1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
[comment {-*- tcl -*- doctools manpage}]
[manpage_begin math::rationalfunctions n 1.0.1]
[keywords math]
[keywords {rational functions}]
[copyright {2005 Arjen Markus <arjenmarkus@users.sourceforge.net>}]
[moddesc {Math}]
[titledesc {Polynomial functions}]
[category Mathematics]
[require Tcl [opt 8.4]]
[require math::rationalfunctions [opt 1.0.1]]
[description]
[para]
This package deals with rational functions of one variable:
[list_begin itemized]
[item]
the basic arithmetic operations are extended to rational functions
[item]
computing the derivatives of these functions
[item]
evaluation through a general procedure or via specific procedures)
[list_end]
[section "PROCEDURES"]
The package defines the following public procedures:
[list_begin definitions]
[call [cmd ::math::rationalfunctions::rationalFunction] [arg num] [arg den]]
Return an (encoded) list that defines the rational function. A
rational function
[example {
1 + x^3
f(x) = ------------
1 + 2x + x^2
}]
can be defined via:
[example {
set f [::math::rationalfunctions::rationalFunction [list 1 0 0 1] \
[list 1 2 1]]
}]
[list_begin arguments]
[arg_def list num] Coefficients of the numerator of the rational
function (in ascending order)
[para]
[arg_def list den] Coefficients of the denominator of the rational
function (in ascending order)
[list_end]
[para]
[call [cmd ::math::rationalfunctions::ratioCmd] [arg num] [arg den]]
Create a new procedure that evaluates the rational function. The name of the
function is automatically generated. Useful if you need to evaluate
the function many times, as the procedure consists of a single
[lb]expr[rb] command.
[list_begin arguments]
[arg_def list num] Coefficients of the numerator of the rational
function (in ascending order)
[para]
[arg_def list den] Coefficients of the denominator of the rational
function (in ascending order)
[list_end]
[para]
[call [cmd ::math::rationalfunctions::evalRatio] [arg rational] [arg x]]
Evaluate the rational function at x.
[list_begin arguments]
[arg_def list rational] The rational function's definition (as returned
by the rationalFunction command).
order)
[arg_def float x] The coordinate at which to evaluate the function
[list_end]
[para]
[call [cmd ::math::rationalfunctions::addRatio] [arg ratio1] [arg ratio2]]
Return a new rational function which is the sum of the two others.
[list_begin arguments]
[arg_def list ratio1] The first rational function operand
[arg_def list ratio2] The second rational function operand
[list_end]
[para]
[call [cmd ::math::rationalfunctions::subRatio] [arg ratio1] [arg ratio2]]
Return a new rational function which is the difference of the two
others.
[list_begin arguments]
[arg_def list ratio1] The first rational function operand
[arg_def list ratio2] The second rational function operand
[list_end]
[para]
[call [cmd ::math::rationalfunctions::multRatio] [arg ratio1] [arg ratio2]]
Return a new rational function which is the product of the two others.
If one of the arguments is a scalar value, the other rational function is
simply scaled.
[list_begin arguments]
[arg_def list ratio1] The first rational function operand or a scalar
[arg_def list ratio2] The second rational function operand or a scalar
[list_end]
[para]
[call [cmd ::math::rationalfunctions::divRatio] [arg ratio1] [arg ratio2]]
Divide the first rational function by the second rational function and
return the result. The remainder is dropped
[list_begin arguments]
[arg_def list ratio1] The first rational function operand
[arg_def list ratio2] The second rational function operand
[list_end]
[para]
[call [cmd ::math::rationalfunctions::derivPolyn] [arg ratio]]
Differentiate the rational function and return the result.
[list_begin arguments]
[arg_def list ratio] The rational function to be differentiated
[list_end]
[para]
[call [cmd ::math::rationalfunctions::coeffsNumerator] [arg ratio]]
Return the coefficients of the numerator of the rational function.
[list_begin arguments]
[arg_def list ratio] The rational function to be examined
[list_end]
[para]
[call [cmd ::math::rationalfunctions::coeffsDenominator] [arg ratio]]
Return the coefficients of the denominator of the rational
function.
[list_begin arguments]
[arg_def list ratio] The rational function to be examined
[list_end]
[para]
[list_end]
[section "REMARKS ON THE IMPLEMENTATION"]
The implementation of the rational functions relies on the
math::polynomials package. For further remarks see the documentation on
that package.
[vset CATEGORY {math :: rationalfunctions}]
[include ../common-text/feedback.inc]
[manpage_end]
|