1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
[comment {-*- tcl -*- doctools manpage}]
[manpage_begin math::special n 0.4]
[keywords {Bessel functions}]
[keywords {error function}]
[keywords math]
[keywords {special functions}]
[copyright {2004 Arjen Markus <arjenmarkus@users.sourceforge.net>}]
[moddesc {Tcl Math Library}]
[titledesc {Special mathematical functions}]
[category Mathematics]
[require Tcl [opt 8.5]]
[require math::special [opt 0.4]]
[description]
[para]
This package implements several so-called special functions, like
the Gamma function, the Bessel functions and such.
[para]
Each function is implemented by a procedure that bears its name (well,
in close approximation):
[list_begin itemized]
[item]
J0 for the zeroth-order Bessel function of the first kind
[item]
J1 for the first-order Bessel function of the first kind
[item]
Jn for the nth-order Bessel function of the first kind
[item]
J1/2 for the half-order Bessel function of the first kind
[item]
J-1/2 for the minus-half-order Bessel function of the first kind
[item]
I_n for the modified Bessel function of the first kind of order n
[item]
Gamma for the Gamma function, erf and erfc for the error function and
the complementary error function
[item]
fresnel_C and fresnel_S for the Fresnel integrals
[item]
elliptic_K and elliptic_E (complete elliptic integrals)
[item]
exponent_Ei and other functions related to the so-called exponential
integrals
[item]
legendre, hermite: some of the classical orthogonal polynomials.
[list_end]
[section OVERVIEW]
In the following table several characteristics of the functions in this
package are summarized: the domain for the argument, the values for the
parameters and error bounds.
[example {
Family | Function | Domain x | Parameter | Error bound
-------------+-------------+-------------+-------------+--------------
Bessel | J0, J1, | all of R | n = integer | < 1.0e-8
| Jn | | | (|x|<20, n<20)
Bessel | J1/2, J-1/2,| x > 0 | n = integer | exact
Bessel | I_n | all of R | n = integer | < 1.0e-6
| | | |
Elliptic | cn | 0 <= x <= 1 | -- | < 1.0e-10
functions | dn | 0 <= x <= 1 | -- | < 1.0e-10
| sn | 0 <= x <= 1 | -- | < 1.0e-10
Elliptic | K | 0 <= x < 1 | -- | < 1.0e-6
integrals | E | 0 <= x < 1 | -- | < 1.0e-6
| | | |
Error | erf | | -- |
functions | erfc | | |
| | | |
Inverse | invnorm | 0 < x < 1 | -- | < 1.2e-9
normal | | | |
distribution | | | |
| | | |
Exponential | Ei | x != 0 | -- | < 1.0e-10 (relative)
integrals | En | x > 0 | -- | as Ei
| li | x > 0 | -- | as Ei
| Chi | x > 0 | -- | < 1.0e-8
| Shi | x > 0 | -- | < 1.0e-8
| Ci | x > 0 | -- | < 2.0e-4
| Si | x > 0 | -- | < 2.0e-4
| | | |
Fresnel | C | all of R | -- | < 2.0e-3
integrals | S | all of R | -- | < 2.0e-3
| | | |
general | Beta | (see Gamma) | -- | < 1.0e-9
| Gamma | x != 0,-1, | -- | < 1.0e-9
| | -2, ... | |
| incBeta | | a, b > 0 | < 1.0e-9
| regIncBeta | | a, b > 0 | < 1.0e-9
| digamma | x != 0,-1 | | < 1.0e-9
| | -2, ... | |
| | | |
| sinc | all of R | -- | exact
| | | |
orthogonal | Legendre | all of R | n = 0,1,... | exact
polynomials | Chebyshev | all of R | n = 0,1,... | exact
| Laguerre | all of R | n = 0,1,... | exact
| | | alpha el. R |
| Hermite | all of R | n = 0,1,... | exact
}]
[emph Note:] Some of the error bounds are estimated, as no
"formal" bounds were available with the implemented approximation
method, others hold for the auxiliary functions used for estimating
the primary functions.
[para]
The following well-known functions are currently missing from the package:
[list_begin itemized]
[item]
Bessel functions of the second kind (Y_n, K_n)
[item]
Bessel functions of arbitrary order (and hence the Airy functions)
[item]
Chebyshev polynomials of the second kind (U_n)
[item]
The incomplete gamma function
[list_end]
[section "PROCEDURES"]
The package defines the following public procedures:
[list_begin definitions]
[call [cmd ::math::special::Beta] [arg x] [arg y]]
Compute the Beta function for arguments "x" and "y"
[list_begin arguments]
[arg_def float x] First argument for the Beta function
[arg_def float y] Second argument for the Beta function
[list_end]
[para]
[call [cmd ::math::special::incBeta] [arg a] [arg b] [arg x]]
Compute the incomplete Beta function for argument "x" with parameters "a" and "b"
[list_begin arguments]
[arg_def float a] First parameter for the incomplete Beta function, a > 0
[arg_def float b] Second parameter for the incomplete Beta function, b > 0
[arg_def float x] Argument for the incomplete Beta function
[list_end]
[para]
[call [cmd ::math::special::regIncBeta] [arg a] [arg b] [arg x]]
Compute the regularized incomplete Beta function for argument "x" with parameters "a" and "b"
[list_begin arguments]
[arg_def float a] First parameter for the incomplete Beta function, a > 0
[arg_def float b] Second parameter for the incomplete Beta function, b > 0
[arg_def float x] Argument for the regularized incomplete Beta function
[list_end]
[para]
[call [cmd ::math::special::Gamma] [arg x]]
Compute the Gamma function for argument "x"
[list_begin arguments]
[arg_def float x] Argument for the Gamma function
[list_end]
[para]
[call [cmd ::math::special::digamma] [arg x]]
Compute the digamma function (psi) for argument "x"
[list_begin arguments]
[arg_def float x] Argument for the digamma function
[list_end]
[para]
[call [cmd ::math::special::erf] [arg x]]
Compute the error function for argument "x"
[list_begin arguments]
[arg_def float x] Argument for the error function
[list_end]
[para]
[call [cmd ::math::special::erfc] [arg x]]
Compute the complementary error function for argument "x"
[list_begin arguments]
[arg_def float x] Argument for the complementary error function
[list_end]
[para]
[call [cmd ::math::special::invnorm] [arg p]]
Compute the inverse of the normal distribution function for argument "p"
[list_begin arguments]
[arg_def float p] Argument for the inverse normal distribution function
(p must be greater than 0 and lower than 1)
[list_end]
[para]
[call [cmd ::math::special::J0] [arg x]]
Compute the zeroth-order Bessel function of the first kind for the
argument "x"
[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]
[call [cmd ::math::special::J1] [arg x]]
Compute the first-order Bessel function of the first kind for the
argument "x"
[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]
[call [cmd ::math::special::Jn] [arg n] [arg x]]
Compute the nth-order Bessel function of the first kind for the
argument "x"
[list_begin arguments]
[arg_def integer n] Order of the Bessel function
[arg_def float x] Argument for the Bessel function
[list_end]
[call [cmd ::math::special::J1/2] [arg x]]
Compute the half-order Bessel function of the first kind for the
argument "x"
[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]
[call [cmd ::math::special::J-1/2] [arg x]]
Compute the minus-half-order Bessel function of the first kind for the
argument "x"
[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]
[call [cmd ::math::special::I_n] [arg x]]
Compute the modified Bessel function of the first kind of order n for
the argument "x"
[list_begin arguments]
[arg_def int x] Positive integer order of the function
[arg_def float x] Argument for the function
[list_end]
[call [cmd ::math::special::cn] [arg u] [arg k]]
Compute the elliptic function [emph cn] for the argument "u" and
parameter "k".
[list_begin arguments]
[arg_def float u] Argument for the function
[arg_def float k] Parameter
[list_end]
[call [cmd ::math::special::dn] [arg u] [arg k]]
Compute the elliptic function [emph dn] for the argument "u" and
parameter "k".
[list_begin arguments]
[arg_def float u] Argument for the function
[arg_def float k] Parameter
[list_end]
[call [cmd ::math::special::sn] [arg u] [arg k]]
Compute the elliptic function [emph sn] for the argument "u" and
parameter "k".
[list_begin arguments]
[arg_def float u] Argument for the function
[arg_def float k] Parameter
[list_end]
[call [cmd ::math::special::elliptic_K] [arg k]]
Compute the complete elliptic integral of the first kind
for the argument "k"
[list_begin arguments]
[arg_def float k] Argument for the function
[list_end]
[call [cmd ::math::special::elliptic_E] [arg k]]
Compute the complete elliptic integral of the second kind
for the argument "k"
[list_begin arguments]
[arg_def float k] Argument for the function
[list_end]
[call [cmd ::math::special::exponential_Ei] [arg x]]
Compute the exponential integral of the second kind
for the argument "x"
[list_begin arguments]
[arg_def float x] Argument for the function (x != 0)
[list_end]
[call [cmd ::math::special::exponential_En] [arg n] [arg x]]
Compute the exponential integral of the first kind
for the argument "x" and order n
[list_begin arguments]
[arg_def int n] Order of the integral (n >= 0)
[arg_def float x] Argument for the function (x >= 0)
[list_end]
[call [cmd ::math::special::exponential_li] [arg x]]
Compute the logarithmic integral for the argument "x"
[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]
[call [cmd ::math::special::exponential_Ci] [arg x]]
Compute the cosine integral for the argument "x"
[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]
[call [cmd ::math::special::exponential_Si] [arg x]]
Compute the sine integral for the argument "x"
[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]
[call [cmd ::math::special::exponential_Chi] [arg x]]
Compute the hyperbolic cosine integral for the argument "x"
[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]
[call [cmd ::math::special::exponential_Shi] [arg x]]
Compute the hyperbolic sine integral for the argument "x"
[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]
[call [cmd ::math::special::fresnel_C] [arg x]]
Compute the Fresnel cosine integral for real argument x
[list_begin arguments]
[arg_def float x] Argument for the function
[list_end]
[call [cmd ::math::special::fresnel_S] [arg x]]
Compute the Fresnel sine integral for real argument x
[list_begin arguments]
[arg_def float x] Argument for the function
[list_end]
[call [cmd ::math::special::sinc] [arg x]]
Compute the sinc function for real argument x
[list_begin arguments]
[arg_def float x] Argument for the function
[list_end]
[call [cmd ::math::special::legendre] [arg n]]
Return the Legendre polynomial of degree n
(see [sectref "THE ORTHOGONAL POLYNOMIALS"])
[list_begin arguments]
[arg_def int n] Degree of the polynomial
[list_end]
[para]
[call [cmd ::math::special::chebyshev] [arg n]]
Return the Chebyshev polynomial of degree n (of the first kind)
[list_begin arguments]
[arg_def int n] Degree of the polynomial
[list_end]
[para]
[call [cmd ::math::special::laguerre] [arg alpha] [arg n]]
Return the Laguerre polynomial of degree n with parameter alpha
[list_begin arguments]
[arg_def float alpha] Parameter of the Laguerre polynomial
[arg_def int n] Degree of the polynomial
[list_end]
[para]
[call [cmd ::math::special::hermite] [arg n]]
Return the Hermite polynomial of degree n
[list_begin arguments]
[arg_def int n] Degree of the polynomial
[list_end]
[para]
[list_end]
[section "THE ORTHOGONAL POLYNOMIALS"]
For dealing with the classical families of orthogonal polynomials, the
package relies on the [emph math::polynomials] package. To evaluate the
polynomial at some coordinate, use the [emph evalPolyn] command:
[example {
set leg2 [::math::special::legendre 2]
puts "Value at x=$x: [::math::polynomials::evalPolyn $leg2 $x]"
}]
[para]
The return value from the [emph legendre] and other commands is actually
the definition of the corresponding polynomial as used in that package.
[section "REMARKS ON THE IMPLEMENTATION"]
It should be noted, that the actual implementation of J0 and J1 depends
on straightforward Gaussian quadrature formulas. The (absolute) accuracy
of the results is of the order 1.0e-4 or better. The main reason to
implement them like that was that it was fast to do (the formulas are
simple) and the computations are fast too.
[para]
The implementation of J1/2 does not suffer from this: this function can
be expressed exactly in terms of elementary functions.
[para]
The functions J0 and J1 are the ones you will encounter most frequently
in practice.
[para]
The computation of I_n is based on Miller's algorithm for computing the
minimal function from recurrence relations.
[para]
The computation of the Gamma and Beta functions relies on the
combinatorics package, whereas that of the error functions relies on the
statistics package.
[para]
The computation of the complete elliptic integrals uses the AGM
algorithm.
[para]
Much information about these functions can be found in:
[para]
Abramowitz and Stegun: [emph "Handbook of Mathematical Functions"]
(Dover, ISBN 486-61272-4)
[vset CATEGORY {math :: special}]
[include ../common-text/feedback.inc]
[manpage_end]
|