File: interpolate.man

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (299 lines) | stat: -rw-r--r-- 9,155 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
[comment {-*- tcl -*- doctools manpage}]
[manpage_begin math::interpolate n 1.1]
[keywords interpolation]
[keywords math]
[keywords {spatial interpolation}]
[copyright {2004 Arjen Markus <arjenmarkus@users.sourceforge.net>}]
[copyright {2004 Kevn B. Kenny <kennykb@users.sourceforge.net>}]
[moddesc   {Tcl Math Library}]
[titledesc {Interpolation routines}]
[category  Mathematics]
[require Tcl [opt 8.4]]
[require struct]
[require math::interpolate [opt 1.1]]

[description]
[para]
This package implements several interpolation algorithms:

[list_begin itemized]
[item]
Interpolation into a table (one or two independent variables), this is useful
for example, if the data are static, like with tables of statistical functions.

[item]
Linear interpolation into a given set of data (organised as (x,y) pairs).

[item]
Lagrange interpolation. This is mainly of theoretical interest, because there is
no guarantee about error bounds. One possible use: if you need a line or
a parabola through given points (it will calculate the values, but not return
the coefficients).
[para]
A variation is Neville's method which has better behaviour and error
bounds.

[item]
Spatial interpolation using a straightforward distance-weight method. This procedure
allows any number of spatial dimensions and any number of dependent variables.

[item]
Interpolation in one dimension using cubic splines.

[list_end]

[para]
This document describes the procedures and explains their usage.

[section "INCOMPATIBILITY WITH VERSION 1.0.3"]

The interpretation of the tables in the [cmd ::math::interpolate::interpolate-1d-table] command
has been changed to be compatible with the interpretation for 2D interpolation in
the [cmd ::math::interpolate::interpolate-table] command. As a consequence this version is
incompatible with the previous versions of the command (1.0.x).

[section "PROCEDURES"]

The interpolation package defines the following public procedures:

[list_begin definitions]

[call [cmd ::math::interpolate::defineTable] [arg name] [arg colnames] [arg values]]

Define a table with one or two independent variables (the distinction is implicit in
the data). The procedure returns the name of the table - this name is used whenever you
want to interpolate the values. [emph Note:] this procedure is a convenient wrapper for the
struct::matrix procedure. Therefore you can access the data at any location in your program.

[list_begin arguments]
[arg_def string name in] Name of the table to be created

[arg_def list colnames in] List of column names

[arg_def list values in] List of values (the number of elements should be a
multiple of the number of columns. See [sectref EXAMPLES] for more information on the
interpretation of the data.

[para]
The values must be sorted with respect to the independent variable(s).

[list_end]
[para]

[call [cmd ::math::interpolate::interp-1d-table] [arg name] [arg xval]]

Interpolate into the one-dimensional table "name" and return a list of values, one for
each dependent column.

[list_begin arguments]
[arg_def string name in] Name of an existing table

[arg_def float xval in] Value of the independent [emph row] variable

[list_end]

[para]

[call [cmd ::math::interpolate::interp-table] [arg name] [arg xval] [arg yval]]

Interpolate into the two-dimensional table "name" and return the interpolated value.

[list_begin arguments]
[arg_def string name in] Name of an existing table

[arg_def float xval in] Value of the independent [emph row] variable

[arg_def float yval in] Value of the independent [emph column] variable

[list_end]

[para]

[call [cmd ::math::interpolate::interp-linear] [arg xyvalues] [arg xval]]

Interpolate linearly into the list of x,y pairs and return the interpolated value.

[list_begin arguments]

[arg_def list xyvalues in] List of pairs of (x,y) values, sorted to increasing x.
They are used as the breakpoints of a piecewise linear function.

[arg_def float xval in] Value of the independent variable for which the value of y
must be computed.

[list_end]

[para]

[call [cmd ::math::interpolate::interp-lagrange] [arg xyvalues] [arg xval]]

Use the list of x,y pairs to construct the unique polynomial of lowest degree
that passes through all points and return the interpolated value.

[list_begin arguments]

[arg_def list xyvalues in] List of pairs of (x,y) values

[arg_def float xval in] Value of the independent variable for which the value of y
must be computed.

[list_end]

[para]

[call [cmd ::math::interpolate::prepare-cubic-splines] [arg xcoord] [arg ycoord]]

Returns a list of coefficients for the second routine
[emph interp-cubic-splines] to actually interpolate.

[list_begin arguments]
[arg_def list xcoord] List of x-coordinates for the value of the
function to be interpolated is known. The coordinates must be strictly
ascending. At least three points are required.

[arg_def list ycoord] List of y-coordinates (the values of the
function at the given x-coordinates).

[list_end]

[para]

[call [cmd ::math::interpolate::interp-cubic-splines] [arg coeffs] [arg x]]

Returns the interpolated value at coordinate x. The coefficients are
computed by the procedure [emph prepare-cubic-splines].

[list_begin arguments]
[arg_def list coeffs] List of coefficients as returned by
prepare-cubic-splines

[arg_def float x] x-coordinate at which to estimate the function. Must
be between the first and last x-coordinate for which values were given.

[list_end]

[para]

[call [cmd ::math::interpolate::interp-spatial] [arg xyvalues] [arg coord]]

Use a straightforward interpolation method with weights as function of the
inverse distance to interpolate in 2D and N-dimensional space

[para]
The list xyvalues is a list of lists:
[example {
    {   {x1 y1 z1 {v11 v12 v13 v14}}
	{x2 y2 z2 {v21 v22 v23 v24}}
	...
    }
}]
The last element of each inner list is either a single number or a list in itself.
In the latter case the return value is a list with the same number of elements.

[para]
The method is influenced by the search radius and the power of the inverse distance

[list_begin arguments]
[arg_def list xyvalues in] List of lists, each sublist being a list of coordinates and
of dependent values.

[arg_def list coord in] List of coordinates for which the values must be calculated

[list_end]

[para]

[call [cmd ::math::interpolate::interp-spatial-params] [arg max_search] [arg power]]

Set the parameters for spatial interpolation

[list_begin arguments]
[arg_def float max_search in] Search radius (data points further than this are ignored)

[arg_def integer power in] Power for the distance (either 1 or 2; defaults to 2)

[list_end]

[call [cmd ::math::interpolate::neville] [arg xlist] [arg ylist] [arg x]]

Interpolates between the tabulated values of a function
whose abscissae are [arg xlist]
and whose ordinates are [arg ylist] to produce an estimate for the value
of the function at [arg x].  The result is a two-element list; the first
element is the function's estimated value, and the second is an estimate
of the absolute error of the result.  Neville's algorithm for polynomial
interpolation is used.  Note that a large table of values will use an
interpolating polynomial of high degree, which is likely to result in
numerical instabilities; one is better off using only a few tabulated
values near the desired abscissa.

[list_end]

[section EXAMPLES]

[emph "Example of using one-dimensional tables:"]
[para]
Suppose you have several tabulated functions of one variable:
[example {
    x     y1     y2
  0.0    0.0    0.0
  1.0    1.0    1.0
  2.0    4.0    8.0
  3.0    9.0   27.0
  4.0   16.0   64.0
}]
Then to estimate the values at 0.5, 1.5, 2.5 and 3.5, you can use:
[example {
   set table [::math::interpolate::defineTable table1 \
       {x y1 y2} {   -      1      2
                   0.0    0.0    0.0
                   1.0    1.0    1.0
                   2.0    4.0    8.0
                   3.0    9.0   27.0
                   4.0   16.0   64.0}]
   foreach x {0.5 1.5 2.5 3.5} {
       puts "$x: [::math::interpolate::interp-1d-table $table $x]"
   }
}]
For one-dimensional tables the first row is not used. For two-dimensional
tables, the first row represents the values for the second independent variable.
[para]

[emph "Example of using the cubic splines:"]
[para]
Suppose the following values are given:
[example {
    x       y
  0.1     1.0
  0.3     2.1
  0.4     2.2
  0.8     4.11
  1.0     4.12
}]
Then to estimate the values at 0.1, 0.2, 0.3, ... 1.0, you can use:
[example {
   set coeffs [::math::interpolate::prepare-cubic-splines \
                 {0.1 0.3 0.4 0.8  1.0} \
                 {1.0 2.1 2.2 4.11 4.12}]
   foreach x {0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0} {
      puts "$x: [::math::interpolate::interp-cubic-splines $coeffs $x]"
   }
}]
to get the following output:
[example {
0.1: 1.0
0.2: 1.68044117647
0.3: 2.1
0.4: 2.2
0.5: 3.11221507353
0.6: 4.25242647059
0.7: 5.41804227941
0.8: 4.11
0.9: 3.95675857843
1.0: 4.12
}]
As you can see, the values at the abscissae are reproduced perfectly.

[vset CATEGORY {math :: interpolate}]
[include ../common-text/feedback.inc]
[manpage_end]