File: statistics.man

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1867 lines) | stat: -rw-r--r-- 66,555 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
[vset VERSION 1]
[manpage_begin math::statistics n [vset VERSION]]
[keywords {data analysis}]
[keywords mathematics]
[keywords statistics]
[moddesc {Tcl Math Library}]
[titledesc {Basic statistical functions and procedures}]
[category  Mathematics]
[require Tcl 8.5]
[require math::statistics [vset VERSION]]
[description]
[para]

The [package math::statistics] package contains functions and procedures for
basic statistical data analysis, such as:

[list_begin itemized]
[item]
Descriptive statistical parameters (mean, minimum, maximum, standard
deviation)

[item]
Estimates of the distribution in the form of histograms and quantiles

[item]
Basic testing of hypotheses

[item]
Probability and cumulative density functions

[list_end]
It is meant to help in developing data analysis applications or doing
ad hoc data analysis, it is not in itself a full application, nor is it
intended to rival with full (non-)commercial statistical packages.

[para]
The purpose of this document is to describe the implemented procedures
and provide some examples of their usage. As there is ample literature
on the algorithms involved, we refer to relevant text books for more
explanations.

The package contains a fairly large number of public procedures. They
can be distinguished in three sets: general procedures, procedures
that deal with specific statistical distributions, list procedures to
select or transform data and simple plotting procedures (these require
Tk).

[emph Note:] The data that need to be analyzed are always contained in a
simple list. Missing values are represented as empty list elements.

[emph Note:] With version 1.0.1 a mistake in the procs [term pdf-lognormal],
[term cdf-lognormal] and [term random-lognormal] has been corrected. In
previous versions the argument for the standard deviation was actually
used as if it was the variance.

[section "GENERAL PROCEDURES"]
The general statistical procedures are:

[list_begin definitions]

[call [cmd ::math::statistics::mean] [arg data]]
Determine the [term mean] value of the given list of data.

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::min] [arg data]]
Determine the [term minimum] value of the given list of data.

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::max] [arg data]]
Determine the [term maximum] value of the given list of data.

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::number] [arg data]]
Determine the [term number] of non-missing data in the given list

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::stdev] [arg data]]
Determine the [term "sample standard deviation"] of the data in the
given list

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::var] [arg data]]
Determine the [term "sample variance"] of the data in the given list

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::pstdev] [arg data]]
Determine the [term "population standard deviation"] of the data
in the given list

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::pvar] [arg data]]
Determine the [term "population variance"] of the data in the
given list

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::median] [arg data]]
Determine the [term median] of the data in the given list
(Note that this requires sorting the data, which may be a
costly operation)

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::basic-stats] [arg data]]
Determine a list of all the descriptive parameters: mean, minimum,
maximum, number of data, sample standard deviation, sample variance,
population standard deviation and population variance.
[para]
(This routine is called whenever either or all of the basic statistical
parameters are required. Hence all calculations are done and the
relevant values are returned.)

[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]

[call [cmd ::math::statistics::histogram] [arg limits] [arg values] [opt weights]]
Determine histogram information for the given list of data. Returns a
list consisting of the number of values that fall into each interval.
(The first interval consists of all values lower than the first limit,
the last interval consists of all values greater than the last limit.
There is one more interval than there are limits.)
[para]
Optionally, you can use weights to influence the histogram.

[list_begin arguments]
[arg_def list limits] - List of upper limits (in ascending order) for the
intervals of the histogram.
[arg_def list values] - List of data
[arg_def list weights] - List of weights, one weight per value
[list_end]
[para]

[call [cmd ::math::statistics::histogram-alt] [arg limits] [arg values] [opt weights]]
Alternative implementation of the histogram procedure: the open end of the intervals
is at the lower bound instead of the upper bound.

[list_begin arguments]
[arg_def list limits] - List of upper limits (in ascending order) for the
intervals of the histogram.
[arg_def list values] - List of data
[arg_def list weights] - List of weights, one weight per value
[list_end]
[para]

[call [cmd ::math::statistics::corr] [arg data1] [arg data2]]
Determine the correlation coefficient between two sets of data.

[list_begin arguments]
[arg_def list data1] - First list of data
[arg_def list data2] - Second list of data
[list_end]
[para]

[call [cmd ::math::statistics::interval-mean-stdev] [arg data] [arg confidence]]
Return the interval containing the mean value and one
containing the standard deviation with a certain
level of confidence (assuming a normal distribution)

[list_begin arguments]
[arg_def list data] - List of raw data values (small sample)
[arg_def float confidence] - Confidence level (0.95 or 0.99 for instance)
[list_end]
[para]

[call [cmd ::math::statistics::t-test-mean] [arg data] [arg est_mean] \
[arg est_stdev] [arg alpha]]
Test whether the mean value of a sample is in accordance with the
estimated normal distribution with a certain probability.
Returns 1 if the test succeeds or 0 if the mean is unlikely to fit
the given distribution.

[list_begin arguments]
[arg_def list data] - List of raw data values (small sample)
[arg_def float est_mean] - Estimated mean of the distribution
[arg_def float est_stdev] - Estimated stdev of the distribution
[arg_def float alpha] - Probability level (0.95 or 0.99 for instance)
[list_end]
[para]

[call [cmd ::math::statistics::test-normal] [arg data] [arg significance]]
Test whether the given data follow a normal distribution
with a certain level of significance.
Returns 1 if the data are normally distributed within the level of
significance, returns 0 if not. The underlying test is the Lilliefors
test. Smaller values of the significance mean a stricter testing.

[list_begin arguments]
[arg_def list data] - List of raw data values
[arg_def float significance] - Significance level (one of 0.01, 0.05, 0.10, 0.15 or 0.20). For compatibility
reasons the values "1-significance", 0.80, 0.85, 0.90, 0.95 or 0.99 are also accepted.
[list_end]
[para]
Compatibility issue: the original implementation and documentation used the term "confidence" and used a value
1-significance (see ticket 2812473fff). This has been corrected as of version 0.9.3.
[para]

[call [cmd ::math::statistics::lillieforsFit] [arg data]]
Returns the goodness of fit to a normal distribution according to
Lilliefors. The higher the number, the more likely the data are indeed
normally distributed. The test requires at least [emph five] data
points.

[list_begin arguments]
[arg_def list data] - List of raw data values
[list_end]
[para]


[call [cmd ::math::statistics::test-Duckworth] [arg list1] [arg list2] [arg significance]]
Determine if two data sets have the same median according to the Tukey-Duckworth test.
The procedure returns 0 if the medians are unequal, 1 if they are equal, -1 if the test can not
be conducted (the smallest value must be in a different set than the greatest value).
#
# Arguments:
#     list1           Values in the first data set
#     list2           Values in the second data set
#     significance    Significance level (either 0.05, 0.01 or 0.001)
#
# Returns:

Test whether the given data follow a normal distribution
with a certain level of significance.
Returns 1 if the data are normally distributed within the level of
significance, returns 0 if not. The underlying test is the Lilliefors
test. Smaller values of the significance mean a stricter testing.

[list_begin arguments]
[arg_def list list1] - First list of data
[arg_def list list2] - Second list of data
[arg_def float significance] - Significance level (either 0.05, 0.01 or 0.001)
[list_end]
[para]


[call [cmd ::math::statistics::test-anova-F] [arg alpha] [arg args]]
Determine if two or more groups with normally distributed data have the same means.
The procedure returns 0 if the means are likely unequal, 1 if they are. This is
a one-way ANOVA test. The groups may also be stored in a nested list:

The procedure returns a list of the comparison results for each pair of groups. Each
element of this list contains: the index of the first group and that of the second group,
whether the means are likely to be different (1) or not (0) and the confidence interval
the conclusion is based on. The groups may also be stored in a nested list:

[example {
    test-anova-F 0.05 $A $B $C
    #
    # Or equivalently:
    #
    test-anova-F 0.05 [list $A $B $C]
}]
[list_begin arguments]
[arg_def float alpha] - Significance level
[arg_def list args] - Two or more groups of data to be checked
[list_end]
[para]

[call [cmd ::math::statistics::test-Tukey-range] [arg alpha] [arg args]]
Determine if two or more groups with normally distributed data have the same means,
using Tukey's range test. It is complementary to the ANOVA test.
The procedure returns a list of the comparison results for each pair of groups. Each
element of this list contains: the index of the first group and that of the second group,
whether the means are likely to be different (1) or not (0) and the confidence interval
the conclusion is based on. The groups may also be stored in a nested list, just as with
the ANOVA test.
[list_begin arguments]
[arg_def float alpha] - Significance level - either 0.05 or 0.01
[arg_def list args] - Two or more groups of data to be checked
[list_end]
[para]

[call [cmd ::math::statistics::test-Dunnett] [arg alpha] [arg control] [arg args]]
Determine if one or more groups with normally distributed data have the same means as
the group of control data, using Dunnett's test. It is complementary to the ANOVA test.
The procedure returns a list of the comparison results for each group with the control group. Each
element of this list contains: whether the means are likely to be different (1) or not (0)
and the confidence interval the conclusion is based on. The groups may also be stored in a
nested list, just as with the ANOVA test.
[para]
Note: some care is required if there is only one group to compare the control with:
[example {
    test-Dunnett-F 0.05 $control [list $A]
}]
Otherwise the group A is split up into groups of one element - this is due to an ambiguity.

[list_begin arguments]
[arg_def float alpha] - Significance level - either 0.05 or 0.01
[arg_def list args] - One or more groups of data to be checked
[list_end]
[para]

[call [cmd ::math::statistics::quantiles] [arg data] [arg confidence]]
Return the quantiles for a given set of data
[list_begin arguments]
[arg_def list data] - List of raw data values
[para]
[arg_def float confidence] - Confidence level (0.95 or 0.99 for instance) or a list of confidence levels.
[para]
[list_end]
[para]

[call [cmd ::math::statistics::quantiles] [arg limits] [arg counts] [arg confidence]]
Return the quantiles based on histogram information (alternative to the
call with two arguments)
[list_begin arguments]
[arg_def list limits] - List of upper limits from histogram
[arg_def list counts] - List of counts for for each interval in histogram
[arg_def float confidence] -  Confidence level (0.95 or 0.99 for instance) or a list of confidence levels.
[list_end]
[para]

[call [cmd ::math::statistics::autocorr] [arg data]]
Return the autocorrelation function as a list of values (assuming
equidistance between samples, about 1/2 of the number of raw data)
[para]
The correlation is determined in such a way that the first value is
always 1 and all others are equal to or smaller than 1. The number of
values involved will diminish as the "time" (the index in the list of
returned values) increases
[list_begin arguments]
[arg_def list data] - Raw data for which the autocorrelation must be determined
[list_end]
[para]

[call [cmd ::math::statistics::crosscorr] [arg data1] [arg data2]]
Return the cross-correlation function as a list of values (assuming
equidistance between samples, about 1/2 of the number of raw data)
[para]
The correlation is determined in such a way that the values can never
exceed 1 in magnitude. The number of values involved will diminish
as the "time" (the index in the list of returned values) increases.
[list_begin arguments]
[arg_def list data1] - First list of data
[arg_def list data2] - Second list of data
[list_end]
[para]

[call [cmd ::math::statistics::mean-histogram-limits] [arg mean] \
[arg stdev] [arg number]]
Determine reasonable limits based on mean and standard deviation
for a histogram
Convenience function - the result is suitable for the histogram function.

[list_begin arguments]
[arg_def float mean] - Mean of the data
[arg_def float stdev] - Standard deviation
[arg_def int number] - Number of limits to generate (defaults to 8)
[list_end]
[para]

[call [cmd ::math::statistics::minmax-histogram-limits] [arg min] \
[arg max] [arg number]]
Determine reasonable limits based on a minimum and maximum for a histogram
[para]
Convenience function - the result is suitable for the histogram function.
[list_begin arguments]
[arg_def float min] - Expected minimum
[arg_def float max] - Expected maximum
[arg_def int number] - Number of limits to generate (defaults to 8)
[list_end]
[para]

[call [cmd ::math::statistics::linear-model] [arg xdata] \
[arg ydata] [arg intercept]]
Determine the coefficients for a linear regression between
two series of data (the model: Y = A + B*X). Returns a list of
parameters describing the fit

[list_begin arguments]
[arg_def list xdata] - List of independent data
[arg_def list ydata] - List of dependent data to be fitted
[arg_def boolean intercept] - (Optional) compute the intercept (1, default) or fit
to a line through the origin (0)
[para]
The result consists of the following list:
[list_begin itemized]
[item]
(Estimate of) Intercept A
[item]
(Estimate of) Slope B
[item]
Standard deviation of Y relative to fit
[item]
Correlation coefficient R2
[item]
Number of degrees of freedom df
[item]
Standard error of the intercept A
[item]
Significance level of A
[item]
Standard error of the slope B
[item]
Significance level of B
[list_end]
[list_end]
[para]

[call [cmd ::math::statistics::linear-residuals] [arg xdata] [arg ydata] \
[arg intercept]]
Determine the difference between actual data and predicted from
the linear model.
[para]
Returns a list of the differences between the actual data and the
predicted values.
[list_begin arguments]
[arg_def list xdata] - List of independent data
[arg_def list ydata] - List of dependent data to be fitted
[arg_def boolean intercept] - (Optional) compute the intercept (1, default) or fit
to a line through the origin (0)
[list_end]
[para]

[call [cmd ::math::statistics::test-2x2] [arg n11] [arg n21] [arg n12] [arg n22]]
Determine if two set of samples, each from a binomial distribution,
differ significantly or not (implying a different parameter).
[para]
Returns the "chi-square" value, which can be used to the determine the
significance.
[list_begin arguments]
[arg_def int n11] - Number of outcomes with the first value from the first sample.
[arg_def int n21] - Number of outcomes with the first value from the second sample.
[arg_def int n12] - Number of outcomes with the second value from the first sample.
[arg_def int n22] - Number of outcomes with the second value from the second sample.
[list_end]
[para]

[call [cmd ::math::statistics::print-2x2] [arg n11] [arg n21] [arg n12] [arg n22]]
Determine if two set of samples, each from a binomial distribution,
differ significantly or not (implying a different parameter).
[para]
Returns a short report, useful in an interactive session.
[list_begin arguments]
[arg_def int n11] - Number of outcomes with the first value from the first sample.
[arg_def int n21] - Number of outcomes with the first value from the second sample.
[arg_def int n12] - Number of outcomes with the second value from the first sample.
[arg_def int n22] - Number of outcomes with the second value from the second sample.
[list_end]
[para]

[call [cmd ::math::statistics::control-xbar] [arg data] [opt nsamples]]
Determine the control limits for an xbar chart. The number of data
in each subsample defaults to 4. At least 20 subsamples are required.
[para]
Returns the mean, the lower limit, the upper limit and the number of
data per subsample.

[list_begin arguments]
[arg_def list data] - List of observed data
[arg_def int nsamples] - Number of data per subsample
[list_end]
[para]

[call [cmd ::math::statistics::control-Rchart] [arg data] [opt nsamples]]
Determine the control limits for an R chart. The number of data
in each subsample (nsamples) defaults to 4. At least 20 subsamples are required.
[para]
Returns the mean range, the lower limit, the upper limit and the number
of data per subsample.

[list_begin arguments]
[arg_def list data] - List of observed data
[arg_def int nsamples] - Number of data per subsample
[list_end]
[para]

[call [cmd ::math::statistics::test-xbar] [arg control] [arg data]]
Determine if the data exceed the control limits for the xbar chart.
[para]
Returns a list of subsamples (their indices) that indeed violate the
limits.

[list_begin arguments]
[arg_def list control] - Control limits as returned by the "control-xbar" procedure
[arg_def list data] - List of observed data
[list_end]
[para]

[call [cmd ::math::statistics::test-Rchart] [arg control] [arg data]]
Determine if the data exceed the control limits for the R chart.
[para]
Returns a list of subsamples (their indices) that indeed violate the
limits.
[list_begin arguments]
[arg_def list control] - Control limits as returned by the "control-Rchart" procedure
[arg_def list data] - List of observed data
[list_end]
[para]

[call [cmd ::math::statistics::test-Kruskal-Wallis] [arg confidence] [arg args]]
Check if the population medians of two or more groups are equal with a
given confidence level, using the Kruskal-Wallis test.

[list_begin arguments]
[arg_def float confidence] - Confidence level to be used (0-1)
[arg_def list args] - Two or more lists of data
[list_end]
[para]

[call [cmd ::math::statistics::analyse-Kruskal-Wallis] [arg args]]
Compute the statistical parameters for the Kruskal-Wallis test.
Returns the Kruskal-Wallis statistic and the probability that that
value would occur assuming the medians of the populations are
equal.

[list_begin arguments]
[arg_def list args] - Two or more lists of data
[list_end]
[para]

[call [cmd ::math::statistics::test-Levene] [arg groups]]
Compute the Levene statistic to determine if groups of data have the
same variance (are homoscadastic) or not. The data are organised
in groups. This version uses the mean of the data as the measure
to determine the deviations. The statistic is equivalent to an
F statistic with degrees of freedom k-1 and N-k, k being the
number of groups and N the total number of data.

[list_begin arguments]
[arg_def list groups] - List of groups of data
[list_end]
[para]

[call [cmd ::math::statistics::test-Brown-Forsythe] [arg groups]]
Compute the Brown-Forsythe statistic to determine if groups of data have the
same variance (are homoscadastic) or not. Like the Levene test, but this
version uses the median of the data.

[list_begin arguments]
[arg_def list groups] - List of groups of data
[list_end]
[para]

[call [cmd ::math::statistics::group-rank] [arg args]]
Rank the groups of data with respect to the complete set.
Returns a list consisting of the group ID, the value and the rank
(possibly a rational number, in case of ties) for each data item.

[list_begin arguments]
[arg_def list args] - Two or more lists of data
[list_end]
[para]

[call [cmd ::math::statistics::test-Wilcoxon] [arg sample_a] [arg sample_b]]
Compute the Wilcoxon test statistic to determine if two samples have the
same median or not. (The statistic can be regarded as standard normal, if the
sample sizes are both larger than 10.) Returns the value of this statistic.

[list_begin arguments]
[arg_def list sample_a] - List of data comprising the first sample
[arg_def list sample_b] - List of data comprising the second sample
[list_end]
[para]

[call [cmd ::math::statistics::spearman-rank] [arg sample_a] [arg sample_b]]
Return the Spearman rank correlation as an alternative to the ordinary (Pearson's) correlation
coefficient. The two samples should have the same number of data.

[list_begin arguments]
[arg_def list sample_a] - First list of data
[arg_def list sample_b] - Second list of data
[list_end]
[para]

[call [cmd ::math::statistics::spearman-rank-extended] [arg sample_a] [arg sample_b]]
Return the Spearman rank correlation as an alternative to the ordinary (Pearson's) correlation
coefficient as well as additional data. The two samples should have the same number of data.
The procedure returns the correlation coefficient, the number of data pairs used and the
z-score, an approximately standard normal statistic, indicating the significance of the correlation.

[list_begin arguments]
[arg_def list sample_a] - First list of data
[arg_def list sample_b] - Second list of data
[list_end]

[call [cmd ::math::statistics::kernel-density] [arg data] opt [arg "-option value"] ...]
Return the density function based on kernel density estimation. The procedure is controlled by
a small set of options, each of which is given a reasonable default.
[para]
The return value consists of three lists: the centres of the bins, the associated probability
density and a list of computational parameters (begin and end of the interval, mean and standard
deviation and the used bandwidth). The computational parameters can be used for further analysis.

[list_begin arguments]
[arg_def list data] - The data to be examined
[arg_def list args] - Option-value pairs:
[list_begin definitions]
[def "[option -weights] [arg weights]"]  Per data point the weight (default: 1 for all data)
[def "[option -bandwidth] [arg value]"]  Bandwidth to be used for the estimation (default: determined from standard deviation)
[def "[option -number] [arg value]"]  Number of bins to be returned (default: 100)
[def "[option -interval] [arg "{begin end}"]"]  Begin and end of the interval for
which the density is returned (default: mean +/- 3*standard deviation)
[def "[option -kernel] [arg function]"]  Kernel to be used (One of: gaussian, cosine,
epanechnikov, uniform, triangular, biweight, logistic; default: gaussian)
[list_end]
[list_end]

[call [cmd ::math::statistics::bootstrap] [arg data] [arg sampleSize] [opt numberSamples]]
Create a subsample or subsamples from a given list of data. The data in the samples are chosen
from this list - multiples may occur. If there is only one subsample, the sample itself
is returned (as a list of "sampleSize" values), otherwise a list of samples is returned.

[list_begin arguments]
[arg_def list data]           List of values to chose from
[arg_def int sampleSize]      Number of values per sample
[arg_def int numberSamples]   Number of samples (default: 1)
[list_end]

[call [cmd ::math::statistics::wasserstein-distance] [arg prob1] [arg prob2]]
Compute the Wasserstein distance or earth mover's distance for two equidstantly spaced histograms
or probability densities. The histograms need not to be normalised to sum to one,
but they must have the same number of entries.

[para] Note: the histograms are assumed to be based on the same equidistant intervals.
As the bounds are not passed, the value is expressed in the length of the intervals.

[list_begin arguments]
[arg_def list prob1]          List of values for the first histogram/probability density
[arg_def list prob2]          List of values for the second histogram/probability density
[list_end]

[call [cmd ::math::statistics::kl-divergence] [arg prob1] [arg prob2]]
Compute the Kullback-Leibler (KL) divergence for two equidstantly spaced histograms
or probability densities. The histograms need not to be normalised to sum to one,
but they must have the same number of entries.

[para] Note: the histograms are assumed to be based on the same equidistant intervals.
As the bounds are not passed, the value is expressed in the length of the intervals.

[para] Note also that the KL divergence is not symmetric and that the second histogram
should not contain zeroes in places where the first histogram has non-zero values.

[list_begin arguments]
[arg_def list prob1]          List of values for the first histogram/probability density
[arg_def list prob2]          List of values for the second histogram/probability density
[list_end]

[call [cmd ::math::statistics::logistic-model] [arg xdata] [arg ydata]]
Estimate the coefficients of the logistic model that fits the data best. The data consist
of independent x-values and the outcome 0 or 1 for each of the x-values. The result
can be used to estimate the probability that a certain x-value gives 1.

[list_begin arguments]
[arg_def list xdata]          List of values for which the success (1) or failure (0) is known
[arg_def list ydata]          List of successes or failures corresponding to each value in [term xdata].
[list_end]

[call [cmd ::math::statistics::logistic-probability] [arg coeffs] [arg x]]
Calculate the probability of success for the value [term x] given the coefficients of the
logistic model.

[list_begin arguments]
[arg_def list coeffs]         List of coefficients as determine by the [cmd logistic-model] command
[arg_def float x]             X-value for which the probability needs to be determined
[list_end]

[list_end]

[section "MULTIVARIATE LINEAR REGRESSION"]

Besides the linear regression with a single independent variable, the
statistics package provides two procedures for doing ordinary
least squares (OLS) and weighted least squares (WLS) linear regression
with several variables. They were written by Eric Kemp-Benedict.

[para]
In addition to these two, it provides a procedure (tstat)
for calculating the value of the t-statistic for the specified number of
degrees of freedom that is required to demonstrate a given level of
significance.

[para]
Note: These procedures depend on the math::linearalgebra package.

[para]
[emph "Description of the procedures"]

[list_begin definitions]
[call [cmd ::math::statistics::tstat] [arg dof] [opt alpha]]
Returns the value of the t-distribution t* satisfying

[example {
    P(t*)  =  1 - alpha/2
    P(-t*) =  alpha/2
}]
for the number of degrees of freedom dof.
[para]
Given a sample of normally-distributed data x, with an
estimate xbar for the mean and sbar for the standard deviation,
the alpha confidence interval for the estimate of the mean can
be calculated as
[example {
      ( xbar - t* sbar , xbar + t* sbar)
}]
The return values from this procedure can be compared to
an estimated t-statistic to determine whether the estimated
value of a parameter is significantly different from zero at
the given confidence level.

[list_begin arguments]
[arg_def int dof]
Number of degrees of freedom

[arg_def float alpha]
Confidence level of the t-distribution. Defaults to 0.05.

[list_end]
[para]

[call [cmd ::math::statistics::mv-wls] [arg wt1] [arg weights_and_values]]
Carries out a weighted least squares linear regression for
the data points provided, with weights assigned to each point.

[para]
The linear model is of the form

[example {
    y = b0 + b1 * x1 + b2 * x2 ... + bN * xN + error
}]
and each point satisfies
[example {
    yi = b0 + b1 * xi1 + b2 * xi2 + ... + bN * xiN + Residual_i
}]
[para]
The procedure returns a list with the following elements:
[list_begin itemized]
[item]
The r-squared statistic
[item]
The adjusted r-squared statistic
[item]
A list containing the estimated coefficients b1, ... bN, b0
(The constant b0 comes last in the list.)
[item]
A list containing the standard errors of the coefficients
[item]
A list containing the 95% confidence bounds of the coefficients,
with each set of bounds returned as a list with two values
[list_end]

Arguments:
[list_begin arguments]
[arg_def list weights_and_values]
A list consisting of: the weight for the first observation, the data
for the first observation (as a sublist), the weight for the second
observation (as a sublist) and so on. The sublists of data are organised
as lists of the value of the dependent variable y and the independent
variables x1, x2 to xN.

[list_end]
[para]

[call [cmd ::math::statistics::mv-ols] [arg values]]
Carries out an ordinary least squares linear regression for
the data points provided.

[para]
This procedure simply calls ::mvlinreg::wls with the weights
set to 1.0, and returns the same information.

[list_end]

[emph "Example of the use:"]
[example {
# Store the value of the unicode value for the "+/-" character
set pm "\u00B1"

# Provide some data
set data {{  -.67  14.18  60.03 -7.5  }
          { 36.97  15.52  34.24 14.61 }
          {-29.57  21.85  83.36 -7.   }
          {-16.9   11.79  51.67 -6.56 }
          { 14.09  16.24  36.97 -12.84}
          { 31.52  20.93  45.99 -25.4 }
          { 24.05  20.69  50.27  17.27}
          { 22.23  16.91  45.07  -4.3 }
          { 40.79  20.49  38.92  -.73 }
          {-10.35  17.24  58.77  18.78}}

# Call the ols routine
set results [::math::statistics::mv-ols $data]

# Pretty-print the results
puts "R-squared: [lindex $results 0]"
puts "Adj R-squared: [lindex $results 1]"
puts "Coefficients $pm s.e. -- \[95% confidence interval\]:"
foreach val [lindex $results 2] se [lindex $results 3] bounds [lindex $results 4] {
    set lb [lindex $bounds 0]
    set ub [lindex $bounds 1]
    puts "   $val $pm $se -- \[$lb to $ub\]"
}
}]

[section "STATISTICAL DISTRIBUTIONS"]
In the literature a large number of probability distributions can be
found. The statistics package supports:
[list_begin itemized]
[item]
The normal or Gaussian distribution as well as the log-normal distribution
[item]
The uniform distribution - equal probability for all data within a given
interval
[item]
The exponential distribution - useful as a model for certain
extreme-value distributions.
[item]
The gamma distribution - based on the incomplete Gamma integral
[item]
The beta distribution
[item]
The chi-square distribution
[item]
The student's T distribution
[item]
The Poisson distribution
[item]
The Pareto distribution
[item]
The Gumbel distribution
[item]
The Weibull distribution
[item]
The Cauchy distribution
[item]
The F distribution (only the cumulative density function)
[item]
PM - binomial.
[list_end]

In principle for each distribution one has procedures for:
[list_begin itemized]
[item]
The probability density (pdf-*)
[item]
The cumulative density (cdf-*)
[item]
Quantiles for the given distribution (quantiles-*)
[item]
Histograms for the given distribution (histogram-*)
[item]
List of random values with the given distribution (random-*)
[list_end]

The following procedures have been implemented:

[list_begin definitions]

[call [cmd ::math::statistics::pdf-normal] [arg mean] [arg stdev] [arg value]]
Return the probability of a given value for a normal distribution with
given mean and standard deviation.

[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-lognormal] [arg mean] [arg stdev] [arg value]]
Return the probability of a given value for a log-normal distribution with
given mean and standard deviation.

[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-exponential] [arg mean] [arg value]]
Return the probability of a given value for an exponential
distribution with given mean.

[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-uniform] [arg xmin] [arg xmax] [arg value]]
Return the probability of a given value for a uniform
distribution with given extremes.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-triangular] [arg xmin] [arg xmax] [arg value]]
Return the probability of a given value for a triangular
distribution with given extremes. If the argument min is lower than the argument max, then smaller
values have higher probability and vice versa. In the first case the probability
density function is of the form [emph {f(x) = 2(1-x)}] and the other case it is of the form [emph {f(x) = 2x}].

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-symmetric-triangular] [arg xmin] [arg xmax] [arg value]]
Return the probability of a given value for a symmetric triangular
distribution with given extremes.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-gamma] [arg alpha] [arg beta] [arg value]]
Return the probability of a given value for a Gamma
distribution with given shape and rate parameters

[list_begin arguments]
[arg_def float alpha] - Shape parameter
[arg_def float beta] - Rate parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-poisson] [arg mu] [arg k]]
Return the probability of a given number of occurrences in the same
interval (k) for a Poisson distribution with given mean (mu)

[list_begin arguments]
[arg_def float mu] - Mean number of occurrences
[arg_def int k] - Number of occurences
[list_end]
[para]

[call [cmd ::math::statistics::pdf-chisquare] [arg df] [arg value]]
Return the probability of a given value for a chi square
distribution with given degrees of freedom

[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-student-t] [arg df] [arg value]]
Return the probability of a given value for a Student's t
distribution with given degrees of freedom

[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-gamma] [arg a] [arg b] [arg value]]
Return the probability of a given value for a Gamma
distribution with given shape and rate parameters

[list_begin arguments]
[arg_def float a] - Shape parameter
[arg_def float b] - Rate parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-beta] [arg a] [arg b] [arg value]]
Return the probability of a given value for a Beta
distribution with given shape parameters

[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-weibull] [arg scale] [arg shape] [arg value]]
Return the probability of a given value for a Weibull
distribution with given scale and shape parameters

[list_begin arguments]
[arg_def float location] - Scale parameter
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-gumbel] [arg location] [arg scale] [arg value]]
Return the probability of a given value for a Gumbel
distribution with given location and shape parameters

[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-pareto] [arg scale] [arg shape] [arg value]]
Return the probability of a given value for a Pareto
distribution with given scale and shape parameters

[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-cauchy] [arg location] [arg scale] [arg value]]
Return the probability of a given value for a Cauchy
distribution with given location and shape parameters. Note that the Cauchy distribution
has no finite higher-order moments.

[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-laplace] [arg location] [arg scale] [arg value]]
Return the probability of a given value for a Laplace
distribution with given location and shape parameters. The Laplace distribution
consists of two exponential functions, is peaked and has heavier tails than the
normal distribution.

[list_begin arguments]
[arg_def float location] - Location parameter (mean)
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-kumaraswamy] [arg a] [arg b] [arg value]]
Return the probability of a given value for a Kumaraswamy
distribution with given parameters a and b. The Kumaraswamy distribution
is related to the Beta distribution, but has a tractable cumulative distribution function.

[list_begin arguments]
[arg_def float a] - Parameter a
[arg_def float b] - Parameter b
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::pdf-negative-binomial] [arg r] [arg p] [arg value]]
Return the probability of a given value for a negative binomial
distribution with an allowed number of failures and the probability of success.

[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def float p] - Probability of success
[arg_def int value] - Number of successes for which the probability is to be returned
[list_end]
[para]

[call [cmd ::math::statistics::cdf-normal] [arg mean] [arg stdev] [arg value]]
Return the cumulative probability of a given value for a normal
distribution with given mean and standard deviation, that is the
probability for values up to the given one.

[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-lognormal] [arg mean] [arg stdev] [arg value]]
Return the cumulative probability of a given value for a log-normal
distribution with given mean and standard deviation, that is the
probability for values up to the given one.

[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-exponential] [arg mean] [arg value]]
Return the cumulative probability of a given value for an exponential
distribution with given mean.

[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-uniform] [arg xmin] [arg xmax] [arg value]]
Return the cumulative probability of a given value for a uniform
distribution with given extremes.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-triangular] [arg xmin] [arg xmax] [arg value]]
Return the cumulative probability of a given value for a triangular
distribution with given extremes. If xmin < xmax, then lower values have
a higher probability and vice versa, see also [emph pdf-triangular]

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-symmetric-triangular] [arg xmin] [arg xmax] [arg value]]
Return the cumulative probability of a given value for a symmetric triangular
distribution with given extremes.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-students-t] [arg degrees] [arg value]]
Return the cumulative probability of a given value for a Student's t
distribution with given number of degrees.
[list_begin arguments]
[arg_def int degrees] - Number of degrees of freedom
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-gamma] [arg alpha] [arg beta] [arg value]]
Return the cumulative probability of a given value for a Gamma
distribution with given shape and rate parameters.

[list_begin arguments]
[arg_def float alpha] - Shape parameter
[arg_def float beta] - Rate parameter
[arg_def float value] - Value for which the cumulative probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-poisson] [arg mu] [arg k]]
Return the cumulative probability of a given number of occurrences in
the same interval (k) for a Poisson distribution with given mean (mu).

[list_begin arguments]
[arg_def float mu] - Mean number of occurrences
[arg_def int k] - Number of occurences
[list_end]
[para]

[call [cmd ::math::statistics::cdf-beta] [arg a] [arg b] [arg value]]
Return the cumulative probability of a given value for a Beta
distribution with given shape parameters

[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-weibull] [arg scale] [arg shape] [arg value]]
Return the cumulative probability of a given value for a Weibull
distribution with given scale and shape parameters.

[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-gumbel] [arg location] [arg scale] [arg value]]
Return the cumulative probability of a given value for a Gumbel
distribution with given location and scale parameters.

[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-pareto] [arg scale] [arg shape] [arg value]]
Return the cumulative probability of a given value for a Pareto
distribution with given scale and shape parameters

[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-cauchy] [arg location] [arg scale] [arg value]]
Return the cumulative probability of a given value for a Cauchy
distribution with given location and scale parameters.

[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-F] [arg nf1] [arg nf2] [arg value]]
Return the cumulative probability of a given value for an F
distribution with nf1 and nf2 degrees of freedom.

[list_begin arguments]
[arg_def float nf1] - Degrees of freedom for the numerator
[arg_def float nf2] - Degrees of freedom for the denominator
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-laplace] [arg location] [arg scale] [arg value]]
Return the cumulative probability of a given value for a Laplace
distribution with given location and shape parameters. The Laplace distribution
consists of two exponential functions, is peaked and has heavier tails than the
normal distribution.

[list_begin arguments]
[arg_def float location] - Location parameter (mean)
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-kumaraswamy] [arg a] [arg b] [arg value]]
Return the cumulative probability of a given value for a Kumaraswamy
distribution with given parameters a and b. The Kumaraswamy distribution
is related to the Beta distribution, but has a tractable cumulative distribution function.

[list_begin arguments]
[arg_def float a] - Parameter a
[arg_def float b] - Parameter b
[arg_def float value] - Value for which the probability is required
[list_end]
[para]

[call [cmd ::math::statistics::cdf-negative-binomial] [arg r] [arg p] [arg value]]
Return the cumulative probability of a given value for a negative binomial
distribution with an allowed number of failures and the probability of success.

[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def float p] - Probability of success
[arg_def int value] - Greatest number of successes
[list_end]
[para]

[call [cmd ::math::statistics::empirical-distribution] [arg values]]
Return a list of values and their empirical probability. The values are sorted in increasing order.
(The implementation follows the description at the corresponding Wikipedia page)

[list_begin arguments]
[arg_def list values] - List of data to be examined
[list_end]
[para]

[call [cmd ::math::statistics::random-normal] [arg mean] [arg stdev] [arg number]]
Return a list of "number" random values satisfying a normal
distribution with given mean and standard deviation.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-lognormal] [arg mean] [arg stdev] [arg number]]
Return a list of "number" random values satisfying a log-normal
distribution with given mean and standard deviation.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-exponential] [arg mean] [arg number]]
Return a list of "number" random values satisfying an exponential
distribution with given mean.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-uniform] [arg xmin] [arg xmax] [arg number]]
Return a list of "number" random values satisfying a uniform
distribution with given extremes.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-triangular] [arg xmin] [arg xmax] [arg number]]
Return a list of "number" random values satisfying a triangular
distribution with given extremes. If xmin < xmax, then lower values have a higher probability
and vice versa (see also [emph pdf-triangular].

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-symmetric-triangular] [arg xmin] [arg xmax] [arg number]]
Return a list of "number" random values satisfying a symmetric triangular
distribution with given extremes.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-gamma] [arg alpha] [arg beta] [arg number]]
Return a list of "number" random values satisfying
a Gamma distribution with given shape and rate parameters.

[list_begin arguments]
[arg_def float alpha] - Shape parameter
[arg_def float beta] - Rate parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-poisson] [arg mu] [arg number]]
Return a list of "number" random values satisfying
a Poisson distribution with given mean.

[list_begin arguments]
[arg_def float mu] - Mean of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-chisquare] [arg df] [arg number]]
Return a list of "number" random values satisfying
a chi square distribution with given degrees of freedom.

[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-student-t] [arg df] [arg number]]
Return a list of "number" random values satisfying
a Student's t distribution with given degrees of freedom.

[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-beta] [arg a] [arg b] [arg number]]
Return a list of "number" random values satisfying
a Beta distribution with given shape parameters.

[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-weibull] [arg scale] [arg shape] [arg number]]
Return a list of "number" random values satisfying
a Weibull distribution with given scale and shape parameters.

[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-gumbel] [arg location] [arg scale] [arg number]]
Return a list of "number" random values satisfying
a Gumbel distribution with given location and scale parameters.

[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-pareto] [arg scale] [arg shape] [arg number]]
Return a list of "number" random values satisfying
a Pareto distribution with given scale and shape parameters.

[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-cauchy] [arg location] [arg scale] [arg number]]
Return a list of "number" random values satisfying
a Cauchy distribution with given location and scale parameters.

[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-laplace] [arg location] [arg scale] [arg number]]
Return a list of "number" random values satisfying a Laplace
distribution with given location and shape parameters. The Laplace distribution
consists of two exponential functions, is peaked and has heavier tails than the
normal distribution.

[list_begin arguments]
[arg_def float location] - Location parameter (mean)
[arg_def float scale] - Shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-kumaraswamy] [arg a] [arg b] [arg number]]
Return a list of "number" random values satisying a Kumaraswamy
distribution with given parameters a and b. The Kumaraswamy distribution
is related to the Beta distribution, but has a tractable cumulative distribution function.

[list_begin arguments]
[arg_def float a] - Parameter a
[arg_def float b] - Parameter b
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::random-negative-binomial] [arg r] [arg p] [arg number]]
Return a list of "number" random values satisying a negative binomial distribution.

[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def float p] - Probability of success
[arg_def int number] - Number of values to be returned
[list_end]
[para]

[call [cmd ::math::statistics::histogram-uniform] [arg xmin] [arg xmax] [arg limits] [arg number]]
Return the expected histogram for a uniform distribution.

[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def list limits] - Upper limits for the buckets in the histogram
[arg_def int number] - Total number of "observations" in the histogram
[list_end]
[para]

[call [cmd ::math::statistics::incompleteGamma] [arg x] [arg p] [opt tol]]
Evaluate the incomplete Gamma integral

[example {
                    1       / x               p-1
      P(p,x) =  --------   |   dt exp(-t) * t
                Gamma(p)  / 0
}]

[list_begin arguments]
[arg_def float x] - Value of x (limit of the integral)
[arg_def float p] - Value of p in the integrand
[arg_def float tol] - Required tolerance (default: 1.0e-9)
[list_end]
[para]

[call [cmd ::math::statistics::incompleteBeta] [arg a] [arg b] [arg x] [opt tol]]
Evaluate the incomplete Beta integral

[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def float x] - Value of x (limit of the integral)
[arg_def float tol] - Required tolerance (default: 1.0e-9)
[list_end]
[para]

[call [cmd ::math::statistics::estimate-pareto] [arg values]]
Estimate the parameters for the Pareto distribution that comes closest to the given values.
Returns the estimated scale and shape parameters, as well as the standard error for the shape parameter.

[list_begin arguments]
[arg_def list values] - List of values, assumed to be distributed according to a Pareto distribution
[list_end]
[para]

[call [cmd ::math::statistics::estimate-exponential] [arg values]]
Estimate the parameter for the exponential distribution that comes closest to the given values.
Returns an estimate of the one parameter and of the standard error.

[list_begin arguments]
[arg_def list values] - List of values, assumed to be distributed according to an exponential distribution
[list_end]
[para]

[call [cmd ::math::statistics::estimate-laplace] [arg values]]
Estimate the parameters for the Laplace distribution that comes closest to the given values.
Returns an estimate of respectively the location and scale parameters, based on maximum likelihood.

[list_begin arguments]
[arg_def list values] - List of values, assumed to be distributed according to an exponential distribution
[list_end]
[para]

[call [cmd ::math::statistics::estimante-negative-binomial] [arg r] [arg values]]
Estimate the probability of success for the negative binomial distribution that comes closest to the given values.
The allowed number of failures must be given.

[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def int number] - List of values, assumed to be distributed according to a negative binomial distribution.
[list_end]
[para]

[list_end]
TO DO: more function descriptions to be added

[section "DATA MANIPULATION"]
The data manipulation procedures act on lists or lists of lists:

[list_begin definitions]

[call [cmd ::math::statistics::filter] [arg varname] [arg data] [arg expression]]
Return a list consisting of the data for which the logical
expression is true (this command works analogously to the command [cmd foreach]).

[list_begin arguments]
[arg_def string varname] - Name of the variable used in the expression
[arg_def list data] - List of data
[arg_def string expression] - Logical expression using the variable name
[list_end]
[para]

[call [cmd ::math::statistics::map] [arg varname] [arg data] [arg expression]]
Return a list consisting of the data that are transformed via the
expression.

[list_begin arguments]
[arg_def string varname] - Name of the variable used in the expression
[arg_def list data] - List of data
[arg_def string expression] - Expression to be used to transform (map) the data
[list_end]
[para]

[call [cmd ::math::statistics::samplescount] [arg varname] [arg list] [arg expression]]
Return a list consisting of the [term counts] of all data in the
sublists of the "list" argument for which the expression is true.

[list_begin arguments]
[arg_def string varname] - Name of the variable used in the expression
[arg_def list data] - List of sublists, each containing the data
[arg_def string expression] - Logical expression to test the data (defaults to
"true").
[list_end]
[para]

[call [cmd ::math::statistics::subdivide]]
Routine [emph PM] - not implemented yet
[para]

[list_end]

[section "PLOT PROCEDURES"]
The following simple plotting procedures are available:
[list_begin definitions]

[call [cmd ::math::statistics::plot-scale] [arg canvas] \
[arg xmin] [arg xmax] [arg ymin] [arg ymax]]
Set the scale for a plot in the given canvas. All plot routines expect
this function to be called first. There is no automatic scaling
provided.

[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def float xmin] - Minimum x value
[arg_def float xmax] - Maximum x value
[arg_def float ymin] - Minimum y value
[arg_def float ymax] - Maximum y value
[list_end]
[para]

[call [cmd ::math::statistics::plot-xydata] [arg canvas] \
[arg xdata] [arg ydata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a collection of dots. The tag can be used to manipulate the
appearance.

[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def float xdata] - Series of independent data
[arg_def float ydata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]

[call [cmd ::math::statistics::plot-xyline] [arg canvas] \
[arg xdata] [arg ydata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a line through the data points. The tag can be used to
manipulate the appearance.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list xdata] - Series of independent data
[arg_def list ydata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]

[call [cmd ::math::statistics::plot-tdata] [arg canvas] \
[arg tdata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a collection of dots. The horizontal coordinate is equal to the
index. The tag can be used to manipulate the appearance.
This type of presentation is suitable for autocorrelation functions for
instance or for inspecting the time-dependent behaviour.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list tdata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]

[call [cmd ::math::statistics::plot-tline] [arg canvas] \
[arg tdata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a line. See plot-tdata for an explanation.

[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list tdata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]

[call [cmd ::math::statistics::plot-histogram] [arg canvas] \
[arg counts] [arg limits] [arg tag]]
Create a simple histogram in the given canvas

[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list counts] - Series of bucket counts
[arg_def list limits] - Series of upper limits for the buckets
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]

[list_end]

[section {THINGS TO DO}]
The following procedures are yet to be implemented:
[list_begin itemized]
[item]
F-test-stdev
[item]
interval-mean-stdev
[item]
histogram-normal
[item]
histogram-exponential
[item]
test-histogram
[item]
test-corr
[item]
quantiles-*
[item]
fourier-coeffs
[item]
fourier-residuals
[item]
onepar-function-fit
[item]
onepar-function-residuals
[item]
plot-linear-model
[item]
subdivide
[list_end]

[section EXAMPLES]
The code below is a small example of how you can examine a set of
data:
[para]
[example_begin]

# Simple example:
# - Generate data (as a cheap way of getting some)
# - Perform statistical analysis to describe the data
#
package require math::statistics

#
# Two auxiliary procs
#
proc pause {time} {
   set wait 0
   after [lb]expr {$time*1000}[rb] {set ::wait 1}
   vwait wait
}

proc print-histogram {counts limits} {
   foreach count $counts limit $limits {
      if { $limit != {} } {
         puts [lb]format "<%12.4g\t%d" $limit $count[rb]
         set prev_limit $limit
      } else {
         puts [lb]format ">%12.4g\t%d" $prev_limit $count[rb]
      }
   }
}

#
# Our source of arbitrary data
#
proc generateData { data1 data2 } {
   upvar 1 $data1 _data1
   upvar 1 $data2 _data2

   set d1 0.0
   set d2 0.0
   for { set i 0 } { $i < 100 } { incr i } {
      set d1 [lb]expr {10.0-2.0*cos(2.0*3.1415926*$i/24.0)+3.5*rand()}[rb]
      set d2 [lb]expr {0.7*$d2+0.3*$d1+0.7*rand()}[rb]
      lappend _data1 $d1
      lappend _data2 $d2
   }
   return {}
}

#
# The analysis session
#
package require Tk
console show
canvas .plot1
canvas .plot2
pack   .plot1 .plot2 -fill both -side top

generateData data1 data2

puts "Basic statistics:"
set b1 [lb]::math::statistics::basic-stats $data1[rb]
set b2 [lb]::math::statistics::basic-stats $data2[rb]
foreach label {mean min max number stdev var} v1 $b1 v2 $b2 {
   puts "$label\t$v1\t$v2"
}
puts "Plot the data as function of \"time\" and against each other"
::math::statistics::plot-scale .plot1  0 100  0 20
::math::statistics::plot-scale .plot2  0 20   0 20
::math::statistics::plot-tline .plot1 $data1
::math::statistics::plot-tline .plot1 $data2
::math::statistics::plot-xydata .plot2 $data1 $data2

puts "Correlation coefficient:"
puts [lb]::math::statistics::corr $data1 $data2[rb]

pause 2
puts "Plot histograms"
.plot2 delete all
::math::statistics::plot-scale .plot2  0 20 0 100
set limits         [lb]::math::statistics::minmax-histogram-limits 7 16[rb]
set histogram_data [lb]::math::statistics::histogram $limits $data1[rb]
::math::statistics::plot-histogram .plot2 $histogram_data $limits

puts "First series:"
print-histogram $histogram_data $limits

pause 2
set limits         [lb]::math::statistics::minmax-histogram-limits 0 15 10[rb]
set histogram_data [lb]::math::statistics::histogram $limits $data2[rb]
::math::statistics::plot-histogram .plot2 $histogram_data $limits d2
.plot2 itemconfigure d2 -fill red

puts "Second series:"
print-histogram $histogram_data $limits

puts "Autocorrelation function:"
set  autoc [lb]::math::statistics::autocorr $data1[rb]
puts [lb]::math::statistics::map $autoc {[lb]format "%.2f" $x[rb]}[rb]
puts "Cross-correlation function:"
set  crossc [lb]::math::statistics::crosscorr $data1 $data2[rb]
puts [lb]::math::statistics::map $crossc {[lb]format "%.2f" $x[rb]}[rb]

::math::statistics::plot-scale .plot1  0 100 -1  4
::math::statistics::plot-tline .plot1  $autoc "autoc"
::math::statistics::plot-tline .plot1  $crossc "crossc"
.plot1 itemconfigure autoc  -fill green
.plot1 itemconfigure crossc -fill yellow

puts "Quantiles: 0.1, 0.2, 0.5, 0.8, 0.9"
puts "First:  [lb]::math::statistics::quantiles $data1 {0.1 0.2 0.5 0.8 0.9}[rb]"
puts "Second: [lb]::math::statistics::quantiles $data2 {0.1 0.2 0.5 0.8 0.9}[rb]"

[example_end]
If you run this example, then the following should be clear:
[list_begin itemized]
[item]
There is a strong correlation between two time series, as displayed by
the raw data and especially by the correlation functions.
[item]
Both time series show a significant periodic component
[item]
The histograms are not very useful in identifying the nature of the time
series - they do not show the periodic nature.
[list_end]

[vset CATEGORY {math :: statistics}]
[include ../common-text/feedback.inc]
[manpage_end]