1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
|
%
% \iffalse
%
%<*pkg_common>
%% Copyright (c) 2010 by Lars Hellstrom. All rights reserved.
%% See the file "license.terms" for information on usage and redistribution
%% of this file, and for a DISCLAIMER OF ALL WARRANTIES.
%</pkg_common>
%<*driver>
\documentclass{tclldoc}
\usepackage{amsmath,amsfonts}
\usepackage{url}
\newcommand{\Tcl}{\Tcllogo}
\begin{document}
\DocInput{numtheory.dtx}
\end{document}
%</driver>
% \fi
%
% \title{Number theory package}
% \author{Lars Hellstr\"om}
% \date{30 May 2010}
% \maketitle
%
% \begin{abstract}
% This package provides a command to test whether an integer is a
% prime, but may in time come to house also other number-theoretic
% operations.
% \end{abstract}
%
% \tableofcontents
%
% \section*{Preliminaries}
%
% \begin{tcl}
%<*pkg>
package require Tcl 8.5
% \end{tcl}
% \Tcl~8.4 is seriously broken with respect to arithmetic overflow,
% so we require 8.5. There are (as yet) no explicit 8.5-isms in the
% code, however.
% \begin{tcl}
package provide math::numtheory 1.1.1
namespace eval ::math::numtheory {
namespace export isprime
}
%</pkg>
% \end{tcl}
% Additional procedures are placed into a separate file primes.tcl,
% sourced from the primary.
% \begin{tcl}
%<*pkg_primes>
# primes.tcl --
# Provide additional procedures for the number theory package
#
namespace eval ::math::numtheory {
variable primes {2 3 5 7 11 13 17}
variable nextPrimeCandidate 19
variable nextPrimeIncrement 1 ;# Examine numbers 6n+1 and 6n+5
namespace export firstNprimes primesLowerThan primeFactors uniquePrimeFactors factors \
totient moebius legendre jacobi gcd lcm \
numberPrimesGauss numberPrimesLegendre numberPrimesLegendreModified
}
%</pkg_primes>
% \end{tcl}
% \setnamespace{math::numtheory}
%
% \Tcl lib has its own test file boilerplate.
% We require tcltest 2.1 to allow the definition of a custom matcher
% comparing lists of integers
% \begin{tcl}
%<*test_primes>
# -*- tcl -*-
# primes.test --
# Additional test cases for the ::math::numtheory package
#
# Note:
# The tests assume tcltest 2.1, in order to compare
# list of integer results
# -------------------------------------------------------------------------
%</test_primes>
%<*test_common>
source [file join\
[file dirname [file dirname [file join [pwd] [info script]]]]\
devtools testutilities.tcl]
testsNeedTcl 8.5
testsNeedTcltest 2.1
%</test_common>
%<*test_primes>
support {
useLocal math.tcl math
}
%</test_primes>
%<*test_common>
testing {
useLocal numtheory.tcl math::numtheory
}
%</test_common>
% \end{tcl}
% and a bit more for the additional tests. This is where tcltest 2.1
% is required
% \begin{tcl}
%<*test_primes>
proc matchLists { expected actual } {
set match 1
foreach a $actual e $expected {
if { $a != $e } {
set match 0
break
}
}
return $match
}
customMatch equalLists matchLists
%</test_primes>
% \end{tcl}
%
% And the same is true for the manpage.
% \begin{tcl}
%<*man>
[comment {
__Attention__ This document is a generated file.
It is not the true source.
The true source is
numtheory.dtx
To make changes edit the true source, and then use
sak.tcl docstrip/regen modules/math
to update all generated files.
}]
[vset VERSION 1.1.1]
[manpage_begin math::numtheory n [vset VERSION]]
[keywords {number theory}]
[keywords prime]
[copyright "2010 Lars Hellstr\u00F6m\
<Lars dot Hellstrom at residenset dot net>"]
[moddesc {Tcl Math Library}]
[titledesc {Number Theory}]
[category Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt [vset VERSION]]]
[description]
[para]
This package is for collecting various number-theoretic operations, with
a slight bias to prime numbers.
[list_begin definitions]
%</man>
% \end{tcl}
%
%
% \section{Primes}
%
% The first operation provided is |isprime|, which
% tests if an integer is a prime.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::isprime] [arg N] [
opt "[arg option] [arg value] ..."
]]
The [cmd isprime] command tests whether the integer [arg N] is a
prime, returning a boolean true value for prime [arg N] and a
boolean false value for non-prime [arg N]. The formal definition of
'prime' used is the conventional, that the number being tested is
greater than 1 and only has trivial divisors.
[para]
To be precise, the return value is one of [const 0] (if [arg N] is
definitely not a prime), [const 1] (if [arg N] is definitely a
prime), and [const on] (if [arg N] is probably prime); the latter
two are both boolean true values. The case that an integer may be
classified as "probably prime" arises because the Miller-Rabin
algorithm used in the test implementation is basically probabilistic,
and may if we are unlucky fail to detect that a number is in fact
composite. Options may be used to select the risk of such
"false positives" in the test. [const 1] is returned for "small"
[arg N] (which currently means [arg N] < 118670087467), where it is
known that no false positives are possible.
[para]
The only option currently defined is:
[list_begin options]
[opt_def -randommr [arg repetitions]]
which controls how many times the Miller-Rabin test should be
repeated with randomly chosen bases. Each repetition reduces the
probability of a false positive by a factor at least 4. The
default for [arg repetitions] is 4.
[list_end]
Unknown options are silently ignored.
%</man>
% \end{tcl}
% Then we have |firstNprimes|, which returns a list containing
% the first |n| primes.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::firstNprimes] [arg N]]
Return the first N primes
[list_begin arguments]
[arg_def integer N in]
Number of primes to return
[list_end]
[call [cmd math::numtheory::primesLowerThan] [arg N]]
Return the prime numbers lower/equal to N
[list_begin arguments]
[arg_def integer N in]
Maximum number to consider
[list_end]
[call [cmd math::numtheory::primeFactors] [arg N]]
Return a list of the prime numbers in the number N
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
%</man>
% \end{tcl}
% Similarly |primesLowerThan| returns a list of the prime numbers
% which are less than |n|, or equal to it.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::primesLowerThan] [arg N]]
Return the prime numbers lower/equal to N
[list_begin arguments]
[arg_def integer N in]
Maximum number to consider
[list_end]
%</man>
% \end{tcl}
% Then |primeFactors| returns the list of the prime numbers in |n|.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::primeFactors] [arg N]]
Return a list of the prime numbers in the number N
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
%</man>
% \end{tcl}
% And |uniquePrimeFactors| does the same, with duplicates removed.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::uniquePrimeFactors] [arg N]]
Return a list of the [emph unique] prime numbers in the number N
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
%</man>
% \end{tcl}
% |factors| returns all factors of |n|, not just just primes.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::factors] [arg N]]
Return a list of all [emph unique] factors in the number N, including 1 and N itself
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
%</man>
% \end{tcl}
% |totient| computes the Euler totient for |n|
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::totient] [arg N]]
Evaluate the Euler totient function for the number N (number of numbers
relatively prime to N)
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
%</man>
% \end{tcl}
% |moebius| computes the Moebious function on |n|.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::moebius] [arg N]]
Evaluate the Moebius function for the number N
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
%</man>
% \end{tcl}
% |legendre| computes the Legendre symbol (|a/p|).
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::legendre] [arg a] [arg p]]
Evaluate the Legendre symbol (a/p)
[list_begin arguments]
[arg_def integer a in]
Upper number in the symbol
[arg_def integer p in]
Lower number in the symbol (must be non-zero)
[list_end]
%</man>
% \end{tcl}
% |jacobi| compute the Jacobi symbol (|a/p|).
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::jacobi] [arg a] [arg b]]
Evaluate the Jacobi symbol (a/b)
[list_begin arguments]
[arg_def integer a in]
Upper number in the symbol
[arg_def integer b in]
Lower number in the symbol (must be odd)
[list_end]
%</man>
% \end{tcl}
% |gcd| computes the greatest common divisor of |n| and |m|.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::gcd] [arg m] [arg n]]
Return the greatest common divisor of [term m] and [term n]
[list_begin arguments]
[arg_def integer m in]
First number
[arg_def integer n in]
Second number
[list_end]
%</man>
% \end{tcl}
% |lcm| computes the least common multiple of |n| and |m|.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::lcm] [arg m] [arg n]]
Return the lowest common multiple of [term m] and [term n]
[list_begin arguments]
[arg_def integer m in]
First number
[arg_def integer n in]
Second number
[list_end]
%</man>
% \end{tcl}
% |numberPrimesGauss| estimates the number of primes below |n|
% using a formula by Gauss.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::numberPrimesGauss] [arg N]]
Estimate the number of primes according the formula by Gauss.
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
%</man>
% \end{tcl}
% |numberPrimesLegendre| estimates the number of primes below |n|
% using a formula by Legendre.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::numberPrimesLegendre] [arg N]]
Estimate the number of primes according the formula by Legendre.
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
%</man>
% \end{tcl}
% |numberPrimesLegendreModified| estimates the number of primes below
% |n| using Legendre's modified formula.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::numberPrimesLegendreModified] [arg N]]
Estimate the number of primes according the modified formula by Legendre.
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
%</man>
% \end{tcl}
%
%
% \subsection{Trial division}
%
% As most books on primes will tell you, practical primality
% testing algorithms typically start with trial division by a list
% of small known primes to weed out the low hanging fruit. This is
% also an opportunity to handle special cases that might arise for
% very low numbers (e.g.\ $2$ is a prime despite being even).
%
% \begin{proc}{prime_trialdivision}
% This procedure is meant to be called as
% \begin{quote}
% |prime_trialdivision| \word{$n$}
% \end{quote}
% from \emph{within} a procedure that returns |1| if $n$ is a prime
% and |0| if it is not. It does not return anything particular, but
% \emph{it causes its caller to return provided} it is able to
% decide what its result should be. This means one can slap it in
% as the first line of a primality checker procedure, and then on
% lines two and forth worry only about the nontrivial cases.
% \begin{tcl}
%<*pkg>
proc ::math::numtheory::prime_trialdivision {n} {
if {$n<2} then {return -code return 0}
% \end{tcl}
% Integers less than $2$ aren't primes.\footnote{
% Well, at least as one usually defines the term for integers.
% When considering the concept of prime in more general rings,
% one may have to settle with accepting all associates of primes
% as primes as well.
% } This saves us many worries by excluding negative numbers from
% further considerations.
% \begin{tcl}
if {$n<4} then {return -code return 1}
% \end{tcl}
% Everything else below \(2^2 = 4\) (i.e., $2$ and $3$) are primes.
% \begin{tcl}
if {$n%2 == 0} then {return -code return 0}
% \end{tcl}
% Remaining even numbers are then composite.
% \begin{tcl}
if {$n<9} then {return -code return 1}
% \end{tcl}
% Now everything left below \(3^2 = 9\) (i.e., $5$ and $7$) are
% primes. Having decided those, we can now do trial division with
% $3$, $5$, and $7$ in one go.
% \begin{tcl}
if {$n%3 == 0} then {return -code return 0}
if {$n%5 == 0} then {return -code return 0}
if {$n%7 == 0} then {return -code return 0}
% \end{tcl}
% Any numbers less that \(11^2 = 121\) not yet eliminated are
% primes; above that we know nothing.
% \begin{tcl}
if {$n<121} then {return -code return 1}
}
%</pkg>
% \end{tcl}
% This procedure could be extended with more primes, pushing the
% limit of what can be decided further up, but the returns are
% diminishing, so we might be better off with a different method
% for testing primality. No analysis of where the cut-off point
% lies have been conducted (i.e., $7$ as last prime for trial
% division was picked arbitrarily), but note that the optimum
% probably depends on what distribution the input values will have.
%
% \begin{tcl}
%<*test>
test prime_trialdivision-1 "Trial division of 1" -body {
::math::numtheory::prime_trialdivision 1
} -returnCodes 2 -result 0
test prime_trialdivision-2 "Trial division of 2" -body {
::math::numtheory::prime_trialdivision 2
} -returnCodes 2 -result 1
test prime_trialdivision-3 "Trial division of 6" -body {
::math::numtheory::prime_trialdivision 6
} -returnCodes 2 -result 0
test prime_trialdivision-4 "Trial division of 7" -body {
::math::numtheory::prime_trialdivision 7
} -returnCodes 2 -result 1
test prime_trialdivision-5 "Trial division of 101" -body {
::math::numtheory::prime_trialdivision 101
} -returnCodes 2 -result 1
test prime_trialdivision-6 "Trial division of 105" -body {
::math::numtheory::prime_trialdivision 105
} -returnCodes 2 -result 0
% \end{tcl}
% Note that extending the number of primes for trial division is
% likely to change the results in the following two tests ($121$
% is composite, $127$ is prime).
% \begin{tcl}
test prime_trialdivision-7 "Trial division of 121" -body {
::math::numtheory::prime_trialdivision 121
} -returnCodes 0 -result ""
test prime_trialdivision-8 "Trial division of 127" -body {
::math::numtheory::prime_trialdivision 127
} -returnCodes 0 -result ""
%</test>
% \end{tcl}
% \end{proc}
%
%
% \subsection{Pseudoprimality tests}
%
% After trial division, the next thing tried is usually to test the
% claim of Fermat's little theorem: if $n$ is a prime, then \(a^{n-1}
% \equiv 1 \pmod{n}\) for all integers $a$ that are not multiples of
% $n$, in particular those \(0 < a < n\); one picks such an $a$ (more
% or less at random) and computes $a^{n-1} \bmod n$. Numbers that
% pass are said to be \emph{(Fermat) pseudoprimes (to base $a$)}.
% Most composite numbers quickly fail this test.
% (One particular class that fails are the powers of primes, since
% the group of invertible elements in $\mathbb{Z}_n$ for \(n = p^{k+1}\)
% is cyclic\footnote{
% The easiest way to see that it is cyclic is probably to exhibit
% an element of order $(p -\nobreak 1) p^k$. A good start is to
% pick a primitive root $a$ of $\mathbb{Z}_p$ and compute its order
% modulo $p^{k+1}$; this has to be a number on the form $(p
% -\nobreak 1) p^r$. If \(r=k\) then $a$ is a primitive root and we're
% done, otherwise $(p +\nobreak 1) a$ will be a primitive root
% because $p+1$ can be shown to have order $p^k$ modulo $n$ and the
% least common multiple of $(p -\nobreak 1) p^r$ and $p^k$ is
% $(p -\nobreak 1) p^k$. To exhibit the order of $p+1$, one may
% use induction on $k$ to show that \( (1 +\nobreak p)^N \equiv 1
% \pmod{p^{k+1}}\) implies \(p^k \mid N\); in \((1 +\nobreak p)^N =
% \sum_{i=0}^N \binom{N}{i} p^i\), the induction hypothesis implies
% all terms with \(i>1\) vanish modulo $p^{k+1}$, leaving just
% \(1+Np \equiv 1 \pmod{p^{k+1}}\).
% } of order $(p -\nobreak 1) p^k$ rather than order $p^{k+1}-1$.
% Therefore it is only to bases $a$ of order dividing $p-1$ (i.e., a
% total of $p-1$ out of $p^{k+1}-1$) that prime powers are
% pseudoprimes. The chances of picking one of these are generally
% rather slim.)
%
% Unfortunately, there are also numbers (the so-called \emph{Carmichael
% numbers}) which are pseudoprimes to every base $a$ they are coprime
% with. While the above trial division by $2$, $3$, $5$, and $7$ would
% already have eliminated all Carmichael numbers below \(29341 = 13
% \cdot 37 \cdot 61\), their existence means that there is a
% population of nonprimes which a Fermat pseudoprimality test is very
% likely to mistake for primes; this would usually not be acceptable.
%
% \begin{proc}{Miller--Rabin}
% The Miller--Rabin test is a slight variation on the Fermat test,
% where the computation of $a^{n-1} \bmod n$ is structured so that
% additional consequences of $n$ being a prime can be tested.
% Rabin~\cite{Rabin}
% proved that any composite $n$ will for this test be revealed as
% such by at least $3/4$ of all bases $a$, thus making it a valid
% probabilistic test. (Miller~\cite{Miller} had first designed it as
% a deterministic polynomial algorithm, but in that case the proof
% that it works relies on the generalised Riemann hypothesis.)
%
% Given natural numbers $s$ and $d$ such that \(n-1 = 2^s d\), the
% computation of $a^{n-1}$ is organised as $(a^d)^{2^s}$, where the
% $s$ part is conveniently performed by squaring $s$ times. This is
% of little consequence when $n$ is not a pseudoprime since one
% will simply arrive at some \(a^{n-1} \not\equiv 1 \pmod{n}\), but
% in the case that $n$ is a pseudoprime these repeated squarings will
% exhibit some $x$ such that \(x^2 \equiv 1 \pmod{n}\), and this
% makes it possible to test another property $n$ must have if it is
% prime, namely that such an \(x \equiv \pm 1 \pmod{n}\).
%
% That implication is of course well known for real (and complex)
% numbers, but even though what we're dealing with here is rather
% residue classes modulo an integer, the proof that it holds is
% basically the same. If $n$ is a prime, then the residue class
% ring $\mathbb{Z}_n$ is a field, and hence the ring
% $\mathbb{Z}_n[x]$ of polynomials over that field is a Unique
% Factorisation Domain. As it happens, \(x^2 \equiv 1 \pmod{n}\) is
% a polynomial equation, and $x^2-1$ has the known factorisation
% \((x -\nobreak 1) (x +\nobreak 1)\). Since factorisations are
% unique, and any zero $a$ of $x^2-1$ would give rise to a factor
% $x-a$, it follows that \(x^2 \equiv 1 \pmod{n}\) implies \(x
% \equiv 1 \pmod{n}\) or \(x \equiv -1 \pmod{n}\), as claimed.
% But this assumes $n$ is a prime.
%
% If instead \(n = pq\) where \(p,q > 2\) are coprime, then there
% will be additional solutions to \(x^2 \equiv 1 \pmod{n}\).
% For example, if \(x \equiv 1 \pmod{p}\) and \(x \equiv -1
% \pmod{q}\) (and such $x$ exist by the Chinese Remainder Theorem),
% then \(x^2 \equiv 1 \pmod{p}\) and \(x^2 \equiv 1 \pmod{q}\),
% from which follows \(x^2 \equiv 1 \pmod{pq}\), but \(x \not\equiv
% 1 \pmod{n}\) since \(x-1 \equiv -2 \not\equiv 0 \pmod{q}\), and
% \(x \not\equiv -1 \pmod{n}\) since \(x+1 \equiv 2 \not\equiv 0
% \pmod{p}\). The same argument applies when \(x \equiv -1 \pmod{p}\)
% and \(x \equiv 1 \pmod{q}\), and in general, if $n$ has $k$
% distinct odd prime factors then one may construct $2^k$ distinct
% solutions \(0<x<n\) to \(x^2 \equiv 1 \pmod{n}\). It is thus not
% too hard to imagine that a ``random'' $a^d$ squaring to $1$
% modulo $n$ will be one of the nonstandard square roots of~$1$
% when $n$ is not a prime, even if the above is not a proof that
% at least $3/4$ of all $a$ are witnesses to the compositeness
% of~$n$.
%
% Getting down to the implementation, the actual procedure has the
% call syntax
% \begin{quote}
% |Miller--Rabin| \word{n} \word{s} \word{d} \word{a}
% \end{quote}
% where all arguments should be integers such that \(n-1 = d2^s\),
% \(d,s \geq 1\), and \(0 < a < n\). The procedure computes
% $(a^d)^{2^s} \mod n$, and if in the course of doing this the
% Miller--Rabin test detects that $n$ is composite then this procedure
% will return |1|, otherwise it returns |0|.
%
% The first part of the procedure merely computes \(x = a^d \bmod n\),
% using exponentiation by squaring. $x$, $a$, and $d$ are modified in
% the loop, but $xa^d \bmod n$ would be an invariant quantity.
% Correctness presumes the initial \(d \geq 1\).
% \begin{tcl}
%<*pkg>
proc ::math::numtheory::Miller--Rabin {n s d a} {
set x 1
while {$d>1} {
if {$d & 1} then {set x [expr {$x*$a % $n}]}
set a [expr {$a*$a % $n}]
set d [expr {$d >> 1}]
}
set x [expr {$x*$a % $n}]
% \end{tcl}
% The second part will $s-1$ times square $x$, while checking each
% value for being \(\equiv \pm 1 \pmod{n}\). For most part, $-1$
% means everything is OK (any subsequent square would only
% yield~$1$) whereas $1$ arrived at without a previous $-1$ signals
% that $n$ cannot be prime. The only exception to the latter is
% that $1$ before the first squaring (already \(a^d \equiv 1
% \pmod{n}\)) is OK as well.
% \begin{tcl}
if {$x == 1} then {return 0}
for {} {$s>1} {incr s -1} {
if {$x == $n-1} then {return 0}
set x [expr {$x*$x % $n}]
if {$x == 1} then {return 1}
}
% \end{tcl}
% There is no need to square $x$ the $s$th time, because if at this
% point \(x \not\equiv -1 \pmod{n}\) then $n$ cannot be a prime; if
% \(x^2 \not\equiv 1 \pmod{n}\) it would fail to be a pseudoprime
% and if \(x^2 \equiv 1 \pmod{n}\) then $x$ would be a nonstandard
% square root of $1 \pmod{n}$, but it is not necessary to find out
% which of these cases is at hand.
% \begin{tcl}
return [expr {$x != $n-1}]
}
%</pkg>
% \end{tcl}
%
% As for testing, the minimal allowed value of $n$ is $3$, which
% is a prime.
% \begin{tcl}
%<*test>
test Miller--Rabin-1.1 "Miller--Rabin 3" -body {
list [::math::numtheory::Miller--Rabin 3 1 1 1]\
[::math::numtheory::Miller--Rabin 3 1 1 2]
} -result {0 0}
% \end{tcl}
% To exercise the first part of the procedure, one may consider the
% case \(s=1\) and \(d = 2^2+2^0 = 5\), i.e., \(n=11\). Here, \(2^5
% \equiv -1 \pmod{11}\) whereas \(4^5 \equiv 1^5 \equiv 1
% \pmod{11}\). A bug on the lines of not using the right factors in
% the computation of $a^d$ would most likely end up with something
% different here.
% \begin{tcl}
test Miller--Rabin-1.2 "Miller--Rabin 11" -body {
list [::math::numtheory::Miller--Rabin 11 1 5 1]\
[::math::numtheory::Miller--Rabin 11 1 5 2]\
[::math::numtheory::Miller--Rabin 11 1 5 4]
} -result {0 0 0}
% \end{tcl}
% $27$ will on the other hand be exposed as composite by most bases,
% but $1$ and $-1$ do not spot it. It is known from the argument
% about prime powers above that at least one of $2$ and \(8 = (3
% +\nobreak 1) \cdot 2\) is a primitive root of $1$ in
% $\mathbb{Z}_{27}$; it turns out to be $2$.
% \begin{tcl}
test Miller--Rabin-1.3 "Miller--Rabin 27" -body {
list [::math::numtheory::Miller--Rabin 27 1 13 1]\
[::math::numtheory::Miller--Rabin 27 1 13 2]\
[::math::numtheory::Miller--Rabin 27 1 13 3]\
[::math::numtheory::Miller--Rabin 27 1 13 4]\
[::math::numtheory::Miller--Rabin 27 1 13 8]\
[::math::numtheory::Miller--Rabin 27 1 13 26]
} -result {0 1 1 1 1 0}
% \end{tcl}
% Taking \(n = 65 = 1 + 2^6 = 5 \cdot 13\) instead focuses on the
% second part of the procedure. By carefully choosing the base, it
% is possible to force the result to come from:
% \begin{tcl}
test Miller--Rabin-1.4 "Miller--Rabin 65" -body {
% \end{tcl}
% The first |return|
% \begin{tcl}
list [::math::numtheory::Miller--Rabin 65 6 1 1]\
% \end{tcl}
% the second |return|, first iteration
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 64]\
% \end{tcl}
% the third |return|, first iteration---\(14 \equiv 1 \pmod{13}\)
% but \(14 \equiv -1 \pmod{5}\)
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 14]\
% \end{tcl}
% the second |return|, second iteration
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 8]\
% \end{tcl}
% the third |return|, second iteration---\(27 \equiv 1 \pmod{13}\)
% but \(27^2 \equiv 2^2 \equiv -1 \pmod{5}\)
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 27]\
% \end{tcl}
% the final |return|
% \begin{tcl}
[::math::numtheory::Miller--Rabin 65 6 1 2]
} -result {0 0 1 0 1 1}
% \end{tcl}
% There does however not seem to be any \(n=65\) choice of $a$ which
% would get a |0| out of the final |return|.
%
% An $n$ which allows fully exercising the second part of the
% procedure is \(17 \cdot 257 = 4369\), for which \(s=4\)
% and \(d=273\). In order to have \(x^{2^{s-1}} \equiv -1
% \pmod{n}\), it is necessary to have \(x^8 \equiv -1\) modulo both
% $17$ and $257$, which is possible since the invertible elements
% of $\mathbb{Z}_{17}$ form a cyclic group of order $16$ and the
% invertible elements of $\mathbb{Z}_{257}$ form a cyclic group of
% order $256$. Modulo $17$, an element of order $16$ is $3$,
% whereas modulo $257$, an element of order $16$ is $2$.
%
% There is an extra complication in that what the caller can
% specify is not the $x$ to be repeatedly squared, but the $a$
% which satisfies \(x \equiv a^d \pmod{n}\). Since \(d=273\) is
% odd, raising something to that power is an invertible operation
% modulo both $17$ and $257$, but it is necessary to figure out
% what the inverse is. Since \(273 \equiv 1 \pmod{16}\), it turns
% out that \(a^d \equiv a \pmod{17}\), and \(x=3\) becomes \(a=3\).
% From \(273 \equiv 17 \pmod{256}\), it instead follows that \(x
% \equiv a^d \pmod{257}\) is equivalent to \(a \equiv x^e
% \pmod{257}\), where \(17e \equiv 1 \pmod{256}\). This has the
% solution \(e = 241\), so the $a$ which makes \(x=2\) is \(a
% = 2^{241} \bmod 257\). However, since \(x=2\) was picked on
% account of having order $16$, hence \(2^{16} \equiv 1
% \pmod{257}\), and \(241 \equiv 1 \pmod{16}\), it again turns out
% that \(x=2\) becomes \(a=2\).
%
% For \(a = 2\), one may observe that \(a^{2^1} \equiv 4
% \pmod{257}\), \(a^{2^2} \equiv 16 \pmod{257}\), \(a^{2^3} \equiv
% -1 \pmod{257}\), and \(a^{2^4} \equiv 1 \pmod{257}\). For
% \(a=3\), one may observe that \(a^{2^1} \equiv 9 \pmod{17}\),
% \(a^{2^2} \equiv 13 \pmod{17}\), \(a^{2^3} \equiv -1 \pmod{17}\),
% and \(a^{2^4} \equiv 1 \pmod{17}\). For solving simultaneous
% equivalences, it is furthermore useful to observe that \(2057
% \equiv 1 \pmod{257}\) and \(2057 \equiv 0 \pmod{17}\) whereas
% \(2313 \equiv 1 \pmod{17}\) and \(2313 \equiv 0 \pmod{257}\).
% \begin{tcl}
test Miller--Rabin-1.5 "Miller--Rabin 17*257" -body {
% \end{tcl}
% In order to end up at the first |return|, it is necessary to take
% \(a \equiv 1 \pmod{17}\) and \(a \equiv 1 \pmod{257}\); the
% solution \(a=1\) is pretty obvious.
% \begin{tcl}
list [::math::numtheory::Miller--Rabin 4369 4 273 1]\
% \end{tcl}
% In order to end up at the second |return| of the first iteration,
% it is necessary to take \(a \equiv -1 \pmod{17}\) and
% \(a \equiv -1 \pmod{257}\); the solution \(a \equiv -1 \pmod{n}\)
% is again pretty obvious.
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 4368]\
% \end{tcl}
% Hitting the third |return| at the first iteration can be achieved
% with \(a \equiv -1 \pmod{17}\) and \(a \equiv 1 \pmod{257}\);
% now a solution is \(a \equiv 2057 - 2313 \equiv 4113 \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 4113]\
% \end{tcl}
% Hitting the second |return| at the second iteration happens if
% \(a^2 \equiv -1\) modulo both prime factors, i.e., for \(a \equiv
% 16 \pmod{257}\) and \(a \equiv 13 \pmod{17}\). This has the
% solution \(a \equiv 16 \cdot 2057 + 13 \cdot 2313 \equiv 1815
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 1815]\
% \end{tcl}
% To hit the third |return| at the second iteration, one may keep
% \(a \equiv 16 \pmod{257}\) but take \(a \equiv 1 \pmod{17}\). This
% has the solution \(a \equiv 16 \cdot 2057 + 1 \cdot 2313 \equiv 273
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 273]\
% \end{tcl}
% Hitting the second |return| at the third and final iteration happens
% if \(a^4 \equiv -1\) modulo both prime factors, i.e., for \(a \equiv
% 4 \pmod{257}\) and \(a \equiv 9 \pmod{17}\). This has the
% solution \(a \equiv 4 \cdot 2057 + 9 \cdot 2313 \equiv 2831
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 2831]\
% \end{tcl}
% And as before, to hit the third |return| at the third and final
% iteration one may keep the above \(a \equiv 9 \pmod{17}\) but
% change the other to \(a \equiv 1 \pmod{257}\). This has the
% solution \(a \equiv 1 \cdot 2057 + 9 \cdot 2313 \equiv 1029
% \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 1029]\
% \end{tcl}
% To get a |0| out of the fourth |return|, one takes \(a \equiv
% 2 \pmod{257}\) and \(a \equiv 3 \pmod{17}\); this means \(a \equiv
% 2 \cdot 2057 + 3 \cdot 2313 \equiv 2315 \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 2315]\
% \end{tcl}
% Finally, to get a |1| out of the fourth |return|, one may take
% \(a \equiv 1 \pmod{257}\) and \(a \equiv 3 \pmod{17}\); this means
% \(a \equiv 1 \cdot 2057 + 3 \cdot 2313 \equiv 258 \pmod{n}\).
% \begin{tcl}
[::math::numtheory::Miller--Rabin 4369 4 273 258]
} -result {0 0 1 0 1 0 1 0 1}
% \end{tcl}
% It would have been desirable from a testing point of view to also
% find a value of $a$ that would make \(a^{n-1} \equiv -1
% \pmod{n}\), since such an $a$ would catch an implementation error
% of running the squaring loop one step too far, but that does not
% seem possible; picking \(n=pq\) such that both $p-1$ and $q-1$
% are divisible by some power of $2$ implies that $n-1$ is
% divisible by the same power of $2$.
% \end{proc}
%
% A different kind of test is to verify some exceptional numbers and
% boundaries that the |isprime| procedure relies on. First, $1373653$
% appears prime when \(a=2\) or \(a=3\), but \(a=5\) is a witness to
% its compositeness.
% \begin{tcl}
test Miller--Rabin-2.1 "Miller--Rabin 1373653" -body {
list\
[::math::numtheory::Miller--Rabin 1373653 2 343413 2]\
[::math::numtheory::Miller--Rabin 1373653 2 343413 3]\
[::math::numtheory::Miller--Rabin 1373653 2 343413 5]
} -result {0 0 1}
% \end{tcl}
% $25326001$ is looking like a prime also to \(a=5\), but \(a=7\)
% exposes it.
% \begin{tcl}
test Miller--Rabin-2.2 "Miller--Rabin 25326001" -body {
list\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 2]\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 3]\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 5]\
[::math::numtheory::Miller--Rabin 25326001 4 1582875 7]
} -result {0 0 0 1}
% \end{tcl}
% $3215031751$ is a tricky composite that isn't exposed even by
% \(a=7\), but \(a=11\) will see through it.
% \begin{tcl}
test Miller--Rabin-2.3 "Miller--Rabin 3215031751" -body {
list\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 2]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 3]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 5]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 7]\
[::math::numtheory::Miller--Rabin 3215031751 1 1607515875 11]
} -result {0 0 0 0 1}
% \end{tcl}
% Otherwise the lowest composite that these four will fail for is
% $118670087467$.
% \begin{tcl}
test Miller--Rabin-2.4 "Miller--Rabin 118670087467" -body {
list\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 2]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 3]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 5]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 7]\
[::math::numtheory::Miller--Rabin 118670087467 1 59335043733 11]
} -result {0 0 0 0 1}
%</test>
% \end{tcl}
%
%
% \subsection{Putting it all together}
%
% \begin{proc}{isprime}
% The user level command for testing primality of an integer $n$ is
% |isprime|. It has the call syntax
% \begin{quote}
% |math::numtheory::isprime| \word{n}
% \begin{regblock}[\regstar]\word{option}
% \word{value}\end{regblock}
% \end{quote}
% where the options may be used to influence the exact algorithm
% being used. The call returns
% \begin{description}
% \item[0] if $n$ is found to be composite,
% \item[1] if $n$ is found to be prime, and
% \item[on] if $n$ is probably prime.
% \end{description}
% The reason there might be \emph{some} uncertainty is that the
% primality test used is basically a probabilistic test for
% compositeness---it may fail to find a witness for the
% compositeness of a composite number $n$, even if the probability
% of doing so is fairly low---and to be honest with the user, the
% outcomes of ``definitely prime'' and ``probably prime'' return
% different results. Since |on| is true when used as a boolean, you
% usually need not worry about this fine detail. Also, for \(n <
% 10^{11}\) (actually a little more) the primality test is
% deterministic, so you only encounter the ``probably prime''
% result for fairly high $n$.
%
% At present, the only option that is implemented is |-randommr|,
% which controls how many rounds (by default 4) of the |Miller--Rabin|
% test with random bases are run before returing |on|. Other options
% are silently ignored.
%
% \begin{tcl}
%<*pkg>
proc ::math::numtheory::isprime {n args} {
prime_trialdivision $n
% \end{tcl}
% Implementation-wise, |isprime| begins with |prime_trialdivision|,
% but relies on the Miller--Rabin test after that. To that end, it
% must compute $s$ and $d$ such that \(n = d 2^s + 1\); while this
% is fairly quick, it's nice not having to do it more than once,
% which is why this step wasn't made part of the |Miller--Rabin|
% procedure.
% \begin{tcl}
set d [expr {$n-1}]; set s 0
while {($d&1) == 0} {
incr s
set d [expr {$d>>1}]
}
% \end{tcl}
% The deterministic sequence of Miller--Rabin tests combines
% information from \cite{PSW80,Jaeschke}, but most of these
% numbers may also be found on Wikipedia~\cite{Wikipedia}.
% \begin{tcl}
if {[Miller--Rabin $n $s $d 2]} then {return 0}
if {$n < 2047} then {return 1}
if {[Miller--Rabin $n $s $d 3]} then {return 0}
if {$n < 1373653} then {return 1}
if {[Miller--Rabin $n $s $d 5]} then {return 0}
if {$n < 25326001} then {return 1}
if {[Miller--Rabin $n $s $d 7] || $n==3215031751} then {return 0}
if {$n < 118670087467} then {return 1}
% \end{tcl}
% \(3215031751 = 151 \cdot 751 \cdot 28351\) is a Carmichael
% number~\cite[p.\,1022]{PSW80}.
%
% Having exhausted this list of limits below which |Miller--Rabin|
% for \(a=2,3,5,7\) detects all composite numbers, we now have to
% resort to picking bases at random and hoping we find one which
% would reveal a composite $n$. In the future, one might want to
% add the possibility of using a deterministic test (such as the
% AKR~\cite{CL84} or AKS~\cite{AKS04} test) here instead.
%
% \begin{tcl}
array set O {-randommr 4}
array set O $args
for {set i $O(-randommr)} {$i >= 1} {incr i -1} {
if {[Miller--Rabin $n $s $d [expr {(
% \end{tcl}
%
% The probabilistic sequence of Miller--Rabin tests employs
% \Tcl's built-in pseudorandom number generator |rand()| for
% choosing bases, as this does not seem to be an application that
% requires high quality randomness. It may however be observed
% that since by now \(n > 10^{11}\), the space of possible bases $a$
% is always several times larger than the state space of |rand()|,
% so there may be a point in tweaking the PRNG to avoid some less
% useful values of $a$.
%
% It is a trivial observation that the intermediate $x$ values
% computed by |Miller--Rabin| for \(a=a_1a_2\) are simply the
% products of the corresponding values computed for \(a=a_1\) and
% \(a=a_2\) respectively---hence chances are that if no
% compositeness was detected for \(a=a_1\) or \(a=a_2\) then it
% won't be detected for \(a=a_1a_2\) either. There is a slight
% chance that something interesting could happen if \(a_1^{d2^k}
% \equiv -1 \equiv a_2^{d2^k} \pmod{n}\) for some \(k>0\), since in
% that case \((a_1a_2)^{d2^k} \equiv 1 \pmod{n}\) whereas no direct
% conclusion can be reached about $(a_1a_2)^{d2^{k-1}}$, but this
% seems a rather special case (and cannot even occur if \(n
% \equiv 3 \pmod{4}\) since in that case \(s=1\)), so it seems
% natural to prefer $a$ that are primes. Generating only prime $a$
% would be much work, but avoiding numbers divisible by $2$ or $3$
% is feasible.
%
% First turn |rand()| back into the integer it internally is, and
% adjust it to be from $0$ and up.
% \begin{tcl}
(round(rand()*0x100000000)-1)
% \end{tcl}
% Then multiply by $3$ and set the last bit. This has the effect
% that the range of the PRNG is now $\{1,3,7,9,13,15,\dotsb,
% 6n +\nobreak 1, 6n +\nobreak 3, \dotsb \}$.
% \begin{tcl}
*3 | 1)
% \end{tcl}
% Finally add $10$ so that we get $11$, $13$, $17$, $19$, \dots
% \begin{tcl}
+ 10
}]]} then {return 0}
}
% \end{tcl}
% That ends the |for| loop for |Miller--Rabin| with random bases.
% At this point, since the number in question passed the requested
% number of Miller--Rabin rounds, it is proclaimed to be ``probably
% prime''.
% \begin{tcl}
return on
}
# Add the additional procedures
#
source [file join [file dirname [info script]] primes.tcl]
%</pkg>
% \end{tcl}
%
% Tests of |isprime| would mostly be asking ``is $n$ a prime'' for
% various interesting $n$. Several values of $n$ should be the same
% as the previous tests:
% \begin{tcl}
%<*test>
test isprime-1.1 "1 is not prime" -body {
::math::numtheory::isprime 1
} -result 0
test isprime-1.2 "0 is not prime" -body {
::math::numtheory::isprime 0
} -result 0
test isprime-1.3 "-2 is not prime" -body {
::math::numtheory::isprime -2
} -result 0
test isprime-1.4 "2 is prime" -body {
::math::numtheory::isprime 2
} -result 1
test isprime-1.5 "6 is not prime" -body {
::math::numtheory::isprime 6
} -result 0
test isprime-1.6 "7 is prime" -body {
::math::numtheory::isprime 7
} -result 1
test isprime-1.7 "101 is prime" -body {
::math::numtheory::isprime 101
} -result 1
test isprime-1.8 "105 is not prime" -body {
::math::numtheory::isprime 105
} -result 0
test isprime-1.9 "121 is not prime" -body {
::math::numtheory::isprime 121
} -result 0
test isprime-1.10 "127 is prime" -body {
::math::numtheory::isprime 127
} -result 1
test isprime-1.11 "4369 is not prime" -body {
::math::numtheory::isprime 4369
} -result 0
test isprime-1.12 "1373653 is not prime" -body {
::math::numtheory::isprime 1373653
} -result 0
test isprime-1.13 "25326001 is not prime" -body {
::math::numtheory::isprime 25326001
} -result 0
test isprime-1.14 "3215031751 is not prime" -body {
::math::numtheory::isprime 3215031751
} -result 0
% \end{tcl}
% To get consistent results for large non-primes, it is necessary
% to reduce the number of random rounds and\slash or reset the PRNG.
% \begin{tcl}
test isprime-1.15 "118670087467 may appear prime, but isn't" -body {
expr srand(1)
list\
[::math::numtheory::isprime 118670087467 -randommr 0]\
[::math::numtheory::isprime 118670087467 -randommr 1]
} -result {on 0}
% \end{tcl}
% However, a few new can be added. On~\cite[p.\,925]{Jaeschke} we
% can read that \(p=22 \mkern1mu 754 \mkern1mu 930 \mkern1mu 352
% \mkern1mu 733\) is a prime, and $p (3p -\nobreak 2)\) is a
% composite number that looks prime to |Miller--Rabin| for all
% \(a \in \{2,3,5,7,11,13,17,19,23,29\}\).
% \begin{tcl}
test isprime-1.16 "Jaeschke psi_10" -body {
expr srand(1)
set p 22754930352733
set n [expr {$p * (3*$p-2)}]
list\
[::math::numtheory::isprime $p -randommr 25]\
[::math::numtheory::isprime $n -randommr 0]\
[::math::numtheory::isprime $n -randommr 1]
} -result {on on 0}
% \end{tcl}
% On the same page it is stated that \(p=137 \mkern1mu 716 \mkern1mu
% 125 \mkern1mu 329 \mkern1mu 053\) is a prime such that
% $p (3p -\nobreak 2)\) is a composite number that looks prime to
% |Miller--Rabin| for all \(a \in
% \{2,3,5,7,11,13,17,19,23,29,31\}\).
% \begin{tcl}
test isprime-1.17 "Jaeschke psi_11" -body {
expr srand(1)
set p 137716125329053
set n [expr {$p * (3*$p-2)}]
list\
[::math::numtheory::isprime $p -randommr 25]\
[::math::numtheory::isprime $n -randommr 0]\
[::math::numtheory::isprime $n -randommr 1]\
[::math::numtheory::isprime $n -randommr 2]
} -result {on on on 0}
% \end{tcl}
% RFC~2409~\cite{RFC2409} lists a number of primes (and primitive
% generators of their respective multiplicative groups). The
% smallest of these is defined as \(p = 2^{768} - 2^{704} - 1 +
% 2^{64} \cdot \left( [2^{638} \pi] + 149686 \right)\) (where the
% brackets probably denote rounding to the nearest integer), but
% since high precision (roughly $200$ decimal digits would be
% required) values of \(\pi = 3.14159\dots\) are a bit awkward to
% get hold of, we might as well use the stated hexadecimal digit
% expansion for~$p$. It might also be a good idea to verify that
% this is given with most significant digit first.
% \begin{tcl}
test isprime-1.18 "OAKLEY group 1 prime" -body {
set digits [join {
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF
} ""]
expr srand(1)
list\
[::math::numtheory::isprime 0x$digits]\
[::math::numtheory::isprime 0x[string reverse $digits]]
} -result {on 0}
% \end{tcl}
%
% A quite different thing to test is that the tweaked PRNG really
% produces only \(a \equiv 1,5 \pmod{6}\).
% \begin{tcl}
test isprime-2.0 "PRNG tweak" -setup {
namespace eval ::math::numtheory {
rename Miller--Rabin _orig_Miller--Rabin
proc Miller--Rabin {n s d a} {
expr {$a>7 && $a%6!=1 && $a%6!=5}
}
}
} -body {
::math::numtheory::isprime 118670087467 -randommr 500
} -result on -cleanup {
namespace eval ::math::numtheory {
rename Miller--Rabin ""
rename _orig_Miller--Rabin Miller--Rabin
}
}
%</test>
% \end{tcl}
% \end{proc}
%
% \section {Add-ons}
%
% A number of additional functions around factoring numbers
%
% \begin{tcl}
%<*pkg_primes>
# ComputeNextPrime --
# Determine the next prime
#
# Arguments:
# None
#
# Result:
# None
#
# Side effects:
# One prime added to the list of primes
#
# Note:
# Using a true sieve of Erathostenes might be faster, but
# this does work. Even computing the first ten thousand
# does not seem to be slow.
#
proc ::math::numtheory::ComputeNextPrime {} {
variable primes
variable nextPrimeCandidate
variable nextPrimeIncrement
while {1} {
#
# Test the current candidate
#
set sqrtCandidate [expr {sqrt($nextPrimeCandidate)}]
set isprime 1
foreach p $primes {
if { $p > $sqrtCandidate } {
break
}
if { $nextPrimeCandidate % $p == 0 } {
set isprime 0
break
}
}
if { $isprime } {
lappend primes $nextPrimeCandidate
}
#
# In any case get the next candidate
#
if { $nextPrimeIncrement == 1 } {
set nextPrimeIncrement 5
set nextPrimeCandidate [expr {$nextPrimeCandidate + 4}]
} else {
set nextPrimeIncrement 1
set nextPrimeCandidate [expr {$nextPrimeCandidate + 2}]
}
if { $isprime } {
break
}
}
}
# firstNprimes --
# Return the first N primes
#
# Arguments:
# number Number of primes to return
#
# Result:
# List of the first $number primes
#
proc ::math::numtheory::firstNprimes {number} {
variable primes
while { [llength $primes] < $number } {
ComputeNextPrime
}
return [lrange $primes 0 [expr {$number-1}]]
}
# primesLowerThan --
# Return the primes lower than some threshold
#
# Arguments:
# threshold Threshold for the primes
#
# Result:
# List of primes lower/equal to the threshold
#
proc ::math::numtheory::primesLowerThan {threshold} {
variable primes
while { [lindex $primes end] < $threshold } {
ComputeNextPrime
}
set n 0
foreach p $primes {
if { $p > $threshold } {
break
} else {
incr n
}
}
return [lrange $primes 0 [expr {$n-1}]]
}
# primeFactors --
# Determine the prime factors of a number
#
# Arguments:
# number Number to factorise
#
# Result:
# List of prime factors
#
proc ::math::numtheory::primeFactors {number} {
variable primes
#
# Make sure we have enough primes
#
primesLowerThan [expr {sqrt($number)}]
set factors {}
set idx 0
while { $number > 1 } {
set p [lindex $primes $idx]
if {$p == {}} {
lappend factors $number
break
}
if { $number % $p == 0 } {
lappend factors $p
set number [expr {$number/$p}]
} else {
incr idx
}
}
return $factors
}
# uniquePrimeFactors --
# Determine the unique prime factors of a number
#
# Arguments:
# number Number to factorise
#
# Result:
# List of unique prime factors
#
proc ::math::numtheory::uniquePrimeFactors {number} {
return [lsort -unique -integer [primeFactors $number]]
}
# totient --
# Evaluate the Euler totient function for a number
#
# Arguments:
# number Number in question
#
# Result:
# Totient of the given number (number of numbers
# relatively prime to the number)
#
proc ::math::numtheory::totient {number} {
set factors [uniquePrimeFactors $number]
set totient 1
foreach f $factors {
set totient [expr {$totient * ($f-1)}]
}
return $totient
}
# factors --
# Return all (unique) factors of a number
#
# Arguments:
# number Number in question
#
# Result:
# List of factors including 1 and the number itself
#
# Note:
# The algorithm for constructing the power set was taken from
# wiki.tcl.tk/2877 (algorithm subsets2b).
#
proc ::math::numtheory::factors {number} {
set factors [primeFactors $number]
#
# Iterate over the power set of this list
#
set result [list 1 $number]
for {set n 1} {$n < [llength $factors]} {incr n} {
set subsets [list [list]]
foreach f $factors {
foreach subset $subsets {
lappend subset $f
if {[llength $subset] == $n} {
lappend result [Product $subset]
} else {
lappend subsets $subset
}
}
}
}
return [lsort -unique -integer $result]
}
# Product --
# Auxiliary function: return the product of a list of numbers
#
# Arguments:
# list List of numbers
#
# Result:
# The product of all the numbers
#
proc ::math::numtheory::Product {list} {
set product 1
foreach e $list {
set product [expr {$product * $e}]
}
return $product
}
# moebius --
# Return the value of the Moebius function for "number"
#
# Arguments:
# number Number in question
#
# Result:
# The product of all the numbers
#
proc ::math::numtheory::moebius {number} {
if { $number < 1 } {
return -code error "The number must be positive"
}
if { $number == 1 } {
return 1
}
set primefactors [primeFactors $number]
if { [llength $primefactors] != [llength [lsort -unique -integer $primefactors]] } {
return 0
} else {
return [expr {(-1)**([llength $primefactors]%2)}]
}
}
# legendre --
# Return the value of the Legendre symbol (a/p)
#
# Arguments:
# a Upper number in the symbol
# p Lower number in the symbol
#
# Result:
# The Legendre symbol
#
proc ::math::numtheory::legendre {a p} {
if { $p == 0 } {
return -code error "The number p must be non-zero"
}
if { $a % $p == 0 } {
return 0
}
#
# Just take the brute force route
# (Negative values of a present a small problem, but only a small one)
#
while { $a < 0 } {
set a [expr {$p + $a}]
}
set legendre -1
for {set n 1} {$n < $p} {incr n} {
if { $n**2 % $p == $a } {
set legendre 1
break
}
}
return $legendre
}
# jacobi --
# Return the value of the Jacobi symbol (a/b)
#
# Arguments:
# a Upper number in the symbol
# b Lower number in the symbol
#
# Result:
# The Jacobi symbol
#
# Note:
# Implementation adopted from the Wiki - http://wiki.tcl.tk/36990
# encoded by rmelton 9/25/12
# Further references:
# http://en.wikipedia.org/wiki/Jacobi_symbol
# http://2000clicks.com/mathhelp/NumberTh27JacobiSymbolAlgorithm.aspx
#
proc ::math::numtheory::jacobi {a b} {
if { $b<=0 || ($b&1)==0 } {
return 0;
}
set j 1
if {$a<0} {
set a [expr {0-$a}]
set j [expr {0-$j}]
}
while {$a != 0} {
while {($a&1) == 0} {
##/* Process factors of 2: Jacobi(2,b)=-1 if b=3,5 (mod 8) */
set a [expr {$a>>1}]
if {(($b & 7)==3) || (($b & 7)==5)} {
set j [expr {0-$j}]
}
}
##/* Quadratic reciprocity: Jacobi(a,b)=-Jacobi(b,a) if a=3,b=3 (mod 4) */
lassign [list $a $b] b a
if {(($a & 3)==3) && (($b & 3)==3)} {
set j [expr {0-$j}]
}
set a [expr {$a % $b}]
}
if {$b==1} {
return $j
} else {
return 0
}
}
# gcd --
# Return the greatest common divisor of two numbers n and m
#
# Arguments:
# n First number
# m Second number
#
# Result:
# The greatest common divisor
#
proc ::math::numtheory::gcd {n m} {
#
# Apply Euclid's good old algorithm
#
if { $n > $m } {
set t $n
set n $m
set m $t
}
while { $n > 0 } {
set r [expr {$m % $n}]
set m $n
set n $r
}
return $m
}
# lcm --
# Return the lowest common multiple of two numbers n and m
#
# Arguments:
# n First number
# m Second number
#
# Result:
# The lowest common multiple
#
proc ::math::numtheory::lcm {n m} {
set gcd [gcd $n $m]
return [expr {$n*$m/$gcd}]
}
# numberPrimesGauss --
# Return the approximate number of primes lower than the given value based on the formula by Gauss
#
# Arguments:
# limit The limit for the largest prime to be included in the estimate
#
# Returns:
# Approximate number of primes
#
proc ::math::numtheory::numberPrimesGauss {limit} {
if { $limit <= 1 } {
return -code error "The limit must be larger than 1"
}
expr {$limit / log($limit)}
}
# numberPrimesLegendre --
# Return the approximate number of primes lower than the given value based on the formula by Legendre
#
# Arguments:
# limit The limit for the largest prime to be included in the estimate
#
# Returns:
# Approximate number of primes
#
proc ::math::numtheory::numberPrimesLegendre {limit} {
if { $limit <= 1 } {
return -code error "The limit must be larger than 1"
}
expr {$limit / (log($limit) - 1.0)}
}
# numberPrimesLegendreModified --
# Return the approximate number of primes lower than the given value based on the
# modified formula by Legendre
#
# Arguments:
# limit The limit for the largest prime to be included in the estimate
#
# Returns:
# Approximate number of primes
#
proc ::math::numtheory::numberPrimesLegendreModified {limit} {
if { $limit <= 1 } {
return -code error "The limit must be larger than 1"
}
expr {$limit / (log($limit) - 1.08366)}
}
%</pkg_primes>
%\end{tcl}
% \begin{tcl}
%<*test_primes>
test first-few-primes-1 "First 10 primes" -match equalLists -body {
::math::numtheory::firstNprimes 10
} -result {2 3 5 7 11 13 17 19 23 29}
test first-few-primes-2 "First 12 primes" -match equalLists -body {
::math::numtheory::firstNprimes 12
} -result {2 3 5 7 11 13 17 19 23 29 31 37}
test first-few-primes-3 "First 20 primes" -match equalLists -body {
::math::numtheory::firstNprimes 20
} -result {2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71}
test primes-lower-than-1 "Primes lower/equal 101" -match equalLists -body {
::math::numtheory::primesLowerThan 101
} -result {2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101}
test primes-lower-than-2 "Primes lower/equal 2" -match equalLists -body {
::math::numtheory::primesLowerThan 2
} -result {2}
test primes-lower-than-3 "Primes lower/equal 4" -match equalLists -body {
::math::numtheory::primesLowerThan 4
} -result {2 3}
test primes-lower-than-4 "Primes lower/equal 102" -match equalLists -body {
::math::numtheory::primesLowerThan 102
} -result {2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101}
test prime-factors-1 "Prime factors 100" -match equalLists -body {
::math::numtheory::primeFactors 100
} -result {2 2 5 5}
test prime-factors-2 "Unique prime factors 100" -match equalLists -body {
::math::numtheory::uniquePrimeFactors 100
} -result {2 5}
test prime-factors-3 "Prime factors 2900" -match equalLists -body {
::math::numtheory::primeFactors 2900
} -result {2 2 5 5 29}
test prime-factors-4 "Unique prime factors 2900" -match equalLists -body {
::math::numtheory::uniquePrimeFactors 2900
} -result {2 5 29}
test prime-factors-5 "Prime factors 964" -match equalLists -body {
::math::numtheory::primeFactors 964
} -result {2 2 241}
test prime-factors-6 "Prime factors 960" -match equalLists -body {
::math::numtheory::primeFactors 960
} -result {2 2 2 2 2 2 3 5}
test prime-factors-7 "Prime factors 914" -match equalLists -body {
::math::numtheory::primeFactors 914
} -result {2 457}
test totient-1 "Totient 15" -body {
::math::numtheory::totient 15
} -result 8
test totient-2 "Totient 30" -body {
::math::numtheory::totient 30
} -result 8
test totient-3 "Totient 35" -body {
::math::numtheory::totient 35
} -result 24
test totient-4 "Totient 105" -body {
::math::numtheory::totient 105
} -result 48
test factors-1 "All factors 30" -match equalLists -body {
::math::numtheory::factors 30
} -result {1 2 3 5 6 10 15 30}
test factors-1 "All factors 128" -match equalLists -body {
::math::numtheory::factors 128
} -result {1 2 4 8 16 32 64 128}
test factors-1 "All factors 250" -match equalLists -body {
::math::numtheory::factors 250
} -result {1 2 5 10 25 50 125 250}
test moebius-1 "Moebius for first 19 numbers" -match equalLists -body {
set result {}
for {set n 1} {$n < 20} {incr n} {
lappend result [::math::numtheory::moebius $n]
}
set result
} -result {1 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1 1 0 -1 0 -1}
test legendre-1 "Legendre symbol (-1/3)" -body {
::math::numtheory::legendre -1 3
} -result -1
test legendre-2 "Legendre symbol (-3/7)" -body {
::math::numtheory::legendre -3 7
} -result 1
test jacobi-1 "Jacobi symbol (6/7)" -body {
::math::numtheory::jacobi 6 7
} -result -1
test jacobi-2 "Jacobi symbol (6/9)" -body {
::math::numtheory::jacobi 6 9
} -result 0
test jacobi-3 "Jacobi symbol (3/11)" -body {
::math::numtheory::jacobi 3 11
} -result 1
test gcd-1 "Greatest common divisor 2 and 3" -body {
::math::numtheory::gcd 2 3
} -result 1
test gcd-2 "Greatest common divisor 20 and 12" -body {
::math::numtheory::gcd 20 12
} -result 4
test gcd-3 "Greatest common divisor 600 and 125" -body {
::math::numtheory::gcd 600 125
} -result 25
test lcm-1 "Lowest common multiple 3 and 4" -body {
::math::numtheory::lcm 3 4
} -result 12
test lcm-2 "Lowest common multiple 12 and 20" -body {
::math::numtheory::lcm 12 20
} -result 60
test number-primes "Exercise prime estimators" -match equalLists -body {
set estimate1 [::math::numtheory::numberPrimesGauss 1000]
set estimate2 [::math::numtheory::numberPrimesLegendre 1000]
set estimate3 [::math::numtheory::numberPrimesLegendreModified 1000]
set result [list [expr {int($estimate1)}] [expr {int($estimate2)}] [expr {int($estimate3)}]]
} -result {144 169 171}
%</test_primes>
%\end{tcl}
%
% \section*{Closings}
%
% \begin{tcl}
%<*man>
[list_end]
[vset CATEGORY {math :: numtheory}]
[include ../common-text/feedback.inc]
[manpage_end]
%</man>
% \end{tcl}
%
% \begin{tcl}
%<test_common>testsuiteCleanup
% \end{tcl}
%
%
% \begin{thebibliography}{9}
%
% \bibitem{AKS04}
% Manindra Agrawal, Neeraj Kayal, and Nitin Saxena:
% PRIMES is in P,
% \textit{Annals of Mathematics} \textbf{160} (2004), no. 2,
% 781--793.
%
% \bibitem{CL84}
% Henri Cohen and Hendrik W. Lenstra, Jr.:
% Primality testing and Jacobi sums,
% \textit{Mathematics of Computation} \textbf{42} (165) (1984),
% 297--330.
% \texttt{doi:10.2307/2007581}
%
% \bibitem{RFC2409}
% Dan Harkins and Dave Carrel.
% \textit{The Internet Key Exchange (IKE)},
% \textbf{RFC 2409} (1998).
%
% \bibitem{Jaeschke}
% Gerhard Jaeschke: On strong pseudoprimes to several bases,
% \textit{Mathematics of Computation} \textbf{61} (204), 1993,
% 915--926.
% \texttt{doi:\,10.2307/2153262}
%
% \bibitem{Miller}
% Gary L. Miller:
% Riemann's Hypothesis and Tests for Primality,
% \textit{Journal of Computer and System Sciences} \textbf{13} (3)
% (1976), 300--317. \texttt{doi:10.1145/800116.803773}
%
% \bibitem{PSW80}
% C.~Pomerance, J.~L.~Selfridge, and S.~S.~Wagstaff~Jr.:
% The pseudoprimes to $25 \cdot 10^9$,
% \textit{Mathematics of Computation} \textbf{35} (151), 1980,
% 1003--1026.
% \texttt{doi: 10.2307/2006210}
%
% \bibitem{Rabin}
% Michael O. Rabin:
% Probabilistic algorithm for testing primality,
% \textit{Journal of Number Theory} \textbf{12} (1) (1980),
% 128--138. \texttt{doi:10.1016/0022-314X(80)90084-0}
%
% \bibitem{Wikipedia}
% Wikipedia contributors:
% Miller--Rabin primality test,
% \textit{Wikipedia, The Free Encyclopedia}, 2010.
% Online, accessed 10 September 2010,
% \url{http://en.wikipedia.org/w/index.php?title=Miller%E2%80%93Rabin_primality_test&oldid=383901104}
%
% \end{thebibliography}
%
\endinput
|