File: special.man

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (509 lines) | stat: -rw-r--r-- 14,579 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
[comment {-*- tcl -*- doctools manpage}]
[manpage_begin math::special n 0.4]
[keywords {Bessel functions}]
[keywords {error function}]
[keywords math]
[keywords {special functions}]
[copyright {2004 Arjen Markus <arjenmarkus@users.sourceforge.net>}]
[moddesc   {Tcl Math Library}]
[titledesc {Special mathematical functions}]
[category  Mathematics]
[require Tcl [opt 8.5]]
[require math::special [opt 0.4]]

[description]
[para]
This package implements several so-called special functions, like
the Gamma function, the Bessel functions and such.

[para]
Each function is implemented by a procedure that bears its name (well,
in close approximation):

[list_begin itemized]
[item]
J0 for the zeroth-order Bessel function of the first kind

[item]
J1 for the first-order Bessel function of the first kind

[item]
Jn for the nth-order Bessel function of the first kind

[item]
J1/2 for the half-order Bessel function of the first kind

[item]
J-1/2 for the minus-half-order Bessel function of the first kind

[item]
I_n for the modified Bessel function of the first kind of order n

[item]
Gamma for the Gamma function, erf and erfc for the error function and
the complementary error function

[item]
fresnel_C and fresnel_S for the Fresnel integrals

[item]
elliptic_K and elliptic_E (complete elliptic integrals)

[item]
exponent_Ei and other functions related to the so-called exponential
integrals

[item]
legendre, hermite: some of the classical orthogonal polynomials.

[list_end]

[section OVERVIEW]

In the following table several characteristics of the functions in this
package are summarized: the domain for the argument, the values for the
parameters and error bounds.

[example {
Family       | Function    | Domain x    | Parameter   | Error bound
-------------+-------------+-------------+-------------+--------------
Bessel       | J0, J1,     | all of R    | n = integer |   < 1.0e-8
             | Jn          |             |             |  (|x|<20, n<20)
Bessel       | J1/2, J-1/2,|  x > 0      | n = integer |   exact
Bessel       | I_n         | all of R    | n = integer |   < 1.0e-6
             |             |             |             |
Elliptic     | cn          | 0 <= x <= 1 |     --      |   < 1.0e-10
functions    | dn          | 0 <= x <= 1 |     --      |   < 1.0e-10
             | sn          | 0 <= x <= 1 |     --      |   < 1.0e-10
Elliptic     | K           | 0 <= x < 1  |     --      |   < 1.0e-6
integrals    | E           | 0 <= x < 1  |     --      |   < 1.0e-6
             |             |             |             |
Error        | erf         |             |     --      |
functions    | erfc        |             |             |
             |             |             |             |
Inverse      | invnorm     | 0 < x < 1   |     --      |   < 1.2e-9
normal       |             |             |             |
distribution |             |             |             |
             |             |             |             |
Exponential  | Ei          |  x != 0     |     --      |   < 1.0e-10 (relative)
integrals    | En          |  x >  0     |     --      |   as Ei
             | li          |  x > 0      |     --      |   as Ei
             | Chi         |  x > 0      |     --      |   < 1.0e-8
             | Shi         |  x > 0      |     --      |   < 1.0e-8
             | Ci          |  x > 0      |     --      |   < 2.0e-4
             | Si          |  x > 0      |     --      |   < 2.0e-4
             |             |             |             |
Fresnel      | C           |  all of R   |     --      |   < 2.0e-3
integrals    | S           |  all of R   |     --      |   < 2.0e-3
             |             |             |             |
general      | Beta        | (see Gamma) |     --      |   < 1.0e-9
             | Gamma       |  x != 0,-1, |     --      |   < 1.0e-9
             |             |  -2, ...    |             |
             | incBeta     |             |  a, b > 0   |   < 1.0e-9
             | regIncBeta  |             |  a, b > 0   |   < 1.0e-9
             | digamma     |  x != 0,-1  |             |   < 1.0e-9
             |             |  -2, ...    |             |
             |             |             |             |
             | sinc        |  all of R   |     --      |   exact
             |             |             |             |
orthogonal   | Legendre    |  all of R   | n = 0,1,... |   exact
polynomials  | Chebyshev   |  all of R   | n = 0,1,... |   exact
             | Laguerre    |  all of R   | n = 0,1,... |   exact
             |             |             | alpha el. R |
             | Hermite     |  all of R   | n = 0,1,... |   exact
}]

[emph Note:] Some of the error bounds are estimated, as no
"formal" bounds were available with the implemented approximation
method, others hold for the auxiliary functions used for estimating
the primary functions.

[para]
The following well-known functions are currently missing from the package:
[list_begin itemized]
[item]
Bessel functions of the second kind (Y_n, K_n)
[item]
Bessel functions of arbitrary order (and hence the Airy functions)
[item]
Chebyshev polynomials of the second kind (U_n)
[item]
The incomplete gamma function
[list_end]

[section "PROCEDURES"]

The package defines the following public procedures:

[list_begin definitions]

[call [cmd ::math::special::Beta] [arg x] [arg y]]

Compute the Beta function for arguments "x" and "y"

[list_begin arguments]
[arg_def float x] First argument for the Beta function

[arg_def float y] Second argument for the Beta function
[list_end]

[para]

[call [cmd ::math::special::incBeta] [arg a] [arg b] [arg x]]

Compute the incomplete Beta function for argument "x" with parameters "a" and "b"

[list_begin arguments]
[arg_def float a] First parameter for the incomplete Beta function, a > 0
[arg_def float b] Second parameter for the incomplete Beta function, b > 0
[arg_def float x] Argument for the incomplete Beta function
[list_end]

[para]

[call [cmd ::math::special::regIncBeta] [arg a] [arg b] [arg x]]

Compute the regularized incomplete Beta function for argument "x" with parameters "a" and "b"

[list_begin arguments]
[arg_def float a] First parameter for the incomplete Beta function, a > 0
[arg_def float b] Second parameter for the incomplete Beta function, b > 0
[arg_def float x] Argument for the regularized incomplete Beta function
[list_end]

[para]

[call [cmd ::math::special::Gamma] [arg x]]

Compute the Gamma function for argument "x"

[list_begin arguments]
[arg_def float x] Argument for the Gamma function
[list_end]

[para]

[call [cmd ::math::special::digamma] [arg x]]

Compute the digamma function (psi) for argument "x"

[list_begin arguments]
[arg_def float x] Argument for the digamma function
[list_end]

[para]

[call [cmd ::math::special::erf] [arg x]]

Compute the error function for argument "x"

[list_begin arguments]
[arg_def float x] Argument for the error function
[list_end]

[para]

[call [cmd ::math::special::erfc] [arg x]]

Compute the complementary error function for argument "x"

[list_begin arguments]
[arg_def float x] Argument for the complementary error function
[list_end]

[para]

[call [cmd ::math::special::invnorm] [arg p]]

Compute the inverse of the normal distribution function for argument "p"

[list_begin arguments]
[arg_def float p] Argument for the inverse normal distribution function
(p must be greater than 0 and lower than 1)
[list_end]

[para]

[call [cmd ::math::special::J0] [arg x]]

Compute the zeroth-order Bessel function of the first kind for the
argument "x"

[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]

[call [cmd ::math::special::J1] [arg x]]

Compute the first-order Bessel function of the first kind for the
argument "x"

[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]

[call [cmd ::math::special::Jn] [arg n] [arg x]]

Compute the nth-order Bessel function of the first kind for the
argument "x"

[list_begin arguments]
[arg_def integer n] Order of the Bessel function
[arg_def float x] Argument for the Bessel function
[list_end]

[call [cmd ::math::special::J1/2] [arg x]]

Compute the half-order Bessel function of the first kind for the
argument "x"

[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]

[call [cmd ::math::special::J-1/2] [arg x]]

Compute the minus-half-order Bessel function of the first kind for the
argument "x"

[list_begin arguments]
[arg_def float x] Argument for the Bessel function
[list_end]

[call [cmd ::math::special::I_n] [arg x]]

Compute the modified Bessel function of the first kind of order n for
the argument "x"

[list_begin arguments]
[arg_def int x] Positive integer order of the function
[arg_def float x] Argument for the function
[list_end]

[call [cmd ::math::special::cn] [arg u] [arg k]]

Compute the elliptic function [emph cn] for the argument "u" and
parameter "k".

[list_begin arguments]
[arg_def float u] Argument for the function
[arg_def float k] Parameter
[list_end]

[call [cmd ::math::special::dn] [arg u] [arg k]]

Compute the elliptic function [emph dn] for the argument "u" and
parameter "k".

[list_begin arguments]
[arg_def float u] Argument for the function
[arg_def float k] Parameter
[list_end]

[call [cmd ::math::special::sn] [arg u] [arg k]]

Compute the elliptic function [emph sn] for the argument "u" and
parameter "k".

[list_begin arguments]
[arg_def float u] Argument for the function
[arg_def float k] Parameter
[list_end]

[call [cmd ::math::special::elliptic_K] [arg k]]

Compute the complete elliptic integral of the first kind
for the argument "k"

[list_begin arguments]
[arg_def float k] Argument for the function
[list_end]

[call [cmd ::math::special::elliptic_E] [arg k]]

Compute the complete elliptic integral of the second kind
for the argument "k"

[list_begin arguments]
[arg_def float k] Argument for the function
[list_end]

[call [cmd ::math::special::exponential_Ei] [arg x]]

Compute the exponential integral of the second kind
for the argument "x"

[list_begin arguments]
[arg_def float x] Argument for the function (x != 0)
[list_end]

[call [cmd ::math::special::exponential_En] [arg n] [arg x]]

Compute the exponential integral of the first kind
for the argument "x" and order n

[list_begin arguments]
[arg_def int n] Order of the integral (n >= 0)
[arg_def float x] Argument for the function (x >= 0)
[list_end]

[call [cmd ::math::special::exponential_li] [arg x]]

Compute the logarithmic integral for the argument "x"

[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]

[call [cmd ::math::special::exponential_Ci] [arg x]]

Compute the cosine integral for the argument "x"

[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]

[call [cmd ::math::special::exponential_Si] [arg x]]

Compute the sine integral for the argument "x"

[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]

[call [cmd ::math::special::exponential_Chi] [arg x]]

Compute the hyperbolic cosine integral for the argument "x"

[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]

[call [cmd ::math::special::exponential_Shi] [arg x]]

Compute the hyperbolic sine integral for the argument "x"

[list_begin arguments]
[arg_def float x] Argument for the function (x > 0)
[list_end]

[call [cmd ::math::special::fresnel_C] [arg x]]

Compute the Fresnel cosine integral for real argument x

[list_begin arguments]
[arg_def float x] Argument for the function
[list_end]

[call [cmd ::math::special::fresnel_S] [arg x]]

Compute the Fresnel sine integral for real argument x

[list_begin arguments]
[arg_def float x] Argument for the function
[list_end]

[call [cmd ::math::special::sinc] [arg x]]

Compute the sinc function for real argument x

[list_begin arguments]
[arg_def float x] Argument for the function
[list_end]

[call [cmd ::math::special::legendre] [arg n]]

Return the Legendre polynomial of degree n
(see [sectref "THE ORTHOGONAL POLYNOMIALS"])

[list_begin arguments]
[arg_def int n] Degree of the polynomial
[list_end]

[para]

[call [cmd ::math::special::chebyshev] [arg n]]

Return the Chebyshev polynomial of degree n (of the first kind)

[list_begin arguments]
[arg_def int n] Degree of the polynomial
[list_end]

[para]

[call [cmd ::math::special::laguerre] [arg alpha] [arg n]]

Return the Laguerre polynomial of degree n with parameter alpha

[list_begin arguments]
[arg_def float alpha] Parameter of the Laguerre polynomial
[arg_def int n] Degree of the polynomial
[list_end]

[para]

[call [cmd ::math::special::hermite] [arg n]]

Return the Hermite polynomial of degree n

[list_begin arguments]
[arg_def int n] Degree of the polynomial
[list_end]

[para]

[list_end]

[section "THE ORTHOGONAL POLYNOMIALS"]

For dealing with the classical families of orthogonal polynomials, the
package relies on the [emph math::polynomials] package. To evaluate the
polynomial at some coordinate, use the [emph evalPolyn] command:
[example {
   set leg2 [::math::special::legendre 2]
   puts "Value at x=$x: [::math::polynomials::evalPolyn $leg2 $x]"
}]

[para]
The return value from the [emph legendre] and other commands is actually
the definition of the corresponding polynomial as used in that package.

[section "REMARKS ON THE IMPLEMENTATION"]

It should be noted, that the actual implementation of J0 and J1 depends
on straightforward Gaussian quadrature formulas. The (absolute) accuracy
of the results is of the order 1.0e-4 or better. The main reason to
implement them like that was that it was fast to do (the formulas are
simple) and the computations are fast too.

[para]
The implementation of J1/2 does not suffer from this: this function can
be expressed exactly in terms of elementary functions.

[para]
The functions J0 and J1 are the ones you will encounter most frequently
in practice.

[para]
The computation of I_n is based on Miller's algorithm for computing the
minimal function from recurrence relations.

[para]
The computation of the Gamma and Beta functions relies on the
combinatorics package, whereas that of the error functions relies on the
statistics package.

[para]
The computation of the complete elliptic integrals uses the AGM
algorithm.

[para]
Much information about these functions can be found in:
[para]
Abramowitz and Stegun: [emph "Handbook of Mathematical Functions"]
(Dover, ISBN 486-61272-4)

[vset CATEGORY {math :: special}]
[include ../common-text/feedback.inc]
[manpage_end]