1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
[comment {
__Attention__ This document is a generated file.
It is not the true source.
The true source is
numtheory.dtx
To make changes edit the true source, and then use
sak.tcl docstrip/regen modules/math
to update all generated files.
}]
[vset VERSION 1.1.1]
[manpage_begin math::numtheory n [vset VERSION]]
[keywords {number theory}]
[keywords prime]
[copyright "2010 Lars Hellstr\u00F6m\
<Lars dot Hellstrom at residenset dot net>"]
[moddesc {Tcl Math Library}]
[titledesc {Number Theory}]
[category Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt [vset VERSION]]]
[description]
[para]
This package is for collecting various number-theoretic operations, with
a slight bias to prime numbers.
[list_begin definitions]
[call [cmd math::numtheory::isprime] [arg N] [
opt "[arg option] [arg value] ..."
]]
The [cmd isprime] command tests whether the integer [arg N] is a
prime, returning a boolean true value for prime [arg N] and a
boolean false value for non-prime [arg N]. The formal definition of
'prime' used is the conventional, that the number being tested is
greater than 1 and only has trivial divisors.
[para]
To be precise, the return value is one of [const 0] (if [arg N] is
definitely not a prime), [const 1] (if [arg N] is definitely a
prime), and [const on] (if [arg N] is probably prime); the latter
two are both boolean true values. The case that an integer may be
classified as "probably prime" arises because the Miller-Rabin
algorithm used in the test implementation is basically probabilistic,
and may if we are unlucky fail to detect that a number is in fact
composite. Options may be used to select the risk of such
"false positives" in the test. [const 1] is returned for "small"
[arg N] (which currently means [arg N] < 118670087467), where it is
known that no false positives are possible.
[para]
The only option currently defined is:
[list_begin options]
[opt_def -randommr [arg repetitions]]
which controls how many times the Miller-Rabin test should be
repeated with randomly chosen bases. Each repetition reduces the
probability of a false positive by a factor at least 4. The
default for [arg repetitions] is 4.
[list_end]
Unknown options are silently ignored.
[call [cmd math::numtheory::firstNprimes] [arg N]]
Return the first N primes
[list_begin arguments]
[arg_def integer N in]
Number of primes to return
[list_end]
[call [cmd math::numtheory::primesLowerThan] [arg N]]
Return the prime numbers lower/equal to N
[list_begin arguments]
[arg_def integer N in]
Maximum number to consider
[list_end]
[call [cmd math::numtheory::primeFactors] [arg N]]
Return a list of the prime numbers in the number N
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
[call [cmd math::numtheory::primesLowerThan] [arg N]]
Return the prime numbers lower/equal to N
[list_begin arguments]
[arg_def integer N in]
Maximum number to consider
[list_end]
[call [cmd math::numtheory::primeFactors] [arg N]]
Return a list of the prime numbers in the number N
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
[call [cmd math::numtheory::uniquePrimeFactors] [arg N]]
Return a list of the [emph unique] prime numbers in the number N
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
[call [cmd math::numtheory::factors] [arg N]]
Return a list of all [emph unique] factors in the number N, including 1 and N itself
[list_begin arguments]
[arg_def integer N in]
Number to be factorised
[list_end]
[call [cmd math::numtheory::totient] [arg N]]
Evaluate the Euler totient function for the number N (number of numbers
relatively prime to N)
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
[call [cmd math::numtheory::moebius] [arg N]]
Evaluate the Moebius function for the number N
[list_begin arguments]
[arg_def integer N in]
Number in question
[list_end]
[call [cmd math::numtheory::legendre] [arg a] [arg p]]
Evaluate the Legendre symbol (a/p)
[list_begin arguments]
[arg_def integer a in]
Upper number in the symbol
[arg_def integer p in]
Lower number in the symbol (must be non-zero)
[list_end]
[call [cmd math::numtheory::jacobi] [arg a] [arg b]]
Evaluate the Jacobi symbol (a/b)
[list_begin arguments]
[arg_def integer a in]
Upper number in the symbol
[arg_def integer b in]
Lower number in the symbol (must be odd)
[list_end]
[call [cmd math::numtheory::gcd] [arg m] [arg n]]
Return the greatest common divisor of [term m] and [term n]
[list_begin arguments]
[arg_def integer m in]
First number
[arg_def integer n in]
Second number
[list_end]
[call [cmd math::numtheory::lcm] [arg m] [arg n]]
Return the lowest common multiple of [term m] and [term n]
[list_begin arguments]
[arg_def integer m in]
First number
[arg_def integer n in]
Second number
[list_end]
[call [cmd math::numtheory::numberPrimesGauss] [arg N]]
Estimate the number of primes according the formula by Gauss.
[list_begin arguments]
[arg_def integer N in]
Number in question, should be larger than 0
[list_end]
[call [cmd math::numtheory::numberPrimesLegendre] [arg N]]
Estimate the number of primes according the formula by Legendre.
[list_begin arguments]
[arg_def integer N in]
Number in question, should be larger than 0
[list_end]
[call [cmd math::numtheory::numberPrimesLegendreModified] [arg N]]
Estimate the number of primes according the modified formula by Legendre.
[list_begin arguments]
[arg_def integer N in]
Number in question, should be larger than 0
[list_end]
[call [cmd math::numtheory::differenceNumberPrimesLegendreModified] [arg lower] [arg upper]]
Estimate the number of primes between tow limits according the modified formula by Legendre.
[list_begin arguments]
[arg_def integer lower in] Lower limit for the primes, should be larger than 0
[arg_def integer upper in] Upper limit for the primes, should be larger than 0
[list_end]
[list_end]
[vset CATEGORY {math :: numtheory}]
[include ../common-text/feedback.inc]
[manpage_end]
|