File: special.tcl

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (432 lines) | stat: -rw-r--r-- 11,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# special.tcl --
#    Provide well-known special mathematical functions
#
# This file contains a collection of tests for one or more of the Tcllib
# procedures.  Sourcing this file into Tcl runs the tests and
# generates output for errors.  No output means no errors were found.
#
# Copyright (c) 2004 by Arjen Markus. All rights reserved.
#
# RCS: @(#) $Id: special.tcl,v 1.13 2008/08/13 07:28:47 arjenmarkus Exp $
#
package require math
package require math::constants
package require math::statistics

# namespace special
#    Create a convenient namespace for the "special" mathematical functions
#
namespace eval ::math::special {
    #
    # Define a number of common mathematical constants
    #
    ::math::constants::constants pi
    variable halfpi [expr {$pi/2.0}]
    variable tiny 1.0e-30

    #
    # Functions defined in other math submodules
    #
    if { [info commands Beta] == {} } {
       namespace import ::math::Beta
       namespace import ::math::ln_Gamma
    }

    #
    # Export the various functions
    #
    namespace export Beta ln_Gamma Gamma erf erfc fresnel_C fresnel_S sinc invnorm
}

# Gamma --
#    The Gamma function - synonym for "factorial"
#
proc ::math::special::Gamma {x} {
    if { [catch { expr {exp( [ln_Gamma $x] )} } result] } {
        return -code error -errorcode $::errorCode $result
    }
    return $result
}

# erf --
#    The error function
# Arguments:
#    x          The value for which the function must be evaluated
# Result:
#    erf(x)
# Note:
#    The algoritm used is due to George Marsaglia
#    See: http://www.velocityreviews.com/forums/t317358-erf-function-in-c.html
#    I did not want to copy and convert the even more accurate but
#    rather lengthy algorithm used by lcc-win32/Sun
#
proc ::math::special::erf {x} {
    set x    [expr {$x*sqrt(2.0)}]

    if { $x >  10.0 } { return  1.0 }
    if { $x < -10.0 } { return -1.0 }

    set a    1.2533141373155
    set b   -1.0
    set pwr  1.0
    set t    0.0
    set z    0.0

    set s [expr {$a+$b*$x}]

    set i 2
    while { $s != $t } {
        set a   [expr {($a+$z*$b)/double($i)}]
        set b   [expr {($b+$z*$a)/double($i+1)}]
        set pwr [expr {$pwr*$x*$x}]
        set t   $s
        set s   [expr {$s+$pwr*($a+$x*$b)}]

        incr i 2
   }

   return [expr {1.0-2.0*$s*exp(-0.5*$x*$x-0.9189385332046727418)}]
}



# erfc --
#    The complement of the error function
# Arguments:
#    x          The value for which the function must be evaluated
# Result:
#    erfc(x) = 1.0-erf(x)
#
proc ::math::special::erfc {x} {
    set x    [expr {$x*sqrt(2.0)}]

    if { $x >  10.0 } { return  0.0 }
    if { $x < -10.0 } { return  0.0 }

    set a    1.2533141373155
    set b   -1.0
    set pwr  1.0
    set t    0.0
    set z    0.0

    set s [expr {$a+$b*$x}]

    set i 2
    while { $s != $t } {
        set a   [expr {($a+$z*$b)/double($i)}]
        set b   [expr {($b+$z*$a)/double($i+1)}]
        set pwr [expr {$pwr*$x*$x}]
        set t   $s
        set s   [expr {$s+$pwr*($a+$x*$b)}]

        incr i 2
   }

   return [expr {2.0*$s*exp(-0.5*$x*$x-0.9189385332046727418)}]
}


# ComputeFG --
#    Compute the auxiliary functions f and g
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Approximate values for f and g
# Note:
#    See Abramowitz and Stegun. The accuracy is 2.0e-3.
#
proc ::math::special::ComputeFG {x} {
    list [expr {(1.0+0.926*$x)/(2.0+1.792*$x+3.104*$x*$x)}] \
        [expr {1.0/(2.0+4.142*$x+3.492*$x*$x+6.670*$x*$x*$x)}]
}

# fresnel_C --
#    Compute the Fresnel cosine integral
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Value of C(x) = integral from 0 to x of cos(0.5*pi*x^2)
# Note:
#    This relies on a rational approximation of the two auxiliary functions f and g
#
proc ::math::special::fresnel_C {x} {
    variable halfpi
    if { $x < 0.0 } {
        error "Domain error: x must be non-negative"
    }

    if { $x == 0.0 } {
        return 0.0
    }

    foreach {f g} [ComputeFG $x] {break}

    set xarg [expr {$halfpi*$x*$x}]

    return [expr {0.5+$f*sin($xarg)-$g*cos($xarg)}]
}

# fresnel_S --
#    Compute the Fresnel sine integral
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Value of S(x) = integral from 0 to x of sin(0.5*pi*x^2)
# Note:
#    This relies on a rational approximation of the two auxiliary functions f and g
#
proc ::math::special::fresnel_S {x} {
    variable halfpi
    if { $x < 0.0 } {
        error "Domain error: x must be non-negative"
    }

    if { $x == 0.0 } {
        return 0.0
    }

    foreach {f g} [ComputeFG $x] {break}

    set xarg [expr {$halfpi*$x*$x}]

    return [expr {0.5-$f*cos($xarg)-$g*sin($xarg)}]
}

# sinc --
#    Compute the sinc function
# Arguments:
#    x       Value of the argument
# Result:
#    sin(x)/x
#
proc ::math::special::sinc {x} {
    if { $x == 0.0 } {
        return 1.0
    } else {
        return [expr {sin($x)/$x}]
    }
}

# invnorm --
#     Compute the inverse of the cumulative normal distribution
#
# Arguments:
#     p               Value of erf(x) for x must be found
#
# Returns:
#     Value of x
#
# Notes:
#     Implementation in Tcl by Christian Gollwitzer
#     Uses rational approximation from
#     http://home.online.no/~pjacklam/notes/invnorm/#Pseudo_code_for_rational_approximation
#     relative precision 1.2*10^-9 in the full range
#
proc ::math::special::invnorm {p} {
    # inverse normal distribution
    # rational approximation from
    # http://home.online.no/~pjacklam/notes/invnorm/#Pseudo_code_for_rational_approximation
    # precision 1.2*10^-9

    if {$p<=0 || $p>=1} {
        return -code error "Domain error (invnorm)"
    }
    # Coefficients in rational approximations.
    set a1  -3.969683028665376e+01
    set a2   2.209460984245205e+02
    set a3  -2.759285104469687e+02
    set a4   1.383577518672690e+02
    set a5  -3.066479806614716e+01
    set a6   2.506628277459239e+00

    set b1  -5.447609879822406e+01
    set b2   1.615858368580409e+02
    set b3  -1.556989798598866e+02
    set b4   6.680131188771972e+01
    set b5  -1.328068155288572e+01

    set c1  -7.784894002430293e-03
    set c2  -3.223964580411365e-01
    set c3  -2.400758277161838e+00
    set c4  -2.549732539343734e+00
    set c5   4.374664141464968e+00
    set c6   2.938163982698783e+00

    set d1   7.784695709041462e-03
    set d2   3.224671290700398e-01
    set d3   2.445134137142996e+00
    set d4   3.754408661907416e+00

    # Define break-points.

    set p_low  0.02425
    set p_high [expr {1-$p_low}]

    # Rational approximation for lower region.

    if {$p < $p_low} {
        set q [expr {sqrt(-2*log($p))}]
        set x [expr {((((($c1*$q+$c2)*$q+$c3)*$q+$c4)*$q+$c5)*$q+$c6) / \
        (((($d1*$q+$d2)*$q+$d3)*$q+$d4)*$q+1)}]
        return $x
    }

    # Rational approximation for central region.

    if {$p <= $p_high} {
        set q  [expr {$p - 0.5}]
        set r  [expr {$q*$q}]
        set x  [expr {((((($a1*$r+$a2)*$r+$a3)*$r+$a4)*$r+$a5)*$r+$a6)*$q / \
        ((((($b1*$r+$b2)*$r+$b3)*$r+$b4)*$r+$b5)*$r+1)}]
        return $x
    }

    # Rational approximation for upper region.

    set q  [expr {sqrt(-2*log(1-$p))}]
    set x  [expr {-((((($c1*$q+$c2)*$q+$c3)*$q+$c4)*$q+$c5)*$q+$c6) /
    (((($d1*$q+$d2)*$q+$d3)*$q+$d4)*$q+1)}]
    return $x
}


# incBeta --
#     Incomplete Beta funtion (not regularized)
#
# Arguments:
#     a, b        Parameters a and b (both > 0)
#     x           Value of the x argument (between 0 and 1)
#
# Notes:
#     Implementation taken from http://codeplea.com/incomplete-beta-function-in-c
#     Accuracy: at least 1.0e-8
#     Test values: https://keisan.casio.com/exec/system/1180573396
#
proc ::math::special::incBeta {a b x} {
    variable tiny

    if { $x < 0.0 || $x > 1.0 } {
        return -code error "Incomplete Beta function: x out of bounds (must be between 0 and 1)"
    }
    if { $a <= 0.0 || $b <= 0.0 } {
        return -code error "Incomplete Beta function: parameter a or b out of bounds (both must be > 0)"
    }

    #
    # Make sure the continued fraction converges fast
    #
    if { $x > ($a+1.0) / ($a+$b+2.0) } {
        set beta1      [Beta $a $b]
        set complement [incBeta $b $a [expr {1.-$x}]]
        return [expr {$beta1 - $complement}]
    }

    set f 1.0
    set c 1.0
    set d 0.0

    for { set i 0 } { $i <= 200 } { incr i } {

        set m [expr {$i/2}]

        #
        # Coefficients of the continued fraction
        #
        if { $i == 0 } {
            set numerator 1.0
        } elseif { $i % 2 == 0 } {
            set numerator [expr {$m * ($b-$m) * $x / ( ($a+2.0*$m-1.0) * ($a+2.0*$m) )}]
        } else {
            set numerator [expr {-($a+$m) * ($a+$b+$m) * $x / ( ($a+2.0*$m) * ($a+2.0*$m+1.0) )}]
        }

        #
        # Iteration (Lentz's algorithm)
        #
        set d [expr {1.0 + $numerator * $d}]
        if { abs($d) < $tiny } {
            set d $tiny
        }

        set d [expr {1.0 / $d}]
        set c [expr {1.0 + $numerator / $c}]

        if { abs($c) < $tiny } {
            set c $tiny
        }

        set cd [expr {$c * $d}]

        set f  [expr {$cd * $f}]

        #
        # Stopping criterium
        #
        if { abs(1.0 - $cd) < 1.0e-8 } {
            set factor [expr {$x ** $a * (1.0-$x) ** $b / $a}]
            return [expr {$factor * ($f - 1.0)}]
        }
    }

    return -code error "Incomplete Beta function: convergence not reached"
}

# regIncBeta --
#     Regularized incomplete Beta funtion
#
# Arguments:
#     a, b        Parameters a and b (both > -1)
#     x           Value of the x argument (between 0 and 1)
#
proc ::math::special::regIncBeta {a b x} {

    set incbeta [incBeta $a $b $x]
    set factor  [Beta $a $b]

    return [expr {$incbeta / $factor}]
}


# digamma --
#     Evaluate the digamma function - approximate via a power series
#
# Arguments
#     x                   Argument of the function
#
# Result:
#     Value of digamma function at x
#
# Notes;
#     Test values: https://keisan.casio.com/exec/system/1180573446
#     Formula taken from: https://math.stackexchange.com/questions/1441753/approximating-the-digamma-function
#
proc ::math::special::digamma {x} {
    if { $x >= 10.0 } {
        set x [expr {$x - 1.0}]
        return [expr {log($x) + 1.0 / (2.0 * $x) - 1.0 / (12.0 * $x**2) + 1.0 / (120.0 * $x**4) - 1.0 / (252.0 * $x**6)
                              + 1.0 / (240.0 * $x**8) - 5.0 / (660.0 * $x**10) + 691.0 / (32760.0 * $x**12) - 1.0 / (12.0 * $x**14)}]
    } else {
        set n [expr {int(11.0 - $x)}]
        set correction 0.0
        for {set i 0} {$i < $n} {incr i} {
            set correction [expr {$correction + 1.0 / ($x + $i)}]
        }

        set newx [expr {$x + $n}]

        return [expr {[digamma $newx] - $correction}]
    }
}


# Bessel functions and elliptic integrals --
#
source [file join [file dirname [info script]] "bessel.tcl"]
source [file join [file dirname [info script]] "classic_polyns.tcl"]
source [file join [file dirname [info script]] "elliptic.tcl"]
source [file join [file dirname [info script]] "exponential.tcl"]

package provide math::special 0.4.0