1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
[pageheader "Package: Calculus"]
[synopsis \
{package require Tcl 8.2
package require math::calculus 0.5
::math::calculus::integral begin end nosteps func
::math::calculus::integralExpr begin end nosteps expression
::math::calculus::integral2D xinterval yinterval func
::math::calculus::integral3D xinterval yinterval zinterval func
::math::calculus::eulerStep t tstep xvec func
::math::calculus::heunStep t tstep xvec func
::math::calculus::rungeKuttaStep tstep xvec func
::math::calculus::boundaryValueSecondOrder coeff_func force_func leftbnd rightbnd nostep}]
::math::calculus::newtonRaphson func deriv initval
::math::calculus::newtonRaphsonParameters maxiter tolerance
[section "Introduction"]
The package Calculus implements several simple mathematical algorithms,
such as the integration of a function over an interval and the numerical
integration of a system of ordinary differential equations.
[par]
It is fully implemented in Tcl. No particular attention has been paid to
the accuracy of the calculations. Instead, well-known algorithms have
been used in a straightforward manner.
[par]
This document describes the procedures and explains their usage.
[section "Version and copyright"]
This document describes [italic ::math::calculus], version 0.5, may 2002.
[par]
Usage of Calculus is free, as long as you acknowledge the
author, Arjen Markus (e-mail: arjen.markus@wldelft.nl).
[par]
There is no guarantee nor claim that the results are accurate.
[section "Procedures"]
The Calculus package defines the following public procedures:
[ulist]
[item][italic "integral begin end nosteps func"]
[break]
Determine the integral of the given function using the Simpson
rule. The interval for the integration is [lb]begin,end[rb].
[break]
Other arguments:
[break]
[italic nosteps] - Number of steps in which the interval is divided.
[break]
[italic func] - Function to be integrated. It should take one
single argument.
[par]
[item][italic "integralExpr begin end nosteps expression"]
[break]
Similar to the previous proc, this one determines the integral of
the given [italic expression] using the Simpson rule.
The interval for the integration is [lb]begin,end[rb].
[break]
Other arguments:
[break]
[italic nosteps] - Number of steps in which the interval is divided.
[break]
[italic expression] - Expression to be integrated. It should
use the variable "x" as the only variable (the "integrate")
[par]
[item][italic "integral2D xinterval yinterval func"]
[break]
The [italic integral2D] procedure calculates the integral of
a function of two variables over the rectangle given by the
first two arguments, each a list of three items, the start and
stop interval for the variable and the number of steps.
[break]
The currently implemented integration is simple: the function is
evaluated at the centre of each rectangle and the content of
this block is added to the integral. In future this will be
replaced by a bilinear interpolation.
[break]
The function must take two arguments and return the function
value.
[par]
[item][italic "integral3D xinterval yinterval zinterval func"]
[break]
The [italic integral3D] procedure is the three-dimensional
equivalent of [italic intergral2D]. The function taking three
arguments is integrated over the block in 3D space given by the
intervals.
[par]
[item][italic "eulerStep t tstep xvec func"]
[break]
Set a single step in the numerical integration of a system of
differential equations. The method used is Euler's.
[break]
[italic t] - Value of the independent variable (typically time)
at the beginning of the step.
[break]
[italic tstep] - Step size for the independent variable.
[break]
[italic xvec] - List (vector) of dependent values
[break]
[italic func] - Function of t and the dependent values, returning
a list of the derivatives of the dependent values. (The lengths of
xvec and the return value of "func" must match).
[par]
[item][italic "heunStep t tstep xvec func"]
[break]
Set a single step in the numerical integration of a system of
differential equations. The method used is Heun's.
[break]
[italic t] - Value of the independent variable (typically time)
at the beginning of the step.
[break]
[italic tstep] - Step size for the independent variable.
[break]
[italic xvec] - List (vector) of dependent values
[break]
[italic func] - Function of t and the dependent values, returning
a list of the derivatives of the dependent values. (The lengths of
xvec and the return value of "func" must match).
[par]
[item][italic "rungeKuttaStep tstep xvec func"]
[break]
Set a single step in the numerical integration of a system of
differential equations. The method used is Runge-Kutta 4th
order.
[break]
[italic t] - Value of the independent variable (typically time)
at the beginning of the step.
[break]
[italic tstep] - Step size for the independent variable.
[break]
[italic xvec] - List (vector) of dependent values
[break]
[italic func] - Function of t and the dependent values, returning
a list of the derivatives of the dependent values. (The lengths of
xvec and the return value of "func" must match).
[par]
[item][italic "boundaryValueSecondOrder coeff_func force_func leftbnd rightbnd nostep"]
[break]
Solve a second order linear differential equation with boundary
values at two sides. The equation has to be of the form:
[preserve]
d dy d
-- A(x)-- + -- B(x)y + C(x)y = D(x)
dx dx dx
[endpreserve]
Ordinarily, such an equation would be written as:
[preserve]
d2y dy
a(x)--- + b(x)-- + c(x) y = D(x)
dx2 dx
[endpreserve]
The first form is easier to discretise (by integrating over a
finite volume) than the second form. The relation between the two
forms is fairly straightforward:
[preserve]
A(x) = a(x)
B(x) = b(x) - a'(x)
C(x) = c(x) - B'(x) = c(x) - b'(x) + a''(x)
[endpreserve]
Because of the differentiation, however, it is much easier to ask
the user to provide the functions A, B and C directly.
[break]
[italic coeff_func] - Procedure returning the three coefficients
(A, B, C) of the equation, taking as its one argument the x-coordinate.
[italic force_func] - Procedure returning the right-hand side
(D) as a function of the x-coordinate.
[italic leftbnd] - A list of two values: the x-coordinate of the
left boundary and the value at that boundary.
[italic rightbnd] - A list of two values: the x-coordinate of the
right boundary and the value at that boundary.
[italic nostep] - Number of steps by which to discretise the
interval.
The procedure returns a list of x-coordinates and the approximated
values of the solution.
[par]
[item][italic "solveTriDiagonal acoeff bcoeff ccoeff dvalue"]
[break]
Solve a system of linear equations Ax = b with A a tridiagonal
matrix. Returns the solution as a list.
[break]
[italic acoeff] - List of values on the lower diagonal
[italic bcoeff] - List of values on the main diagonal
[italic ccoeff] - List of values on the upper diagonal
[italic dvalue] - List of values on the righthand-side
[par]
[item][italic "newtonRaphson func deriv initval"]
[break]
Determine the root of an equation given by [italic "f(x) = 0"],
using the Newton-Raphson method.
[break]
[italic func] - Name of the procedure that calculates the function value
[italic deriv - Name of the procedure that calculates the derivative of the function
[italic initval] - Initial value for the iteration
[par]
[item][italic "newtonRaphsonParameters maxiter tolerance"]
[break]
Set new values for the two parameters that gouvern the Newton-Raphson method.
[break]
[italic maxiter] - Maximum number of iterations
[italic tolerance] - Relative error in the calculation
[par]
[endlist]
[italic Notes:]
[break]
Several of the above procedures take the [italic names] of procedures as
arguments. To avoid problems with the [italic visibility] of these
procedures, the fully-qualified name of these procedures is determined
inside the calculus routines. For the user this has only one
consequence: the named procedure must be visible in the calling
procedure. For instance:
[preserve]
namespace eval ::mySpace {
namespace export calcfunc
proc calcfunc { x } { return $x }
}
#
# Use a fully-qualified name
#
namespace eval ::myCalc {
proc detIntegral { begin end } {
return [lb]integral $begin $end 100 ::mySpace::calcfunc[rb]
}
}
#
# Import the name
#
namespace eval ::myCalc {
namespace import ::mySpace::calcfunc
proc detIntegral { begin end } {
return [lb]integral $begin $end 100 calcfunc[rb]
}
}
[endpreserve]
[par]
Enhancements for the second-order boundary value problem:
[ulist]
[item]Other types of boundary conditions (zero gradient, zero flux)
[item]Other schematisation of the first-order term (now central
differences are used, but upstream differences might be useful too).
[endlist]
[section Examples]
Let us take a few simple examples:
[par]
Integrate x over the interval [lb]0,100[rb] (20 steps):
[preserve]
proc linear_func { x } { return $x }
puts "Integral: [lb]::math::calculus::Integral 0 100 20 linear_func[rb]"
[endpreserve]
For simple functions, the alternative could be:
[preserve]
puts "Integral: [lb]::math::calculus::IntegralExpr 0 100 20 {$x}[rb]"
[endpreserve]
Do not forget the braces!
[par]
The differential equation for a dampened oscillator:
[preserve]
x'' + rx' + wx = 0
[endpreserve]
can be split into a system of first-order equations:
[preserve]
x' = y
y' = -ry - wx
[endpreserve]
Then this system can be solved with code like this:
[preserve]
proc dampened_oscillator { t xvec } {
set x [lb]lindex \$xvec 0[rb]
set x1 [lb]lindex \$xvec 1[rb]
return [lb]list \$x1 [lb]expr {-\$x1-\$x}[rb][rb]
}
set xvec { 1.0 0.0 }
set t 0.0
set tstep 0.1
for { set i 0 } { \$i < 20 } { incr i } {
set result [lb]::math::calculus::eulerStep \$t \$tstep \$xvec dampened_oscillator[rb]
puts "Result (\$t): \$result"
set t [lb]expr {\$t+\$tstep}[rb]
set xvec \$result
}
[endpreserve]
Suppose we have the boundary value problem:
[preserve]
Dy'' + ky = 0
x = 0: y = 1
x = L: y = 0
[endpreserve]
This boundary value problem could originate from the diffusion of a
decaying substance.
[par]
It can be solved with the following fragment:
[preserve]
proc coeffs { x } { return [lb]list \$::Diff 0.0 \$::decay[rb] }
proc force { x } { return 0.0 }
set Diff 1.0e-2
set decay 0.0001
set length 100.0
set y [lb]::math::calculus::boundaryValueSecondOrder coeffs force {0.0 1.0} \
[lb]list \$length 0.0[rb] 100[rb]
[endpreserve]
|