1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
# quasirandom.tcl --
# Generate quasi-random points in n dimensions and provide simple
# methods to evaluate an integral
#
# Note: provide a OO-style interface
#
# TODO: integral-detailed, minimum, maximum
#
# Based on the blog "The Unreasonable Effectiveness of Quasirandom Sequences" by Martin Roberts,
# http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
#
package require Tcl 8.5
package require TclOO
package provide math::quasirandom 1.0
namespace eval ::math::quasirandom {
# qrpoints --
# Create the class
#
::oo::class create qrpoints {
# constructor --
# Construct a new instance of the qrpoints class
#
# Arguments:
# dim Number of dimensions, or one of: circle, disk, sphere, ball
# args Zero or more key-value pairs:
# -start - start the generation with the given multiplier (integer)
# -evaluations - default number of evaluations for the integration
# (possibly others as well)
#
constructor {dimin args} {
my variable dim
my variable coord_factors
my variable step
my variable evaluations
my variable use_radius
my variable effective_dim
if { ( ![string is integer -strict $dimin] || $dimin <= 0 ) && $dimin ni {circle disk sphere ball} } {
return -code error "The dimension argument should be a positive integer value or one of circle, disk, sphere or ball"
}
set use_radius 1
switch -- $dimin {
"circle" {
set dim 1
set effective_dim 2
::oo::objdefine [self] {
forward next my CircleNext
forward Volume my CircleVolume
}
}
"disk" {
set dim 2
set effective_dim 2
::oo::objdefine [self] {
forward next my DiskNext
forward Volume my DiskVolume
}
}
"sphere" {
set dim 2
set effective_dim 3
::oo::objdefine [self] {
forward next my SphereNext
forward Volume my SphereVolume
}
}
"ball" {
set dim 3
set effective_dim 3
::oo::objdefine [self] {
forward next my BallNext
forward Volume my BallVolume
}
}
default {
set dim $dimin
set use_radius 0
::oo::objdefine [self] {
forward next my PlainNext
forward Volume my PlainVolume
}
}
}
set step 1
set evaluations 100
set coord_factors [::math::quasirandom::CoordFactors $dim]
foreach {key value} $args {
switch -- $key {
"-start" {
my set-step $value
}
"-evaluations" {
if { ![string is -strict integer $value] || $value <= 0 } {
return -code error "The value for the option $key should be a positive integer value"
}
my set-evaluations $value
}
default {
return -code error "Unknown option: $key -- value: $value"
}
}
}
}
# PlainNext --
# Generate the next point - for a hyperblock
#
method PlainNext {} {
my variable step
my variable coord_factors
set coords {}
foreach f $coord_factors {
lappend coords [expr {fmod( $f * $step, 1.0 )}]
}
incr step
return $coords
}
# PlainVolume --
# Calculate the volume of a hyperblock
#
# Arguments:
# minmax List of minimum and maximum per dimension
#
# Returns:
# The volume
#
method PlainVolume {minmax} {
set volume 1.0
foreach range $minmax {
lassign $range xmin xmax
set volume [expr {$volume * ($xmax-$xmin)}]
}
return $volume
}
# CircleNext --
# Generate the next point on a unit circle
#
method CircleNext {} {
set f [lindex [my PlainNext] 0]
set rad [expr {2.0 * acos(-1.0) * $f}]
set coords [list [expr {cos($rad)}] [expr {sin($rad)}]]
return $coords
}
# CircleVolume --
# Calculate the "volume" of the unit circle
#
# Arguments:
# radius Radius of the circle
#
method CircleVolume {radius} {
return [expr {$radius * 2.0*cos(-1.0)}]
}
# DiskNext --
# Generate the next point on a unit disk
#
method DiskNext {} {
while {1} {
set coords [my PlainNext]
lassign $coords x y
if { hypot($x-0.5,$y-0.5) <= 0.25 } {
set coords [list [expr {2.0*$x-1.0}] [expr {2.0*$y-1.0}]]
break
}
}
return $coords
}
# DiskVolume --
# Calculate the "volume" of the unit disk
#
# Arguments:
# radius Radius of the disk
#
method DiskVolume {radius} {
return [expr {$radius**2 * cos(-1.0)}]
}
# BallNext --
# Generate the next point on a unit ball
#
method BallNext {} {
while {1} {
set coords [my PlainNext]
lassign $coords x y z
set r [expr {($x-0.5)**2 + ($y-0.5)**2 + ($z-0.5)**2}]
if { $r <= 0.25 } {
set coords [list [expr {2.0*$x-1.0}] [expr {2.0*$y-1.0}] [expr {2.0*$z-1.0}]]
break
}
}
return $coords
}
# BallVolume --
# Calculate the volume of the unit ball
#
# Arguments:
# radius Radius of the ball
#
method BallVolume {radius} {
return [expr {4.0/3.0 * $radius**3 * cos(-1.0)}]
}
# SphereNext --
# Generate the next point on a unit sphere
#
method SphereNext {} {
set coords [my PlainNext]
lassign $coords u v
set phi [expr {2.0 * acos(-1.0) * $v}]
set lambda [expr {acos(2.0 * $u - 1.0) + 0.5 * acos(-1.0)}]
set x [expr {cos($lambda) * cos($phi)}]
set y [expr {cos($lambda) * sin($phi)}]
set z [expr {sin($lambda)}]
return [list $x $y $z]
}
# SphereVolume --
# Calculate the "volume" of the unit sphere
#
# Arguments:
# radius Radius of the sphere
#
method SphereVolume {radius} {
return [expr {4.0 * $radius**2 * cos(-1.0)}]
}
# set-step --
# Set the first step to be used
#
method set-step {{value ""}} {
my variable step
if { $value eq "" } {
return $step
}
if { ![string is integer -strict $value] } {
return -code error "The value for the option $key should be an integer value"
}
set step [expr {int($value)}]
}
# set-evaluations --
# Set the number of evaluations for integration
#
method set-evaluations {{value ""}} {
my variable evaluations
if { $value eq "" } {
return $evaluations
}
if { ![string is integer -strict $value] || $value <= 0 } {
return -code error "The value for the option $key should be a positive integer value"
}
set evaluations [expr {4*int(($value+3)/4)}] ;# Make sure it is a 4-fold
}
# integral --
# Evaluate the integral of a function over a given (rectangular) domain
#
# Arguments:
# func Function to be integrated
# minmax List of minimum and maximum bounds for each coordinate
# args Key-value pair: number of evaluations
#
# Returns:
# Estimate of the integral based on "evaluations" evaluations
# Note: no error estimate
#
method integral {func minmax args} {
my variable dim
my variable step
my variable coord_factors
my variable evaluations
my variable use_radius
my variable effective_dim
set evals $evaluations
set func [uplevel 1 [list namespace which -command $func]]
foreach {key value} $args {
switch -- $key {
"-evaluations" {
if { ![string is integer -strict $value] || $value <= 0 } {
return -code error "The value for the option $key should be a positive integer value"
}
set evals $value ;# Local only!
}
default {
return -code error "Unknown option: $key -- value: $value"
}
}
}
if { ! $use_radius } {
if { [llength $minmax] != $dim } {
return -code error "The number of ranges (minmax) should be equal to the dimension ($dim)"
} else {
set volume [my Volume $minmax]
}
} else {
if { ! [string is double $minmax] } {
return -code error "For a circle, disk, sphere or ball only the radius should be given"
} else {
set radius $minmax
set minmax [lrepeat $effective_dim [list 0.0 $radius]]
set volume [my Volume $radius]
}
}
set sum 0.0
for {set i 0} {$i < $evals} {incr i} {
set coords {}
foreach c [my next] range $minmax {
lassign $range xmin xmax
lappend coords [expr {$xmin + ($xmax-$xmin) * $c}]
}
set sum [expr {$sum + [$func $coords]}]
}
return [expr {$sum * $volume / $evals}]
}
# integral-detailed --
# Evaluate the integral of a function over a given (rectangular) domain
# and provide detailed information
#
# Arguments:
# func Function to be integrated
# minmax List of minimum and maximum bounds for each coordinate
# args Key-value pair: number of evaluations
#
# Returns:
# Dictionary of:
# -estimate value - estimate of the integral
# -evaluations number - total number of evaluations
# -error value - estimate of the error
# -rawvalues list - list of raw values obtained for the integral
#
method integral-detailed {func minmax args} {
my variable evaluations
set evals $evaluations
set func [uplevel 1 [list namespace which -command $func]]
foreach {key value} $args {
switch -- $key {
"-evaluations" {
if { ![string is integer -strict $value] || $value <= 0 } {
return -code error "The value for the option $key should be a positive integer value"
}
set evals $value ;# Local only!
}
default {
return -code error "Unknown option: $key -- value: $value"
}
}
}
lappend args -evaluations [expr {($evals+3)/4}]
for {set i 0} {$i < 4} {incr i} {
lappend rawvalues [my integral $func $minmax {*}$args]
}
set sum 0.0
set sqsum 0.0
foreach value $rawvalues {
set sum [expr {$sum + $value}]
set sqsum [expr {$sqsum + $value**2}]
}
set stdev [expr {sqrt(($sqsum - $sum**2/4.0)/3.0)}]
set sum [expr {$sum / 4.0}]
# Standard error of mean
return [dict create -estimate $sum -error [expr {$stdev/2.0}] -rawvalues $rawvalues -evaluations [expr {4*(($evals+3)/4)}]]
}
} ;# End of class
} ;# End of namespace eval
# CoordFactors --
# Determine the factors for the coordinates
#
# Arguments:
# dim Number of dimensions
#
proc ::math::quasirandom::CoordFactors {dim} {
set n [expr {$dim + 1}]
set f 1.0
for {set i 0} {$i < 10} {incr i} {
set f [expr {$f - ($f**$n-$f-1.0) / ($n*$f**($n-1)-1.0)}]
}
set factors {}
set af 1.0
for {set i 0} {$i < $dim} {incr i} {
set af [expr {$af/$f}]
lappend factors $af
}
return $factors
}
# End of code for package
# --------------------------------------------
# test --
#
if {0} {
::math::quasirandom::qrpoints create square 2
puts [square next]
puts [square next]
puts [square next]
proc f {coords} {
lassign $coords x y
expr {$x**2+$y**2}
}
proc g {coords} {
lassign $coords x y
expr {(1.0-cos($x))**2 * (1.0-cos($y))**2}
}
# Print four estimates - should not deviate too much from 10.0
puts [square integral f {{0 1} {0 3}}]
puts [square integral f {{0 1} {0 3}}]
puts [square integral f {{0 1} {0 3}}]
puts [square integral f {{0 1} {0 3}}]
# Print a sequence of estimates - should converge to (3pi/2)**2
foreach n {20 40 100 300 1000} {
square set-evaluations $n
puts "$n: [square integral g [list [list 0.0 [expr {acos(-1)}]] [list 0.0 [expr {acos(-1)}]]]]"
}
::math::quasirandom::qrpoints create block 3
puts [block next]
puts "Circle ..."
::math::quasirandom::qrpoints create circle circle
puts [circle next]
puts [circle next]
puts [circle next]
# Test values for CoordFactors
# dim = 1: 1.6180339887498948482045...
# dim = 2: 1.3247179572447460259609...
# dim = 3: 1.2207440846057594753616...
set f [::math::quasirandom::CoordFactors 1]
puts 1.6180339887498948482045...
puts [expr {1.0/$f}]
set f [lindex [::math::quasirandom::CoordFactors 2] 0]
puts 1.3247179572447460259609...
puts [expr {1.0/$f}]
set f [lindex [::math::quasirandom::CoordFactors 3] 0]
puts 1.2207440846057594753616...
puts [expr {1.0/$f}]
}
|