File: optimize.tcl

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1319 lines) | stat: -rw-r--r-- 36,939 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
#----------------------------------------------------------------------
#
# math/optimize.tcl --
#
#	This file contains functions for optimization of a function
#	or expression.
#
# Copyright (c) 2004, by Arjen Markus.
# Copyright (c) 2004, 2005 by Kevin B. Kenny.  All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: optimize.tcl,v 1.12 2011/01/18 07:49:53 arjenmarkus Exp $
#
#----------------------------------------------------------------------

package require Tcl 8.4

# math::optimize --
#    Namespace for the commands
#
namespace eval ::math::optimize {
   namespace export minimum  maximum solveLinearProgram linearProgramMaximum
   namespace export min_bound_1d min_unbound_1d

   # Possible extension: minimumExpr, maximumExpr
}

# minimum --
#    Minimize a given function over a given interval
#
# Arguments:
#    begin       Start of the interval
#    end         End of the interval
#    func        Name of the function to be minimized (takes one
#                argument)
#    maxerr      Maximum relative error (defaults to 1.0e-4)
# Return value:
#    Computed value for which the function is minimal
# Notes:
#    The function needs not to be differentiable, but it is supposed
#    to be continuous. There is no provision for sub-intervals where
#    the function is constant (this might happen when the maximum
#    error is very small, < 1.0e-15)
#
# Warning:
#    This procedure is deprecated - use min_bound_1d instead
#
proc ::math::optimize::minimum { begin end func {maxerr 1.0e-4} } {

   set nosteps  [expr {3+int(-log($maxerr)/log(2.0))}]
   set delta    [expr {0.5*($end-$begin)*$maxerr}]

   for { set step 0 } { $step < $nosteps } { incr step } {
      set x1 [expr {($end+$begin)/2.0}]
      set x2 [expr {$x1+$delta}]

      set fx1 [uplevel 1 $func $x1]
      set fx2 [uplevel 1 $func $x2]

      if {$fx1 < $fx2} {
         set end   $x1
      } else {
         set begin $x1
      }
   }
   return $x1
}

# maximum --
#    Maximize a given function over a given interval
#
# Arguments:
#    begin       Start of the interval
#    end         End of the interval
#    func        Name of the function to be maximized (takes one
#                argument)
#    maxerr      Maximum relative error (defaults to 1.0e-4)
# Return value:
#    Computed value for which the function is maximal
# Notes:
#    The function needs not to be differentiable, but it is supposed
#    to be continuous. There is no provision for sub-intervals where
#    the function is constant (this might happen when the maximum
#    error is very small, < 1.0e-15)
#
# Warning:
#    This procedure is deprecated - use max_bound_1d instead
#
proc ::math::optimize::maximum { begin end func {maxerr 1.0e-4} } {

   set nosteps  [expr {3+int(-log($maxerr)/log(2.0))}]
   set delta    [expr {0.5*($end-$begin)*$maxerr}]

   for { set step 0 } { $step < $nosteps } { incr step } {
      set x1 [expr {($end+$begin)/2.0}]
      set x2 [expr {$x1+$delta}]

      set fx1 [uplevel 1 $func $x1]
      set fx2 [uplevel 1 $func $x2]

      if {$fx1 > $fx2} {
         set end   $x1
      } else {
         set begin $x1
      }
   }
   return $x1
}

#----------------------------------------------------------------------
#
# min_bound_1d --
#
#       Find a local minimum of a function between two given
#       abscissae. Derivative of f is not required.
#
# Usage:
#       min_bound_1d f x1 x2 ?-option value?,,,
#
# Parameters:
#       f - Function to minimize.  Must be expressed as a Tcl
#           command, to which will be appended the value at which
#           to evaluate the function.
#       x1 - Lower bound of the interval in which to search for a
#            minimum
#       x2 - Upper bound of the interval in which to search for a minimum
#
# Options:
#       -relerror value
#               Gives the tolerance desired for the returned
#               abscissa.  Default is 1.0e-7.  Should never be less
#               than the square root of the machine precision.
#       -maxiter n
#               Constrains minimize_bound_1d to evaluate the function
#               no more than n times.  Default is 100.  If convergence
#               is not achieved after the specified number of iterations,
#               an error is thrown.
#       -guess value
#               Gives a point between x1 and x2 that is an initial guess
#               for the minimum.  f(guess) must be at most f(x1) or
#               f(x2).
#        -fguess value
#                Gives the value of the ordinate at the value of '-guess'
#                if known.  Default is to evaluate the function
#       -abserror value
#               Gives the desired absolute error for the returned
#               abscissa.  Default is 1.0e-10.
#       -trace boolean
#               A true value causes a trace to the standard output
#               of the function evaluations. Default is 0.
#
# Results:
#       Returns a two-element list comprising the abscissa at which
#       the function reaches a local minimum within the interval,
#       and the value of the function at that point.
#
# Side effects:
#       Whatever side effects arise from evaluating the given function.
#
#----------------------------------------------------------------------

proc ::math::optimize::min_bound_1d { f x1 x2 args } {

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    set phim1 0.6180339887498949
    set twomphi 0.3819660112501051

    array set params {
        -relerror 1.0e-7
        -abserror 1.0e-10
        -maxiter 100
        -trace 0
        -fguess {}
    }
    set params(-guess) [expr { $phim1 * $x1 + $twomphi * $x2 }]

    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list min_bound_1d wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list min_bound_1d badoption $key] \
                "unknown option \"$key\",\
                     should be -abserror,\
                     -fguess, -guess, -initial, -maxiter, -relerror,\
                     or -trace"
        }
	set params($key) $value
    }

    # a and b presumably bracket the minimum of the function.  Make sure
    # they're in ascending order.

    if { $x1 < $x2 } {
        set a $x1; set b $x2
    } else {
        set b $x1; set a $x2
    }

    set x $params(-guess);              # Best abscissa found so far
    set w $x;                           # Second best abscissa found so far
    set v $x;                           # Most recent earlier value of w

    set e 0.0;                          # Distance moved on the step before
					# last.

    # Evaluate the function at the initial guess

    if { $params(-fguess) ne {} } {
        set fx $params(-fguess)
    } else {
        set s $f; lappend s $x; set fx [eval $s]
        if { $params(-trace) } {
            puts stdout "f($x) = $fx (initialisation)"
        }
    }
    set fw $fx
    set fv $fx

    for { set iter 0 } { $iter < $params(-maxiter) } { incr iter } {

        # Find the midpoint of the current interval

        set xm [expr { 0.5 * ( $a + $b ) }]

        # Compute the current tolerance for x, and twice its value

        set tol [expr { $params(-relerror) * abs($x) + $params(-abserror) }]
        set tol2 [expr { $tol + $tol }]
        if { abs( $x - $xm ) <= $tol2 - 0.5 * ($b - $a) } {
            return [list $x $fx]
        }
        set golden 1
        if { abs($e) > $tol } {

            # Use parabolic interpolation to find a minimum determined
            # by the evaluations at x, v, and w.  The size of the step
            # to take will be $p/$q.

            set r [expr { ( $x - $w ) * ( $fx - $fv ) }]
            set q [expr { ( $x - $v ) * ( $fx - $fw ) }]
            set p [expr { ( $x - $v ) * $q - ( $x - $w ) * $r }]
            set q [expr { 2. * ( $q - $r ) }]
            if { $q > 0 } {
                set p [expr { - $p }]
            } else {
                set q [expr { - $q }]
            }
            set olde $e
            set e $d

            # Test if parabolic interpolation results in less than half
            # the movement of the step two steps ago.

            if { abs($p) < abs( .5 * $q * $olde )
                 && $p > $q * ( $a - $x )
                 && $p < $q * ( $b - $x ) } {

                set d [expr { $p / $q }]
                set u [expr { $x + $d }]
                if { ( $u - $a ) < $tol2 || ( $b - $u ) < $tol2 } {
                    if { $xm-$x < 0 } {
                        set d [expr { - $tol }]
                    } else {
                        set d $tol
                    }
                }
                set golden 0
            }
        }

        # If parabolic interpolation didn't come up with an acceptable
        # result, use Golden Section instead.

        if { $golden } {
            if { $x >= $xm } {
                set e [expr { $a - $x }]
            } else {
                set e [expr { $b - $x }]
            }
            set d [expr { $twomphi * $e }]
        }

        # At this point, d is the size of the step to take.  Make sure
        # that it's at least $tol.

        if { abs($d) >= $tol } {
            set u [expr { $x + $d }]
        } elseif { $d < 0 } {
            set u [expr { $x - $tol }]
        } else {
            set u [expr { $x + $tol }]
        }

        # Evaluate the function

        set s $f; lappend s $u; set fu [eval $s]
        if { $params(-trace) } {
            if { $golden } {
                puts stdout "f($u)=$fu (golden section)"
            } else {
                puts stdout "f($u)=$fu (parabolic interpolation)"
            }
        }

        if { $fu <= $fx } {
            # We've the best abscissa so far.

            if { $u >= $x } {
                set a $x
            } else {
                set b $x
            }
            set v $w
            set fv $fw
            set w $x
            set fw $fx
            set x $u
            set fx $fu
        } else {

            if { $u < $x } {
                set a $u
            } else {
                set b $u
            }
            if { $fu <= $fw || $w == $x } {
                # We've the second-best abscissa so far
                set v $w
                set fv $fw
                set w $u
                set fw $fu
            } elseif { $fu <= $fv || $v == $x || $v == $w } {
                # We've the third-best so far
                set v $u
                set fv $fu
            }
        }
    }

    return -code error -errorcode [list min_bound_1d noconverge $iter] \
        "[lindex [info level 0] 0] failed to converge after $iter steps."

}

#----------------------------------------------------------------------
#
# brackmin --
#
#       Find a place along the number line where a given function has
#       a local minimum.
#
# Usage:
#       brackmin f x1 x2 ?trace?
#
# Parameters:
#       f - Function to minimize
#       x1 - Abscissa thought to be near the minimum
#       x2 - Additional abscissa thought to be near the minimum
#	trace - Boolean variable that, if true,
#               causes 'brackmin' to print a trace of its function
#               evaluations to the standard output.  Default is 0.
#
# Results:
#       Returns a three element list {x1 y1 x2 y2 x3 y3} where
#       y1=f(x1), y2=f(x2), y3=f(x3).  x2 lies between x1 and x3, and
#       y1>y2, y3>y2, proving that there is a local minimum somewhere
#       in the interval (x1,x3).
#
# Side effects:
#       Whatever effects the evaluation of f has.
#
#----------------------------------------------------------------------

proc ::math::optimize::brackmin { f x1 x2 {trace 0} } {

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    set phi 1.6180339887498949
    set epsilon 1.0e-20
    set limit 50.

    # Choose a and b so that f(a) < f(b)

    set cmd $f; lappend cmd $x1; set fx1 [eval $cmd]
    if { $trace } {
        puts "f($x1) = $fx1 (initialisation)"
    }
    set cmd $f; lappend cmd $x2; set fx2 [eval $cmd]
    if { $trace } {
        puts "f($x2) = $fx2 (initialisation)"
    }
    if { $fx1 > $fx2 } {
        set a $x1; set fa $fx1
        set b $x2; set fb $fx2
    } else {
        set a $x2; set fa $fx2
        set b $x1; set fb $fx1
    }

    # Choose a c in the downhill direction

    set c [expr { $b + $phi * ($b - $a) }]
    set cmd $f; lappend cmd $c; set fc [eval $cmd]
    if { $trace } {
        puts "f($c) = $fc (initial dilatation by phi)"
    }

    while { $fb >= $fc } {

        # Try to do parabolic extrapolation to the minimum

        set r [expr { ($b - $a) * ($fb - $fc) }]
        set q [expr { ($b - $c) * ($fb - $fa) }]
        if { abs( $q - $r ) > $epsilon } {
            set denom [expr { $q - $r }]
        } elseif { $q > $r } {
            set denom $epsilon
        } else {
            set denom -$epsilon
        }
        set u [expr { $b - ( (($b - $c) * $q - ($b - $a) * $r)
                             / (2. * $denom) ) }]
        set ulimit [expr { $b + $limit * ( $c - $b ) }]

        # Test the extrapolated abscissa

        if { ($b - $u) * ($u - $c) > 0 } {

            # u lies between b and c.  Try to interpolate

            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic interpolation)"
            }

            if { $fu < $fc } {

                # fb > fu and fc > fu, so there is a minimum between b and c
                # with u as a starting guess.

                return [list $b $fb $u $fu $c $fc]

            }

            if { $fu > $fb } {

                # fb < fu, fb < fa, and u cannot lie between a and b
                # (because it lies between a and c).  There is a minimum
                # somewhere between a and u, with b a starting guess.

                return [list $a $fa $b $fb $u $fu]

            }

            # Parabolic interpolation was useless. Expand the
            # distance by a factor of phi and try again.

            set u [expr { $c + $phi * ($c - $b) }]
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic interpolation failed)"
            }


        } elseif { ( $c - $u ) * ( $u - $ulimit ) > 0 } {

            # u lies between $c and $ulimit.

            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic extrapolation)"
            }

            if { $fu > $fc } {

                # minimum lies between b and u, with c an initial guess.

                return [list $b $fb $c $fc $u $fu]

            }

            # function is still decreasing fa > fb > fc > fu. Take
            # another factor-of-phi step.

            set b $c; set fb $fc
            set c $u; set fc $fu
            set u [expr { $c + $phi * ( $c - $b ) }]
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic extrapolation ok)"
            }

        } elseif { ($u - $ulimit) * ( $ulimit - $c ) >= 0 } {

            # u went past ulimit.  Pull in to ulimit and evaluate there.

            set u $ulimit
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (limited step)"
            }

        } else {

            # parabolic extrapolation gave a useless value.

            set u [expr { $c + $phi * ( $c - $b ) }]
            set cmd $f; lappend cmd $u; set fu [eval $cmd]
            if { $trace } {
                puts "f($u) = $fu (parabolic extrapolation failed)"
            }

        }

        set a $b; set fa $fb
        set b $c; set fb $fc
        set c $u; set fc $fu
    }

    return [list $a $fa $b $fb $c $fc]
}

#----------------------------------------------------------------------
#
# min_unbound_1d --
#
#	Minimize a function of one variable, unconstrained, derivatives
#	not required.
#
# Usage:
#       min_bound_1d f x1 x2 ?-option value?,,,
#
# Parameters:
#       f - Function to minimize.  Must be expressed as a Tcl
#           command, to which will be appended the value at which
#           to evaluate the function.
#       x1 - Initial guess at the minimum
#       x2 - Second initial guess at the minimum, used to set the
#	     initial length scale for the search.
#
# Options:
#       -relerror value
#               Gives the tolerance desired for the returned
#               abscissa.  Default is 1.0e-7.  Should never be less
#               than the square root of the machine precision.
#       -maxiter n
#               Constrains min_bound_1d to evaluate the function
#               no more than n times.  Default is 100.  If convergence
#               is not achieved after the specified number of iterations,
#               an error is thrown.
#       -abserror value
#               Gives the desired absolute error for the returned
#               abscissa.  Default is 1.0e-10.
#       -trace boolean
#               A true value causes a trace to the standard output
#               of the function evaluations. Default is 0.
#
#----------------------------------------------------------------------

proc ::math::optimize::min_unbound_1d { f x1 x2 args } {

    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]

    array set params {
	-relerror 1.0e-7
	-abserror 1.0e-10
	-maxiter 100
        -trace 0
    }
    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list min_unbound_1d wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end \
                         f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list min_unbound_1d badoption $key] \
                "unknown option \"$key\",\
                     should be -trace"
        }
        set params($key) $value
    }
    foreach { a fa b fb c fc } [brackmin $f $x1 $x2 $params(-trace)] {
	break
    }
    return [eval [linsert [array get params] 0 \
		      min_bound_1d $f $a $c -guess $b -fguess $fb]]
}

#----------------------------------------------------------------------
#
# nelderMead --
#
#	Attempt to minimize/maximize a function using the downhill
#	simplex method of Nelder and Mead.
#
# Usage:
#	nelderMead f x ?-keyword value?
#
# Parameters:
#	f - The function to minimize.  The function must be an incomplete
#	    Tcl command, to which will be appended N parameters.
#	x - The starting guess for the minimum; a vector of N parameters
#	    to be passed to the function f.
#
# Options:
#	-scale xscale
#		Initial guess as to the problem scale.  If '-scale' is
#		supplied, then the parameters will be varied by the
#	        specified amounts.  The '-scale' parameter must of the
#		same dimension as the 'x' vector, and all elements must
#		be nonzero.  Default is 0.0001 times the 'x' vector,
#		or 0.0001 for zero elements in the 'x' vector.
#
#	-ftol epsilon
#		Requested tolerance in the function value; nelderMead
#		returns if N+1 consecutive iterates all differ by less
#		than the -ftol value.  Default is 1.0e-7
#
#	-maxiter N
#		Maximum number of iterations to attempt.  Default is
#		500.
#
#	-trace flag
#		If '-trace 1' is supplied, nelderMead writes a record
#		of function evaluations to the standard output as it
#		goes.  Default is 0.
#
#----------------------------------------------------------------------

proc ::math::optimize::nelderMead { f startx args } {
    array set params {
	-ftol 1.e-7
	-maxiter 500
	-scale {}
	-trace 0
    }

    # Check arguments

    if { ( [llength $args] % 2 ) != 0 } {
        return -code error -errorcode [list nelderMead wrongNumArgs] \
            "wrong \# args, should be\
                 \"[lreplace [info level 0] 1 end \
                         f x1 x2 ?-option value?...]\""
    }
    foreach { key value } $args {
        if { ![info exists params($key)] } {
            return -code error -errorcode [list nelderMead badoption $key] \
                "unknown option \"$key\",\
                     should be -ftol, -maxiter, -scale or -trace"
        }
        set params($key) $value
    }

    # Construct the initial simplex

    set vertices [list $startx]
    if { [llength $params(-scale)] == 0 } {
	set i 0
	foreach x0 $startx {
	    if { $x0 == 0 } {
		set x1 0.0001
	    } else {
		set x1 [expr {1.0001 * $x0}]
	    }
	    lappend vertices [lreplace $startx $i $i $x1]
	    incr i
	}
    } elseif { [llength $params(-scale)] != [llength $startx] } {
	return -code error -errorcode [list nelderMead badOption -scale] \
	    "-scale vector must be of same size as starting x vector"
    } else {
	set i 0
	foreach x0 $startx s $params(-scale) {
	    lappend vertices [lreplace $startx $i $i [expr { $x0 + $s }]]
	    incr i
	}
    }

    # Evaluate at the initial points

    set n [llength $startx]
    foreach x $vertices {
	set cmd $f
	foreach xx $x {
	    lappend cmd $xx
	}
	set y [uplevel 1 $cmd]
	if {$params(-trace)} {
	    puts "nelderMead: evaluating initial point: x=[list $x] y=$y"
	}
	lappend yvec $y
    }


    # Loop adjusting the simplex in the 'vertices' array.

    set nIter 0
    while { 1 } {

	# Find the highest, next highest, and lowest value in y,
	# and save the indices.

	set iBot 0
	set yBot [lindex $yvec 0]
	set iTop -1
	set yTop [lindex $yvec 0]
	set iNext -1
	set i 0
	foreach y $yvec {
	    if { $y <= $yBot } {
		set yBot $y
		set iBot $i
	    }
	    if { $iTop < 0 || $y >= $yTop } {
		set iNext $iTop
		set yNext $yTop
		set iTop $i
		set yTop $y
	    } elseif { $iNext < 0 || $y >= $yNext } {
		set iNext $i
		set yNext $y
	    }
	    incr i
	}

	# Return if the relative error is within an acceptable range

	set rerror [expr { 2. * abs( $yTop - $yBot )
			   / ( abs( $yTop ) + abs( $yBot ) + $params(-ftol) ) }]
	if { $rerror < $params(-ftol) } {
	    set status ok
	    break
	}

	# Count iterations

	if { [incr nIter] > $params(-maxiter) } {
	    set status too-many-iterations
	    break
	}
	incr nIter

	# Find the centroid of the face opposite the vertex that
	# maximizes the function value.

	set centroid {}
	for { set i 0 } { $i < $n } { incr i } {
	    lappend centroid 0.0
	}
	set i 0
	foreach v $vertices {
	    if { $i != $iTop } {
		set newCentroid {}
		foreach x0 $centroid x1 $v {
		    lappend newCentroid [expr { $x0 + $x1 }]
		}
		set centroid $newCentroid
	    }
	    incr i
	}
	set newCentroid {}
	foreach x $centroid {
	    lappend newCentroid [expr { $x / $n }]
	}
	set centroid $newCentroid

	# The first trial point is a reflection of the high point
	# around the centroid

	set trial {}
	foreach x0 [lindex $vertices $iTop] x1 $centroid {
	    lappend trial [expr {$x1 + ($x1 - $x0)}]
	}
	set cmd $f
	foreach xx $trial {
	    lappend cmd $xx
	}
	set yTrial [uplevel 1 $cmd]
	if { $params(-trace) } {
	    puts "nelderMead: trying reflection: x=[list $trial] y=$yTrial"
	}

	# If that reflection yields a new minimum, replace the high point,
	# and additionally try dilating in the same direction.

	if { $yTrial < $yBot } {
	    set trial2 {}
	    foreach x0 $centroid x1 $trial {
		lappend trial2 [expr { $x1 + ($x1 - $x0) }]
	    }
	    set cmd $f
	    foreach xx $trial2 {
		lappend cmd $xx
	    }
	    set yTrial2 [uplevel 1 $cmd]
	    if { $params(-trace) } {
		puts "nelderMead: trying dilated reflection:\
                      x=[list $trial2] y=$y"
	    }
	    if { $yTrial2 < $yBot } {

		# Additional dilation yields a new minimum

		lset vertices $iTop $trial2
		lset yvec $iTop $yTrial2
	    } else {

		# Additional dilation failed, but we can still use
		# the first trial point.

		lset vertices $iTop $trial
		lset yvec $iTop $yTrial

	    }
	} elseif { $yTrial < $yNext } {

	    # The reflected point isn't a new minimum, but it's
	    # better than the second-highest.  Replace the old high
	    # point and try again.

	    lset vertices $iTop $trial
	    lset yvec $iTop $yTrial

	} else {

	    # The reflected point is worse than the second-highest point.
	    # If it's better than the highest, keep it... but in any case,
	    # we want to try contracting the simplex, because a further
	    # reflection will simply bring us back to the starting point.

	    if { $yTrial < $yTop } {
		lset vertices $iTop $trial
		lset yvec $iTop $yTrial
		set yTop $yTrial
	    }
	    set trial {}
	    foreach x0 [lindex $vertices $iTop] x1 $centroid {
		lappend trial [expr { ( $x0 + $x1 ) / 2. }]
	    }
	    set cmd $f
	    foreach xx $trial {
		lappend cmd $xx
	    }
	    set yTrial [uplevel 1 $cmd]
	    if { $params(-trace) } {
		puts "nelderMead: contracting from high point:\
                      x=[list $trial] y=$y"
	    }
	    if { $yTrial < $yTop } {

		# Contraction gave an improvement, so continue with
		# the smaller simplex

		lset vertices $iTop $trial
		lset yvec $iTop $yTrial

	    } else {

		# Contraction gave no improvement either; we seem to
		# be in a valley of peculiar topology.  Contract the
		# simplex about the low point and try again.

		set newVertices {}
		set newYvec {}
		set i 0
		foreach v $vertices y $yvec {
		    if { $i == $iBot } {
			lappend newVertices $v
			lappend newYvec $y
		    } else {
			set newv {}
			foreach x0 $v x1 [lindex $vertices $iBot] {
			    lappend newv [expr { ($x0 + $x1) / 2. }]
			}
			lappend newVertices $newv
			set cmd $f
			foreach xx $newv {
			    lappend cmd $xx
			}
			lappend newYvec [uplevel 1 $cmd]
			if { $params(-trace) } {
			    puts "nelderMead: contracting about low point:\
                                  x=[list $newv] y=$y"
			}
		    }
		    incr i
		}
		set vertices $newVertices
		set yvec $newYvec
	    }

	}

    }
    return [list y $yBot x [lindex $vertices $iBot] vertices $vertices yvec $yvec nIter $nIter status $status]

}

# solveLinearProgram
#    Solve a linear program in standard form
#
# Arguments:
#    objective     Vector defining the objective function
#    constraints   Matrix of constraints (as a list of lists)
#
# Return value:
#    Computed values for the coordinates or "unbounded" or "infeasible"
#
proc ::math::optimize::solveLinearProgram { objective constraints } {
    #
    # Check the arguments first and then put them in a more convenient
    # form
    #

    foreach {nconst nvars matrix} \
        [SimplexPrepareMatrix $objective $constraints] {break}

    set solution [SimplexSolve $nconst nvars $matrix]

    if { [llength $solution] > 1 } {
        return [lrange $solution 0 [expr {$nvars-1}]]
    } else {
        return $solution
    }
}

# linearProgramMaximum --
#    Compute the value attained at the optimum
#
# Arguments:
#    objective     The coefficients of the objective function
#    result        The coordinate values as obtained by solving the program
#
# Return value:
#    Value at the maximum point
#
proc ::math::optimize::linearProgramMaximum {objective result} {

    set value    0.0

    foreach coeff $objective coord $result {
        set value [expr {$value+$coeff*$coord}]
    }

    return $value
}

# SimplexPrintMatrix
#    Debugging routine: print the matrix in easy to read form
#
# Arguments:
#    matrix        Matrix to be printed
#
# Return value:
#    None
#
# Note:
#    The tableau should be transposed ...
#
proc ::math::optimize::SimplexPrintMatrix {matrix} {
    puts "\nBasis:\t[join [lindex $matrix 0] \t]"
    foreach col [lrange $matrix 1 end] {
        puts "      \t[join $col \t]"
    }
}

# SimplexPrepareMatrix
#    Prepare the standard tableau from all program data
#
# Arguments:
#    objective     Vector defining the objective function
#    constraints   Matrix of constraints (as a list of lists)
#
# Return value:
#    List of values as a standard tableau and two values
#    for the sizes
#
proc ::math::optimize::SimplexPrepareMatrix {objective constraints} {

    #
    # Check the arguments first
    #
    set nconst [llength $constraints]
    set ncols {}
    foreach row $constraints {
        if { $ncols == {} } {
            set ncols [llength $row]
        } else {
            if { $ncols != [llength $row] } {
                return -code error -errorcode ARGS "Incorrectly formed constraints matrix"
            }
        }
    }

    set nvars [expr {$ncols-1}]

    if { [llength $objective] != $nvars } {
        return -code error -errorcode ARGS "Incorrect length for objective vector"
    }

    #
    # Set up the tableau:
    # Easiest manipulations if we store the columns first
    # So:
    # - First column is the list of variable indices in the basis
    # - Second column is the list of maximum values
    # - "nvars" columns that follow: the coefficients for the actual
    #   variables
    # - last "nconst" columns: the slack variables
    #
    set matrix   [list]
    set lastrow  [concat $objective [list 0.0]]

    set newcol   [list]
    for {set idx 0} {$idx < $nconst} {incr idx} {
        lappend newcol [expr {$nvars+$idx}]
    }
    lappend newcol "?"
    lappend matrix $newcol

    set zvector [list]
    foreach row $constraints {
        lappend zvector [lindex $row end]
    }
    lappend zvector 0.0
    lappend matrix $zvector

    for {set idx 0} {$idx < $nvars} {incr idx} {
        set newcol [list]
        foreach row $constraints {
            lappend newcol [expr {double([lindex $row $idx])}]
        }
        lappend newcol [expr {-double([lindex $lastrow $idx])}]
         lappend matrix $newcol
    }

    #
    # Add the columns for the slack variables
    #
    set zeros {}
    for {set idx 0} {$idx <= $nconst} {incr idx} {
        lappend zeros 0.0
    }
    for {set idx 0} {$idx < $nconst} {incr idx} {
        lappend matrix [lreplace $zeros $idx $idx 1.0]
    }

    return [list $nconst $nvars $matrix]
}

# SimplexSolve --
#    Solve the given linear program using the simplex method
#
# Arguments:
#    nconst        Number of constraints
#    nvars         Number of actual variables
#    tableau       Standard tableau (as a list of columns)
#
# Return value:
#    List of values for the actual variables
#
proc ::math::optimize::SimplexSolve {nconst nvars tableau} {
    set end 0
    while { !$end } {

        #
        # Find the new variable to put in the basis
        #
        set nextcol [SimplexFindNextColumn $tableau]
        if { $nextcol == -1 } {
            set end 1
            continue
        }

        #
        # Now determine which one should leave
        # TODO: is a lack of a proper row indeed an
        #       indication of the infeasibility?
        #
        set nextrow [SimplexFindNextRow $tableau $nextcol]
        if { $nextrow == -1 } {
            return "unbounded"
        }

        #
        # Make the vector for sweeping through the tableau
        #
        set vector [SimplexMakeVector $tableau $nextcol $nextrow]

        #
        # Sweep through the tableau
        #
        set tableau [SimplexNewTableau $tableau $nextcol $nextrow $vector]
    }

    #
    # Now we can return the result
    #
    SimplexResult $tableau
}

# SimplexResult --
#    Reconstruct the result vector
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#
# Return value:
#    Vector of values representing the maximum point
#
proc ::math::optimize::SimplexResult {tableau} {
    set result {}

    set firstcol  [lindex $tableau 0]
    set secondcol [lindex $tableau 1]
    set result    {}

    set nvars     [expr {[llength $tableau]-2}]
    for {set i 0} {$i < $nvars } { incr i } {
        lappend result 0.0
    }

    set idx 0
    foreach col [lrange $firstcol 0 end-1] {
        set value [lindex $secondcol $idx]
        if { $value >= 0.0 } {
            set result [lreplace $result $col $col [lindex $secondcol $idx]]
            incr idx
        } else {
            # If a negative component, then the problem was not feasible
            return "infeasible"
        }
    }

    return $result
}

# SimplexFindNextColumn --
#    Find the next column - the one with the largest negative
#    coefficient
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#
# Return value:
#    Index of the column
#
proc ::math::optimize::SimplexFindNextColumn {tableau} {
    set idx        0
    set minidx    -1
    set mincoeff   0.0

    foreach col [lrange $tableau 2 end] {
        set coeff [lindex $col end]
        if { $coeff < 0.0 } {
            if { $coeff < $mincoeff } {
                set minidx $idx
               set mincoeff $coeff
            }
        }
        incr idx
    }

    return $minidx
}

# SimplexFindNextRow --
#    Find the next row - the one with the largest negative
#    coefficient
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#    nextcol       Index of the variable that will replace this one
#
# Return value:
#    Index of the row
#
proc ::math::optimize::SimplexFindNextRow {tableau nextcol} {
    set idx        0
    set minidx    -1
    set mincoeff   {}

    set bvalues [lrange [lindex $tableau 1] 0 end-1]
    set yvalues [lrange [lindex $tableau [expr {2+$nextcol}]] 0 end-1]

    foreach rowcoeff $bvalues divcoeff $yvalues {
        if { $divcoeff > 0.0 } {
            set coeff [expr {$rowcoeff/$divcoeff}]

            if { $mincoeff == {} || $coeff < $mincoeff } {
                set minidx $idx
                set mincoeff $coeff
            }
        }
        incr idx
    }

    return $minidx
}

# SimplexMakeVector --
#    Make the "sweep" vector
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#    nextcol       Index of the variable that will replace this one
#    nextrow       Index of the variable in the base that will be replaced
#
# Return value:
#    Vector to be used to update the coefficients of the tableau
#
proc ::math::optimize::SimplexMakeVector {tableau nextcol nextrow} {

    set idx      0
    set vector   {}
    set column   [lindex $tableau [expr {2+$nextcol}]]
    set divcoeff [lindex $column $nextrow]

    foreach colcoeff $column {
        if { $idx != $nextrow } {
            set coeff [expr {-$colcoeff/$divcoeff}]
        } else {
            set coeff [expr {1.0/$divcoeff-1.0}]
        }
        lappend vector $coeff
        incr idx
    }

    return $vector
}

# SimplexNewTableau --
#    Sweep through the tableau and create the new one
#
# Arguments:
#    tableau       Standard tableau (as a list of columns)
#    nextcol       Index of the variable that will replace this one
#    nextrow       Index of the variable in the base that will be replaced
#    vector        Vector to sweep with
#
# Return value:
#    New tableau
#
proc ::math::optimize::SimplexNewTableau {tableau nextcol nextrow vector} {

    #
    # The first column: replace the nextrow-th element
    # The second column: replace the value at the nextrow-th element
    # For all the others: the same receipe
    #
    set firstcol   [lreplace [lindex $tableau 0] $nextrow $nextrow $nextcol]
    set newtableau [list $firstcol]

    #
    # The rest of the matrix
    #
    foreach column [lrange $tableau 1 end] {
        set yval   [lindex $column $nextrow]
        set newcol {}
        foreach c $column vcoeff $vector {
            set newval [expr {$c+$yval*$vcoeff}]
            lappend newcol $newval
        }
        lappend newtableau $newcol
    }

    return $newtableau
}

# Now we can announce our presence
package provide math::optimize 1.0.1

if { ![info exists ::argv0] || [string compare $::argv0 [info script]] } {
    return
}

namespace import math::optimize::min_bound_1d
namespace import math::optimize::maximum
namespace import math::optimize::nelderMead

proc f {x y} {
    set xx [expr { $x - 3.1415926535897932 / 2. }]
    set v1 [expr { 0.3 * exp( -$xx*$xx / 2. ) }]
    set d [expr { 10. * $y - sin(9. * $x) }]
    set v2 [expr { exp(-10.*$d*$d)}]
    set rv [expr { -$v1 - $v2 }]
    return $rv
}

proc g {a b} {
    set x1 [expr {0.1 - $a + $b}]
    set x2 [expr {$a + $b - 1.}]
    set x3 [expr {3.-8.*$a+8.*$a*$a-8.*$b+8.*$b*$b}]
    set x4 [expr {$a/10. + $b/10. + $x1*$x1/3. + $x2*$x2 - $x2 * exp(1-$x3*$x3)}]
    return $x4
}

set prec $::tcl_precision
if {![package vsatisfies [package provide Tcl] 8.5]} {
    set ::tcl_precision 17
} else {
    set ::tcl_precision 0
}

puts "f"
puts [math::optimize::nelderMead f {1. 0.} -scale {0.1 0.01} -trace 1]
puts "g"
puts [math::optimize::nelderMead g {0. 0.} -scale {1. 1.} -trace 1]

set ::tcl_precision $prec