File: peg.n

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (858 lines) | stat: -rw-r--r-- 28,176 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
'\"
'\" Generated from file 'peg\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2005 Andreas Kupries <andreas_kupries@users\&.sourceforge\&.net>
'\"
.TH "grammar::peg" n 0\&.1 tcllib "Grammar operations and usage"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
grammar::peg \- Create and manipulate parsing expression grammars
.SH SYNOPSIS
package require \fBTcl  8\&.4\fR
.sp
package require \fBsnit \fR
.sp
package require \fBgrammar::peg  ?0\&.1?\fR
.sp
\fB::grammar::peg\fR \fIpegName\fR ?\fB=\fR|\fB:=\fR|\fB<--\fR|\fBas\fR|\fBdeserialize\fR \fIsrc\fR?
.sp
\fIpegName\fR \fBdestroy\fR
.sp
\fIpegName\fR \fBclear\fR
.sp
\fIpegName\fR \fB=\fR \fIsrcPEG\fR
.sp
\fIpegName\fR \fB-->\fR \fIdstPEG\fR
.sp
\fIpegName\fR \fBserialize\fR
.sp
\fIpegName\fR \fBdeserialize\fR \fIserialization\fR
.sp
\fIpegName\fR \fBis valid\fR
.sp
\fIpegName\fR \fBstart\fR ?\fIpe\fR?
.sp
\fIpegName\fR \fBnonterminals\fR
.sp
\fIpegName\fR \fBnonterminal add\fR \fInt\fR \fIpe\fR
.sp
\fIpegName\fR \fBnonterminal delete\fR \fInt1\fR ?\fInt2\fR \&.\&.\&.?
.sp
\fIpegName\fR \fBnonterminal exists\fR \fInt\fR
.sp
\fIpegName\fR \fBnonterminal rename\fR \fInt\fR \fIntnew\fR
.sp
\fIpegName\fR \fBnonterminal mode\fR \fInt\fR ?\fImode\fR?
.sp
\fIpegName\fR \fBnonterminal rule\fR \fInt\fR
.sp
\fIpegName\fR \fBunknown nonterminals\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package provides a container class for
\fIparsing expression grammars\fR (Short: PEG)\&.
It allows the incremental definition of the grammar, its manipulation
and querying of the definition\&.
The package neither provides complex operations on the grammar, nor has
it the ability to execute a grammar definition for a stream of symbols\&.
Two packages related to this one are \fBgrammar::mengine\fR and
\fBgrammar::peg::interpreter\fR\&. The first of them defines a
general virtual machine for the matching of a character stream, and
the second implements an interpreter for parsing expression grammars
on top of that virtual machine\&.
.SS "TERMS & CONCEPTS"
PEGs are similar to context-free grammars, but not equivalent; in some
cases PEGs are strictly more powerful than context-free grammars (there
exist PEGs for some non-context-free languages)\&.
The formal mathematical definition of parsing expressions and parsing
expression grammars can be found in section
\fBPARSING EXPRESSION GRAMMARS\fR\&.
.PP
In short, we have \fIterminal symbols\fR, which are the most basic
building blocks for \fIsentences\fR, and \fInonterminal symbols\fR
with associated \fIparsing expressions\fR, defining the grammatical
structure of the sentences\&. The two sets of symbols are distinctive,
and do not overlap\&. When speaking about symbols the word "symbol" is
often left out\&. The union of the sets of terminal and nonterminal
symbols is called the set of \fIsymbols\fR\&.
.PP
Here the set of \fIterminal symbols\fR is not explicitly managed,
but implicitly defined as the set of all characters\&. Note that this
means that we inherit from Tcl the ability to handle all of Unicode\&.
.PP
A pair of \fInonterminal\fR and \fIparsing expression\fR is also
called a \fIgrammatical rule\fR, or \fIrule\fR for short\&. In the
context of a rule the nonterminal is often called the left-hand-side
(LHS), and the parsing expression the right-hand-side (RHS)\&.
.PP
The \fIstart expression\fR of a grammar is a parsing expression
from which all the sentences contained in the language specified by
the grammar are \fIderived\fR\&.
To make the understanding of this term easier let us assume for a
moment that the RHS of each rule, and the start expression, is either
a sequence of symbols, or a series of alternate parsing expressions\&.
In the latter case the rule can be seen as a set of rules, each
providing one alternative for the nonterminal\&.
A parsing expression A' is now a derivation of a parsing expression A
if we pick one of the nonterminals N in the expression, and one of the
alternative rules R for N, and then replace the nonterminal in A with
the RHS of the chosen rule\&. Here we can see why the terminal symbols
are called such\&. They cannot be expanded any further, thus terminate
the process of deriving new expressions\&.
An example
.PP
.CS


    Rules
      (1)  A <- a B c
      (2a) B <- d B
      (2b) B <- e

    Some derivations, using starting expression A\&.

      A -/1/-> a B c -/2a/-> a d B c -/2b/-> a d e c

.CE
.PP
A derived expression containing only terminal symbols is a
\fIsentence\fR\&. The set of all sentences which can be derived from
the start expression is the \fIlanguage\fR of the grammar\&.
.PP
Some definitions for nonterminals and expressions:
.IP [1]
A nonterminal A is called \fIreachable\fR if it is possible to derive
a parsing expression from the start expression which contains A\&.
.IP [2]
A nonterminal A is called \fIuseful\fR if it is possible to derive a
sentence from it\&.
.IP [3]
A nonterminal A is called \fIrecursive\fR if it is possible to derive
a parsing expression from it which contains A, again\&.
.IP [4]
The \fIFIRST set\fR of a nonterminal A contains all the symbols which
can occur of as the leftmost symbol in a parsing expression derived from
A\&. If the FIRST set contains A itself then that nonterminal is called
\fIleft-recursive\fR\&.
.IP [5]
The \fILAST set\fR of a nonterminal A contains all the symbols which
can occur of as the rightmost symbol in a parsing expression derived from
A\&. If the LAST set contains A itself then that nonterminal is called
\fIright-recursive\fR\&.
.IP [6]
The \fIFOLLOW set\fR of a nonterminal A contains all the symbols which
can occur after A in a parsing expression derived from the start
expression\&.
.IP [7]
A nonterminal (or parsing expression) is called \fInullable\fR if the
empty sentence can be derived from it\&.
.PP
.PP
And based on the above definitions for grammars:
.IP [1]
A grammar G is \fIrecursive\fR if and only if it contains a nonterminal
A which is recursive\&. The terms \fIleft-\fR and \fIright-recursive\fR,
and \fIuseful\fR are analogously defined\&.
.IP [2]
A grammar is \fIminimal\fR if it contains only \fIreachable\fR and
\fIuseful\fR nonterminals\&.
.IP [3]
A grammar is \fIwellformed\fR if it is not left-recursive\&. Such
grammars are also \fIcomplete\fR, which means that they always succeed
or fail on all input sentences\&. For an incomplete grammar on the
other hand input sentences exist for which an attempt to match them
against the grammar will not terminate\&.
.IP [4]
As we wish to allow ourselves to build a grammar incrementally in a
container object we will encounter stages where the RHS of one or more
rules reference symbols which are not yet known to the container\&. Such
a grammar we call \fIinvalid\fR\&.
We cannot use the term \fIincomplete\fR as this term is already
taken, see the last item\&.
.PP
.PP
.SS "CONTAINER CLASS API"
The package exports the API described here\&.
.TP
\fB::grammar::peg\fR \fIpegName\fR ?\fB=\fR|\fB:=\fR|\fB<--\fR|\fBas\fR|\fBdeserialize\fR \fIsrc\fR?
The command creates a new container object for a parsing expression
grammar and returns the fully qualified name of the object command as
its result\&. The API the returned command is following is described in
the section \fBCONTAINER OBJECT API\fR\&. It may be used to invoke
various operations on the container and the grammar within\&.
.sp
The new container, i\&.e\&. grammar will be empty if no \fIsrc\fR is
specified\&. Otherwise it will contain a copy of the grammar contained
in the \fIsrc\fR\&.
The \fIsrc\fR has to be a container object reference for all operators
except \fBdeserialize\fR\&.
The \fBdeserialize\fR operator requires \fIsrc\fR to be the
serialization of a parsing expression grammar instead\&.
.sp
An empty grammar has no nonterminal symbols, and the start expression
is the empty expression, i\&.e\&. epsilon\&. It is \fIvalid\fR, but not
\fIuseful\fR\&.
.PP
.SS "CONTAINER OBJECT API"
.PP
All grammar container objects provide the following methods for the
manipulation of their contents:
.TP
\fIpegName\fR \fBdestroy\fR
Destroys the grammar, including its storage space and associated
command\&.
.TP
\fIpegName\fR \fBclear\fR
Clears out the definition of the grammar contained in \fIpegName\fR,
but does \fInot\fR destroy the object\&.
.TP
\fIpegName\fR \fB=\fR \fIsrcPEG\fR
Assigns the contents of the grammar contained in \fIsrcPEG\fR to
\fIpegName\fR, overwriting any existing definition\&.
This is the assignment operator for grammars\&. It copies the grammar
contained in the grammar object \fIsrcPEG\fR over the grammar
definition in \fIpegName\fR\&. The old contents of \fIpegName\fR are
deleted by this operation\&.
.sp
This operation is in effect equivalent to
.sp
.CS


    \fIpegName\fR \fBdeserialize\fR [\fIsrcPEG\fR \fBserialize\fR]

.CE
.TP
\fIpegName\fR \fB-->\fR \fIdstPEG\fR
This is the reverse assignment operator for grammars\&. It copies the
automation contained in the object \fIpegName\fR over the grammar
definition in the object \fIdstPEG\fR\&.
The old contents of \fIdstPEG\fR are deleted by this operation\&.
.sp
This operation is in effect equivalent to
.sp
.CS


    \fIdstPEG\fR \fBdeserialize\fR [\fIpegName\fR \fBserialize\fR]

.CE
.TP
\fIpegName\fR \fBserialize\fR
This method serializes the grammar stored in \fIpegName\fR\&. In other
words it returns a tcl \fIvalue\fR completely describing that
grammar\&.
This allows, for example, the transfer of grammars over arbitrary
channels, persistence, etc\&.
This method is also the basis for both the copy constructor and the
assignment operator\&.
.sp
The result of this method has to be semantically identical over all
implementations of the \fBgrammar::peg\fR interface\&. This is what
will enable us to copy grammars between different implementations of
the same interface\&.
.sp
The result is a list of four elements with the following structure:
.RS
.IP [1]
The constant string \fBgrammar::peg\fR\&.
.IP [2]
A dictionary\&. Its keys are the names of all known nonterminal symbols,
and their associated values are the parsing expressions describing
their sentennial structure\&.
.IP [3]
A dictionary\&. Its keys are the names of all known nonterminal symbols,
and their associated values hints to a matcher regarding the semantic
values produced by the symbol\&.
.IP [4]
The last item is a parsing expression, the \fIstart expression\fR
of the grammar\&.
.RE
.sp
Assuming the following PEG for simple mathematical expressions
.sp
.CS


    Digit      <- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9'
    Sign       <- '+' / '-'
    Number     <- Sign? Digit+
    Expression <- '(' Expression ')' / (Factor (MulOp Factor)*)
    MulOp      <- '*' / '/'
    Factor     <- Term (AddOp Term)*
    AddOp      <- '+'/'-'
    Term       <- Number

.CE
.sp
a possible serialization is
.sp
.CS


    grammar::peg \\
    {Expression {/ {x ( Expression )} {x Factor {* {x MulOp Factor}}}} \\
     Factor     {x Term {* {x AddOp Term}}} \\
     Term       Number \\
     MulOp      {/ * /} \\
     AddOp      {/ + -} \\
     Number     {x {? Sign} {+ Digit}} \\
     Sign       {/ + -} \\
     Digit      {/ 0 1 2 3 4 5 6 7 8 9} \\
    } \\
    {Expression value     Factor     value \\
     Term       value     MulOp      value \\
     AddOp      value     Number     value \\
     Sign       value     Digit      value \\
    }
    Expression

.CE
.sp
A possible one, because the order of the nonterminals in the
dictionary is not relevant\&.
.TP
\fIpegName\fR \fBdeserialize\fR \fIserialization\fR
This is the complement to \fBserialize\fR\&. It replaces the grammar
definition in \fIpegName\fR with the grammar described by the
\fIserialization\fR value\&. The old contents of \fIpegName\fR are
deleted by this operation\&.
.TP
\fIpegName\fR \fBis valid\fR
A predicate\&. It tests whether the PEG in \fIpegName\fR is \fIvalid\fR\&.
See section \fBTERMS & CONCEPTS\fR for the definition of this
grammar property\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if
the PEG has the tested property, and \fBfalse\fR otherwise\&.
.TP
\fIpegName\fR \fBstart\fR ?\fIpe\fR?
This method defines the \fIstart expression\fR of the grammar\&. It
replaces the previously defined start expression with the parsing
expression \fIpe\fR\&.
The method fails and throws an error if \fIpe\fR does not contain a
valid parsing expression as specified in the section
\fBPARSING EXPRESSIONS\fR\&. In that case the existing start
expression is not changed\&.
The method returns the empty string as its result\&.
.sp
If the method is called without an argument it will return the currently
defined start expression\&.
.TP
\fIpegName\fR \fBnonterminals\fR
Returns the set of all nonterminal symbols known to the grammar\&.
.TP
\fIpegName\fR \fBnonterminal add\fR \fInt\fR \fIpe\fR
This method adds the nonterminal \fInt\fR and its associated parsing
expression \fIpe\fR to the set of nonterminal symbols and rules of the
PEG contained in the object \fIpegName\fR\&.
The method fails and throws an error if either the string \fInt\fR is
already known as a symbol of the grammar, or if \fIpe\fR does not
contain a valid parsing expression as specified in the section
\fBPARSING EXPRESSIONS\fR\&. In that case the current set of
nonterminal symbols and rules is not changed\&.
The method returns the empty string as its result\&.
.TP
\fIpegName\fR \fBnonterminal delete\fR \fInt1\fR ?\fInt2\fR \&.\&.\&.?
This method removes the named symbols \fInt1\fR, \fInt2\fR from the
set of nonterminal symbols of the PEG contained in the object
\fIpegName\fR\&.
The method fails and throws an error if any of the strings is not
known as a nonterminal symbol\&. In that case the current set of
nonterminal symbols is not changed\&.
The method returns the empty string as its result\&.
.sp
The stored grammar becomes invalid if the deleted nonterminals are
referenced by the RHS of still-known rules\&.
.TP
\fIpegName\fR \fBnonterminal exists\fR \fInt\fR
A predicate\&. It tests whether the nonterminal symbol \fInt\fR is known
to the PEG in \fIpegName\fR\&.
The result is a boolean value\&. It will be set to \fBtrue\fR if the
symbol \fInt\fR is known, and \fBfalse\fR otherwise\&.
.TP
\fIpegName\fR \fBnonterminal rename\fR \fInt\fR \fIntnew\fR
This method renames the nonterminal symbol \fInt\fR to \fIntnew\fR\&.
The method fails and throws an error if either \fInt\fR is not known
as a nonterminal, or if \fIntnew\fR is a known symbol\&.
The method returns the empty string as its result\&.
.TP
\fIpegName\fR \fBnonterminal mode\fR \fInt\fR ?\fImode\fR?
This mode returns or sets the semantic mode associated with the
nonterminal symbol \fInt\fR\&. If no \fImode\fR is specified the
current mode of the nonterminal is returned\&. Otherwise the current
mode is set to \fImode\fR\&.
The method fails and throws an error if \fInt\fR is not known as a
nonterminal\&.
The grammar interpreter implemented by the package
\fBgrammar::peg::interpreter\fR recognizes the
following modes:
.RS
.TP
value
The semantic value of the nonterminal is the abstract syntax tree
created from the AST's of the RHS and a node for the nonterminal
itself\&.
.TP
match
The semantic value of the nonterminal is an the abstract syntax tree
consisting of single a node for the string matched by the RHS\&. The ASTs
generated by the RHS are discarded\&.
.TP
leaf
The semantic value of the nonterminal is an the abstract syntax tree
consisting of single a node for the nonterminal itself\&. The ASTs
generated by the RHS are discarded\&.
.TP
discard
The nonterminal has no semantic value\&. The ASTs generated by the RHS
are discarded (as well)\&.
.RE
.TP
\fIpegName\fR \fBnonterminal rule\fR \fInt\fR
This method returns the parsing expression associated with the
nonterminal \fInt\fR\&.
The method fails and throws an error if \fInt\fR is not known as a
nonterminal\&.
.TP
\fIpegName\fR \fBunknown nonterminals\fR
This method returns a list containing the names of all nonterminal
symbols which are referenced on the RHS of a grammatical rule, but
have no rule definining their structure\&. In other words, a list of
the nonterminal symbols which make the grammar invalid\&. The grammar
is valid if this list is empty\&.
.PP
.PP
.SS "PARSING EXPRESSIONS"
.PP
Various methods of PEG container objects expect a parsing expression
as their argument, or will return such\&. This section specifies the
format such parsing expressions are in\&.
.PP
.IP [1]
The string \fBepsilon\fR is an atomic parsing expression\&. It matches
the empty string\&.
.IP [2]
The string \fBalnum\fR is an atomic parsing expression\&. It matches
any alphanumeric character\&.
.IP [3]
The string \fBalpha\fR is an atomic parsing expression\&. It matches
any alphabetical character\&.
.IP [4]
The string \fBdot\fR is an atomic parsing expression\&. It matches
any character\&.
.IP [5]
The expression
[list t \fBx\fR]
is an atomic parsing expression\&. It matches the terminal string \fBx\fR\&.
.IP [6]
The expression
[list n \fBA\fR]
is an atomic parsing expression\&. It matches the nonterminal \fBA\fR\&.
.IP [7]
For parsing expressions \fBe1\fR, \fBe2\fR, \&.\&.\&. the result of
[list / \fBe1\fR \fBe2\fR \&.\&.\&. ]
is a parsing expression as well\&.
This is the \fIordered choice\fR, aka \fIprioritized choice\fR\&.
.IP [8]
For parsing expressions \fBe1\fR, \fBe2\fR, \&.\&.\&. the result of
[list x \fBe1\fR \fBe2\fR \&.\&.\&. ]
is a parsing expression as well\&.
This is the \fIsequence\fR\&.
.IP [9]
For a parsing expression \fBe\fR the result of
[list * \fBe\fR]
is a parsing expression as well\&.
This is the \fIkleene closure\fR, describing zero or more
repetitions\&.
.IP [10]
For a parsing expression \fBe\fR the result of
[list + \fBe\fR]
is a parsing expression as well\&.
This is the \fIpositive kleene closure\fR, describing one or more
repetitions\&.
.IP [11]
For a parsing expression \fBe\fR the result of
[list & \fBe\fR]
is a parsing expression as well\&.
This is the \fIand lookahead predicate\fR\&.
.IP [12]
For a parsing expression \fBe\fR the result of
[list ! \fBe\fR]
is a parsing expression as well\&.
This is the \fInot lookahead predicate\fR\&.
.IP [13]
For a parsing expression \fBe\fR the result of
[list ? \fBe\fR]
is a parsing expression as well\&.
This is the \fIoptional input\fR\&.
.PP
.PP
Examples of parsing expressions where already shown, in the
description of the method \fBserialize\fR\&.
.SH "PARSING EXPRESSION GRAMMARS"
.PP
For the mathematically inclined, a PEG is a 4-tuple (VN,VT,R,eS) where
.IP \(bu
VN is a set of \fInonterminal symbols\fR,
.IP \(bu
VT is a set of \fIterminal symbols\fR,
.IP \(bu
R is a finite set of rules, where each rule is a pair (A,e), A in VN,
and \fIe\fR a \fIparsing expression\fR\&.
.IP \(bu
eS is a parsing expression, the \fIstart expression\fR\&.
.PP
.PP
Further constraints are
.IP \(bu
The intersection of VN and VT is empty\&.
.IP \(bu
For all A in VT exists exactly one pair (A,e) in R\&. In other words, R
is a function from nonterminal symbols to parsing expressions\&.
.PP
.PP
Parsing expression are inductively defined via
.IP \(bu
The empty string (epsilon) is a parsing expression\&.
.IP \(bu
A terminal symbol \fIa\fR is a parsing expression\&.
.IP \(bu
A nonterminal symbol \fIA\fR is a parsing expression\&.
.IP \(bu
\fIe1\fR\fIe2\fR is a parsing expression for parsing expressions
\fIe1\fR and \fI2\fR\&. This is called \fIsequence\fR\&.
.IP \(bu
\fIe1\fR/\fIe2\fR is a parsing expression for parsing expressions
\fIe1\fR and \fI2\fR\&. This is called \fIordered choice\fR\&.
.IP \(bu
\fIe\fR* is a parsing expression for parsing expression
\fIe\fR\&. This is called \fIzero-or-more repetitions\fR, also known
as \fIkleene closure\fR\&.
.IP \(bu
\fIe\fR+ is a parsing expression for parsing expression
\fIe\fR\&. This is called \fIone-or-more repetitions\fR, also known
as \fIpositive kleene closure\fR\&.
.IP \(bu
!\fIe\fR is a parsing expression for parsing expression
\fIe1\fR\&. This is called a \fInot lookahead predicate\fR\&.
.IP \(bu
&\fIe\fR is a parsing expression for parsing expression
\fIe1\fR\&. This is called an \fIand lookahead predicate\fR\&.
.PP
.PP
.PP
PEGs are used to define a grammatical structure for streams of symbols
over VT\&. They are a modern phrasing of older formalisms invented by
Alexander Birham\&. These formalisms were called TS (TMG recognition
scheme), and gTS (generalized TS)\&. Later they were renamed to TPDL
(Top-Down Parsing Languages) and gTPDL (generalized TPDL)\&.
.PP
They can be easily implemented by recursive descent parsers with
backtracking\&. This makes them relatives of LL(k) Context-Free
Grammars\&.
.SH REFERENCES
.IP [1]
\fIThe Packrat Parsing and Parsing Expression Grammars Page\fR [http://www\&.pdos\&.lcs\&.mit\&.edu/~baford/packrat/],
by Bryan Ford, Massachusetts Institute of Technology\&. This is the main
entry page to PEGs, and their realization through Packrat Parsers\&.
.IP [2]
\fIParsing Techniques - A Practical Guide \fR [http://www\&.cs\&.vu\&.nl/~dick/PTAPG\&.html], an online book
offering a clear, accessible, and thorough discussion of many
different parsing techniques with their interrelations and
applicabilities, including error recovery techniques\&.
.IP [3]
\fICompilers and Compiler Generators\fR [http://scifac\&.ru\&.ac\&.za/compilers/], an online book using
CoCo/R, a generator for recursive descent parsers\&.
.PP
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fIgrammar_peg\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
LL(k), TDPL, context-free languages, expression, grammar, parsing, parsing expression, parsing expression grammar, push down automaton, recursive descent, state, top-down parsing languages, transducer
.SH CATEGORY
Grammars and finite automata
.SH COPYRIGHT
.nf
Copyright (c) 2005 Andreas Kupries <andreas_kupries@users\&.sourceforge\&.net>

.fi