition function\fR\&.
Here \fBepsilon\fR denotes the empty input symbol and is distinct
from all symbols in Sy; and {S} is the set of subsets of S\&. In other
words, T maps a combination of State and Input (which can be empty) to
a set of \fIsuccessor states\fR\&.
.PP
.PP
In computer theory a FA is most often shown as a graph where the nodes
represent the states, and the edges between the nodes encode the
transition function: For all n in S' = T (s, sy) we have one edge
between the nodes representing s and n resp\&., labeled with sy\&. The
start and accepting states are encoded through distinct visual
markers, i\&.e\&. they are attributes of the nodes\&.
.PP
FA's are used to process streams of symbols over Sy\&.
.PP
A specific FA is said to \fIaccept\fR a finite stream sy_1 sy_2
\&.\&.\&. sy_n if there is a path in the graph of the FA beginning at a
state in St and ending at a state in Fi whose edges have the labels
sy_1, sy_2, etc\&. to sy_n\&.
The set of all strings accepted by the FA is the \fIlanguage\fR of
the FA\&. One important equivalence is that the set of languages which
can be accepted by an FA is the set of \fIregular languages\fR\&.
.PP
Another important concept is that of deterministic FAs\&. A FA is said
to be \fIdeterministic\fR if for each string of input symbols there
is exactly one path in the graph of the FA beginning at the start
state and whose edges are labeled with the symbols in the string\&.
While it might seem that non-deterministic FAs to have more power of
recognition, this is not so\&. For each non-deterministic FA we can
construct a deterministic FA which accepts the same language (-->
Thompson's subset construction)\&.
.PP
While one of the premier applications of FAs is in \fIparsing\fR,
especially in the \fIlexer\fR stage (where symbols == characters),
this is not the only possibility by far\&.
.PP
Quite a lot of processes can be modeled as a FA, albeit with a
possibly large set of states\&. For these the notion of accepting states
is often less or not relevant at all\&. What is needed instead is the
ability to act to state changes in the FA, i\&.e\&. to generate some
output in response to the input\&.
This transforms a FA into a \fIfinite transducer\fR, which has an
additional set OSy of \fIoutput symbols\fR and also an additional
\fIoutput function\fR O which maps from "S x (Sy + epsilon)" to
"(Osy + epsilon)", i\&.e a combination of state and input, possibly
empty to an output symbol, or nothing\&.
.PP
For the graph representation this means that edges are additional
labeled with the output symbol to write when this edge is traversed
while matching input\&. Note that for an application "writing an output
symbol" can also be "executing some code"\&.
.PP
Transducers are not handled by this package\&. They will get their own
package in the future\&.
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fIgrammar_fa\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
automaton, finite automaton, grammar, parsing, regular expression, regular grammar, regular languages, state, transducer
.SH CATEGORY
Grammars and finite automata
.SH COPYRIGHT
.nf
Copyright (c) 2004-2009 Andreas Kupries <andreas_kupries@users\&.sourceforge\&.net>
.fi
|