1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
|
[vset VERSION 1]
[manpage_begin math::statistics n [vset VERSION]]
[keywords {data analysis}]
[keywords mathematics]
[keywords statistics]
[moddesc {Tcl Math Library}]
[titledesc {Basic statistical functions and procedures}]
[category Mathematics]
[require Tcl 8.5]
[require math::statistics [vset VERSION]]
[description]
[para]
The [package math::statistics] package contains functions and procedures for
basic statistical data analysis, such as:
[list_begin itemized]
[item]
Descriptive statistical parameters (mean, minimum, maximum, standard
deviation)
[item]
Estimates of the distribution in the form of histograms and quantiles
[item]
Basic testing of hypotheses
[item]
Probability and cumulative density functions
[list_end]
It is meant to help in developing data analysis applications or doing
ad hoc data analysis, it is not in itself a full application, nor is it
intended to rival with full (non-)commercial statistical packages.
[para]
The purpose of this document is to describe the implemented procedures
and provide some examples of their usage. As there is ample literature
on the algorithms involved, we refer to relevant text books for more
explanations.
The package contains a fairly large number of public procedures. They
can be distinguished in three sets: general procedures, procedures
that deal with specific statistical distributions, list procedures to
select or transform data and simple plotting procedures (these require
Tk).
[emph Note:] The data that need to be analyzed are always contained in a
simple list. Missing values are represented as empty list elements.
[emph Note:] With version 1.0.1 a mistake in the procs [term pdf-lognormal],
[term cdf-lognormal] and [term random-lognormal] has been corrected. In
previous versions the argument for the standard deviation was actually
used as if it was the variance.
[section "GENERAL PROCEDURES"]
The general statistical procedures are:
[list_begin definitions]
[call [cmd ::math::statistics::mean] [arg data]]
Determine the [term mean] value of the given list of data.
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::min] [arg data]]
Determine the [term minimum] value of the given list of data.
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::max] [arg data]]
Determine the [term maximum] value of the given list of data.
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::number] [arg data]]
Determine the [term number] of non-missing data in the given list
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::stdev] [arg data]]
Determine the [term "sample standard deviation"] of the data in the
given list
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::var] [arg data]]
Determine the [term "sample variance"] of the data in the given list
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::pstdev] [arg data]]
Determine the [term "population standard deviation"] of the data
in the given list
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::pvar] [arg data]]
Determine the [term "population variance"] of the data in the
given list
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::median] [arg data]]
Determine the [term median] of the data in the given list
(Note that this requires sorting the data, which may be a
costly operation)
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::basic-stats] [arg data]]
Determine a list of all the descriptive parameters: mean, minimum,
maximum, number of data, sample standard deviation, sample variance,
population standard deviation and population variance.
[para]
(This routine is called whenever either or all of the basic statistical
parameters are required. Hence all calculations are done and the
relevant values are returned.)
[list_begin arguments]
[arg_def list data] - List of data
[list_end]
[para]
[call [cmd ::math::statistics::histogram] [arg limits] [arg values] [opt weights]]
Determine histogram information for the given list of data. Returns a
list consisting of the number of values that fall into each interval.
(The first interval consists of all values lower than the first limit,
the last interval consists of all values greater than the last limit.
There is one more interval than there are limits.)
[para]
Optionally, you can use weights to influence the histogram.
[list_begin arguments]
[arg_def list limits] - List of upper limits (in ascending order) for the
intervals of the histogram.
[arg_def list values] - List of data
[arg_def list weights] - List of weights, one weight per value
[list_end]
[para]
[call [cmd ::math::statistics::histogram-alt] [arg limits] [arg values] [opt weights]]
Alternative implementation of the histogram procedure: the open end of the intervals
is at the lower bound instead of the upper bound.
[list_begin arguments]
[arg_def list limits] - List of upper limits (in ascending order) for the
intervals of the histogram.
[arg_def list values] - List of data
[arg_def list weights] - List of weights, one weight per value
[list_end]
[para]
[call [cmd ::math::statistics::corr] [arg data1] [arg data2]]
Determine the correlation coefficient between two sets of data.
[list_begin arguments]
[arg_def list data1] - First list of data
[arg_def list data2] - Second list of data
[list_end]
[para]
[call [cmd ::math::statistics::interval-mean-stdev] [arg data] [arg confidence]]
Return the interval containing the mean value and one
containing the standard deviation with a certain
level of confidence (assuming a normal distribution)
[list_begin arguments]
[arg_def list data] - List of raw data values (small sample)
[arg_def float confidence] - Confidence level (0.95 or 0.99 for instance)
[list_end]
[para]
[call [cmd ::math::statistics::t-test-mean] [arg data] [arg est_mean] \
[arg est_stdev] [arg alpha]]
Test whether the mean value of a sample is in accordance with the
estimated normal distribution with a certain probability.
Returns 1 if the test succeeds or 0 if the mean is unlikely to fit
the given distribution.
[list_begin arguments]
[arg_def list data] - List of raw data values (small sample)
[arg_def float est_mean] - Estimated mean of the distribution
[arg_def float est_stdev] - Estimated stdev of the distribution
[arg_def float alpha] - Probability level (0.95 or 0.99 for instance)
[list_end]
[para]
[call [cmd ::math::statistics::test-normal] [arg data] [arg significance]]
Test whether the given data follow a normal distribution
with a certain level of significance.
Returns 1 if the data are normally distributed within the level of
significance, returns 0 if not. The underlying test is the Lilliefors
test. Smaller values of the significance mean a stricter testing.
[list_begin arguments]
[arg_def list data] - List of raw data values
[arg_def float significance] - Significance level (one of 0.01, 0.05, 0.10, 0.15 or 0.20). For compatibility
reasons the values "1-significance", 0.80, 0.85, 0.90, 0.95 or 0.99 are also accepted.
[list_end]
[para]
Compatibility issue: the original implementation and documentation used the term "confidence" and used a value
1-significance (see ticket 2812473fff). This has been corrected as of version 0.9.3.
[para]
[call [cmd ::math::statistics::lillieforsFit] [arg data]]
Returns the goodness of fit to a normal distribution according to
Lilliefors. The higher the number, the more likely the data are indeed
normally distributed. The test requires at least [emph five] data
points.
[list_begin arguments]
[arg_def list data] - List of raw data values
[list_end]
[para]
[call [cmd ::math::statistics::test-Duckworth] [arg list1] [arg list2] [arg significance]]
Determine if two data sets have the same median according to the Tukey-Duckworth test.
The procedure returns 0 if the medians are unequal, 1 if they are equal, -1 if the test can not
be conducted (the smallest value must be in a different set than the greatest value).
#
# Arguments:
# list1 Values in the first data set
# list2 Values in the second data set
# significance Significance level (either 0.05, 0.01 or 0.001)
#
# Returns:
Test whether the given data follow a normal distribution
with a certain level of significance.
Returns 1 if the data are normally distributed within the level of
significance, returns 0 if not. The underlying test is the Lilliefors
test. Smaller values of the significance mean a stricter testing.
[list_begin arguments]
[arg_def list list1] - First list of data
[arg_def list list2] - Second list of data
[arg_def float significance] - Significance level (either 0.05, 0.01 or 0.001)
[list_end]
[para]
[call [cmd ::math::statistics::test-anova-F] [arg alpha] [arg args]]
Determine if two or more groups with normally distributed data have the same means.
The procedure returns 0 if the means are likely unequal, 1 if they are. This is
a one-way ANOVA test. The groups may also be stored in a nested list:
The procedure returns a list of the comparison results for each pair of groups. Each
element of this list contains: the index of the first group and that of the second group,
whether the means are likely to be different (1) or not (0) and the confidence interval
the conclusion is based on. The groups may also be stored in a nested list:
[example {
test-anova-F 0.05 $A $B $C
#
# Or equivalently:
#
test-anova-F 0.05 [list $A $B $C]
}]
[list_begin arguments]
[arg_def float alpha] - Significance level
[arg_def list args] - Two or more groups of data to be checked
[list_end]
[para]
[call [cmd ::math::statistics::test-Tukey-range] [arg alpha] [arg args]]
Determine if two or more groups with normally distributed data have the same means,
using Tukey's range test. It is complementary to the ANOVA test.
The procedure returns a list of the comparison results for each pair of groups. Each
element of this list contains: the index of the first group and that of the second group,
whether the means are likely to be different (1) or not (0) and the confidence interval
the conclusion is based on. The groups may also be stored in a nested list, just as with
the ANOVA test.
[list_begin arguments]
[arg_def float alpha] - Significance level - either 0.05 or 0.01
[arg_def list args] - Two or more groups of data to be checked
[list_end]
[para]
[call [cmd ::math::statistics::test-Dunnett] [arg alpha] [arg control] [arg args]]
Determine if one or more groups with normally distributed data have the same means as
the group of control data, using Dunnett's test. It is complementary to the ANOVA test.
The procedure returns a list of the comparison results for each group with the control group. Each
element of this list contains: whether the means are likely to be different (1) or not (0)
and the confidence interval the conclusion is based on. The groups may also be stored in a
nested list, just as with the ANOVA test.
[para]
Note: some care is required if there is only one group to compare the control with:
[example {
test-Dunnett-F 0.05 $control [list $A]
}]
Otherwise the group A is split up into groups of one element - this is due to an ambiguity.
[list_begin arguments]
[arg_def float alpha] - Significance level - either 0.05 or 0.01
[arg_def list args] - One or more groups of data to be checked
[list_end]
[para]
[call [cmd ::math::statistics::quantiles] [arg data] [arg confidence]]
Return the quantiles for a given set of data
[list_begin arguments]
[arg_def list data] - List of raw data values
[para]
[arg_def float confidence] - Confidence level (0.95 or 0.99 for instance) or a list of confidence levels.
[para]
[list_end]
[para]
[call [cmd ::math::statistics::quantiles] [arg limits] [arg counts] [arg confidence]]
Return the quantiles based on histogram information (alternative to the
call with two arguments)
[list_begin arguments]
[arg_def list limits] - List of upper limits from histogram
[arg_def list counts] - List of counts for for each interval in histogram
[arg_def float confidence] - Confidence level (0.95 or 0.99 for instance) or a list of confidence levels.
[list_end]
[para]
[call [cmd ::math::statistics::autocorr] [arg data]]
Return the autocorrelation function as a list of values (assuming
equidistance between samples, about 1/2 of the number of raw data)
[para]
The correlation is determined in such a way that the first value is
always 1 and all others are equal to or smaller than 1. The number of
values involved will diminish as the "time" (the index in the list of
returned values) increases
[list_begin arguments]
[arg_def list data] - Raw data for which the autocorrelation must be determined
[list_end]
[para]
[call [cmd ::math::statistics::crosscorr] [arg data1] [arg data2]]
Return the cross-correlation function as a list of values (assuming
equidistance between samples, about 1/2 of the number of raw data)
[para]
The correlation is determined in such a way that the values can never
exceed 1 in magnitude. The number of values involved will diminish
as the "time" (the index in the list of returned values) increases.
[list_begin arguments]
[arg_def list data1] - First list of data
[arg_def list data2] - Second list of data
[list_end]
[para]
[call [cmd ::math::statistics::mean-histogram-limits] [arg mean] \
[arg stdev] [arg number]]
Determine reasonable limits based on mean and standard deviation
for a histogram
Convenience function - the result is suitable for the histogram function.
[list_begin arguments]
[arg_def float mean] - Mean of the data
[arg_def float stdev] - Standard deviation
[arg_def int number] - Number of limits to generate (defaults to 8)
[list_end]
[para]
[call [cmd ::math::statistics::minmax-histogram-limits] [arg min] \
[arg max] [arg number]]
Determine reasonable limits based on a minimum and maximum for a histogram
[para]
Convenience function - the result is suitable for the histogram function.
[list_begin arguments]
[arg_def float min] - Expected minimum
[arg_def float max] - Expected maximum
[arg_def int number] - Number of limits to generate (defaults to 8)
[list_end]
[para]
[call [cmd ::math::statistics::linear-model] [arg xdata] \
[arg ydata] [arg intercept]]
Determine the coefficients for a linear regression between
two series of data (the model: Y = A + B*X). Returns a list of
parameters describing the fit
[list_begin arguments]
[arg_def list xdata] - List of independent data
[arg_def list ydata] - List of dependent data to be fitted
[arg_def boolean intercept] - (Optional) compute the intercept (1, default) or fit
to a line through the origin (0)
[para]
The result consists of the following list:
[list_begin itemized]
[item]
(Estimate of) Intercept A
[item]
(Estimate of) Slope B
[item]
Standard deviation of Y relative to fit
[item]
Correlation coefficient R2
[item]
Number of degrees of freedom df
[item]
Standard error of the intercept A
[item]
Significance level of A
[item]
Standard error of the slope B
[item]
Significance level of B
[list_end]
[list_end]
[para]
[call [cmd ::math::statistics::linear-residuals] [arg xdata] [arg ydata] \
[arg intercept]]
Determine the difference between actual data and predicted from
the linear model.
[para]
Returns a list of the differences between the actual data and the
predicted values.
[list_begin arguments]
[arg_def list xdata] - List of independent data
[arg_def list ydata] - List of dependent data to be fitted
[arg_def boolean intercept] - (Optional) compute the intercept (1, default) or fit
to a line through the origin (0)
[list_end]
[para]
[call [cmd ::math::statistics::test-2x2] [arg n11] [arg n21] [arg n12] [arg n22]]
Determine if two set of samples, each from a binomial distribution,
differ significantly or not (implying a different parameter).
[para]
Returns the "chi-square" value, which can be used to the determine the
significance.
[list_begin arguments]
[arg_def int n11] - Number of outcomes with the first value from the first sample.
[arg_def int n21] - Number of outcomes with the first value from the second sample.
[arg_def int n12] - Number of outcomes with the second value from the first sample.
[arg_def int n22] - Number of outcomes with the second value from the second sample.
[list_end]
[para]
[call [cmd ::math::statistics::print-2x2] [arg n11] [arg n21] [arg n12] [arg n22]]
Determine if two set of samples, each from a binomial distribution,
differ significantly or not (implying a different parameter).
[para]
Returns a short report, useful in an interactive session.
[list_begin arguments]
[arg_def int n11] - Number of outcomes with the first value from the first sample.
[arg_def int n21] - Number of outcomes with the first value from the second sample.
[arg_def int n12] - Number of outcomes with the second value from the first sample.
[arg_def int n22] - Number of outcomes with the second value from the second sample.
[list_end]
[para]
[call [cmd ::math::statistics::control-xbar] [arg data] [opt nsamples]]
Determine the control limits for an xbar chart. The number of data
in each subsample defaults to 4. At least 20 subsamples are required.
[para]
Returns the mean, the lower limit, the upper limit and the number of
data per subsample.
[list_begin arguments]
[arg_def list data] - List of observed data
[arg_def int nsamples] - Number of data per subsample
[list_end]
[para]
[call [cmd ::math::statistics::control-Rchart] [arg data] [opt nsamples]]
Determine the control limits for an R chart. The number of data
in each subsample (nsamples) defaults to 4. At least 20 subsamples are required.
[para]
Returns the mean range, the lower limit, the upper limit and the number
of data per subsample.
[list_begin arguments]
[arg_def list data] - List of observed data
[arg_def int nsamples] - Number of data per subsample
[list_end]
[para]
[call [cmd ::math::statistics::test-xbar] [arg control] [arg data]]
Determine if the data exceed the control limits for the xbar chart.
[para]
Returns a list of subsamples (their indices) that indeed violate the
limits.
[list_begin arguments]
[arg_def list control] - Control limits as returned by the "control-xbar" procedure
[arg_def list data] - List of observed data
[list_end]
[para]
[call [cmd ::math::statistics::test-Rchart] [arg control] [arg data]]
Determine if the data exceed the control limits for the R chart.
[para]
Returns a list of subsamples (their indices) that indeed violate the
limits.
[list_begin arguments]
[arg_def list control] - Control limits as returned by the "control-Rchart" procedure
[arg_def list data] - List of observed data
[list_end]
[para]
[call [cmd ::math::statistics::test-Kruskal-Wallis] [arg confidence] [arg args]]
Check if the population medians of two or more groups are equal with a
given confidence level, using the Kruskal-Wallis test.
[list_begin arguments]
[arg_def float confidence] - Confidence level to be used (0-1)
[arg_def list args] - Two or more lists of data
[list_end]
[para]
[call [cmd ::math::statistics::analyse-Kruskal-Wallis] [arg args]]
Compute the statistical parameters for the Kruskal-Wallis test.
Returns the Kruskal-Wallis statistic and the probability that that
value would occur assuming the medians of the populations are
equal.
[list_begin arguments]
[arg_def list args] - Two or more lists of data
[list_end]
[para]
[call [cmd ::math::statistics::test-Levene] [arg groups]]
Compute the Levene statistic to determine if groups of data have the
same variance (are homoscadastic) or not. The data are organised
in groups. This version uses the mean of the data as the measure
to determine the deviations. The statistic is equivalent to an
F statistic with degrees of freedom k-1 and N-k, k being the
number of groups and N the total number of data.
[list_begin arguments]
[arg_def list groups] - List of groups of data
[list_end]
[para]
[call [cmd ::math::statistics::test-Brown-Forsythe] [arg groups]]
Compute the Brown-Forsythe statistic to determine if groups of data have the
same variance (are homoscadastic) or not. Like the Levene test, but this
version uses the median of the data.
[list_begin arguments]
[arg_def list groups] - List of groups of data
[list_end]
[para]
[call [cmd ::math::statistics::group-rank] [arg args]]
Rank the groups of data with respect to the complete set.
Returns a list consisting of the group ID, the value and the rank
(possibly a rational number, in case of ties) for each data item.
[list_begin arguments]
[arg_def list args] - Two or more lists of data
[list_end]
[para]
[call [cmd ::math::statistics::test-Wilcoxon] [arg sample_a] [arg sample_b]]
Compute the Wilcoxon test statistic to determine if two samples have the
same median or not. (The statistic can be regarded as standard normal, if the
sample sizes are both larger than 10.) Returns the value of this statistic.
[list_begin arguments]
[arg_def list sample_a] - List of data comprising the first sample
[arg_def list sample_b] - List of data comprising the second sample
[list_end]
[para]
[call [cmd ::math::statistics::spearman-rank] [arg sample_a] [arg sample_b]]
Return the Spearman rank correlation as an alternative to the ordinary (Pearson's) correlation
coefficient. The two samples should have the same number of data.
[list_begin arguments]
[arg_def list sample_a] - First list of data
[arg_def list sample_b] - Second list of data
[list_end]
[para]
[call [cmd ::math::statistics::spearman-rank-extended] [arg sample_a] [arg sample_b]]
Return the Spearman rank correlation as an alternative to the ordinary (Pearson's) correlation
coefficient as well as additional data. The two samples should have the same number of data.
The procedure returns the correlation coefficient, the number of data pairs used and the
z-score, an approximately standard normal statistic, indicating the significance of the correlation.
[list_begin arguments]
[arg_def list sample_a] - First list of data
[arg_def list sample_b] - Second list of data
[list_end]
[call [cmd ::math::statistics::kernel-density] [arg data] opt [arg "-option value"] ...]
Return the density function based on kernel density estimation. The procedure is controlled by
a small set of options, each of which is given a reasonable default.
[para]
The return value consists of three lists: the centres of the bins, the associated probability
density and a list of computational parameters (begin and end of the interval, mean and standard
deviation and the used bandwidth). The computational parameters can be used for further analysis.
[list_begin arguments]
[arg_def list data] - The data to be examined
[arg_def list args] - Option-value pairs:
[list_begin definitions]
[def "[option -weights] [arg weights]"] Per data point the weight (default: 1 for all data)
[def "[option -bandwidth] [arg value]"] Bandwidth to be used for the estimation (default: determined from standard deviation)
[def "[option -number] [arg value]"] Number of bins to be returned (default: 100)
[def "[option -interval] [arg "{begin end}"]"] Begin and end of the interval for
which the density is returned (default: mean +/- 3*standard deviation)
[def "[option -kernel] [arg function]"] Kernel to be used (One of: gaussian, cosine,
epanechnikov, uniform, triangular, biweight, logistic; default: gaussian)
[list_end]
[list_end]
[call [cmd ::math::statistics::bootstrap] [arg data] [arg sampleSize] [opt numberSamples]]
Create a subsample or subsamples from a given list of data. The data in the samples are chosen
from this list - multiples may occur. If there is only one subsample, the sample itself
is returned (as a list of "sampleSize" values), otherwise a list of samples is returned.
[list_begin arguments]
[arg_def list data] List of values to chose from
[arg_def int sampleSize] Number of values per sample
[arg_def int numberSamples] Number of samples (default: 1)
[list_end]
[call [cmd ::math::statistics::wasserstein-distance] [arg prob1] [arg prob2]]
Compute the Wasserstein distance or earth mover's distance for two equidstantly spaced histograms
or probability densities. The histograms need not to be normalised to sum to one,
but they must have the same number of entries.
[para] Note: the histograms are assumed to be based on the same equidistant intervals.
As the bounds are not passed, the value is expressed in the length of the intervals.
[list_begin arguments]
[arg_def list prob1] List of values for the first histogram/probability density
[arg_def list prob2] List of values for the second histogram/probability density
[list_end]
[call [cmd ::math::statistics::kl-divergence] [arg prob1] [arg prob2]]
Compute the Kullback-Leibler (KL) divergence for two equidstantly spaced histograms
or probability densities. The histograms need not to be normalised to sum to one,
but they must have the same number of entries.
[para] Note: the histograms are assumed to be based on the same equidistant intervals.
As the bounds are not passed, the value is expressed in the length of the intervals.
[para] Note also that the KL divergence is not symmetric and that the second histogram
should not contain zeroes in places where the first histogram has non-zero values.
[list_begin arguments]
[arg_def list prob1] List of values for the first histogram/probability density
[arg_def list prob2] List of values for the second histogram/probability density
[list_end]
[call [cmd ::math::statistics::logistic-model] [arg xdata] [arg ydata]]
Estimate the coefficients of the logistic model that fits the data best. The data consist
of independent x-values and the outcome 0 or 1 for each of the x-values. The result
can be used to estimate the probability that a certain x-value gives 1.
[list_begin arguments]
[arg_def list xdata] List of values for which the success (1) or failure (0) is known
[arg_def list ydata] List of successes or failures corresponding to each value in [term xdata].
[list_end]
[call [cmd ::math::statistics::logistic-probability] [arg coeffs] [arg x]]
Calculate the probability of success for the value [term x] given the coefficients of the
logistic model.
[list_begin arguments]
[arg_def list coeffs] List of coefficients as determine by the [cmd logistic-model] command
[arg_def float x] X-value for which the probability needs to be determined
[list_end]
[list_end]
[section "MULTIVARIATE LINEAR REGRESSION"]
Besides the linear regression with a single independent variable, the
statistics package provides two procedures for doing ordinary
least squares (OLS) and weighted least squares (WLS) linear regression
with several variables. They were written by Eric Kemp-Benedict.
[para]
In addition to these two, it provides a procedure (tstat)
for calculating the value of the t-statistic for the specified number of
degrees of freedom that is required to demonstrate a given level of
significance.
[para]
Note: These procedures depend on the math::linearalgebra package.
[para]
[emph "Description of the procedures"]
[list_begin definitions]
[call [cmd ::math::statistics::tstat] [arg dof] [opt alpha]]
Returns the value of the t-distribution t* satisfying
[example {
P(t*) = 1 - alpha/2
P(-t*) = alpha/2
}]
for the number of degrees of freedom dof.
[para]
Given a sample of normally-distributed data x, with an
estimate xbar for the mean and sbar for the standard deviation,
the alpha confidence interval for the estimate of the mean can
be calculated as
[example {
( xbar - t* sbar , xbar + t* sbar)
}]
The return values from this procedure can be compared to
an estimated t-statistic to determine whether the estimated
value of a parameter is significantly different from zero at
the given confidence level.
[list_begin arguments]
[arg_def int dof]
Number of degrees of freedom
[arg_def float alpha]
Confidence level of the t-distribution. Defaults to 0.05.
[list_end]
[para]
[call [cmd ::math::statistics::mv-wls] [arg wt1] [arg weights_and_values]]
Carries out a weighted least squares linear regression for
the data points provided, with weights assigned to each point.
[para]
The linear model is of the form
[example {
y = b0 + b1 * x1 + b2 * x2 ... + bN * xN + error
}]
and each point satisfies
[example {
yi = b0 + b1 * xi1 + b2 * xi2 + ... + bN * xiN + Residual_i
}]
[para]
The procedure returns a list with the following elements:
[list_begin itemized]
[item]
The r-squared statistic
[item]
The adjusted r-squared statistic
[item]
A list containing the estimated coefficients b1, ... bN, b0
(The constant b0 comes last in the list.)
[item]
A list containing the standard errors of the coefficients
[item]
A list containing the 95% confidence bounds of the coefficients,
with each set of bounds returned as a list with two values
[list_end]
Arguments:
[list_begin arguments]
[arg_def list weights_and_values]
A list consisting of: the weight for the first observation, the data
for the first observation (as a sublist), the weight for the second
observation (as a sublist) and so on. The sublists of data are organised
as lists of the value of the dependent variable y and the independent
variables x1, x2 to xN.
[list_end]
[para]
[call [cmd ::math::statistics::mv-ols] [arg values]]
Carries out an ordinary least squares linear regression for
the data points provided.
[para]
This procedure simply calls ::mvlinreg::wls with the weights
set to 1.0, and returns the same information.
[list_end]
[emph "Example of the use:"]
[example {
# Store the value of the unicode value for the "+/-" character
set pm "\u00B1"
# Provide some data
set data {{ -.67 14.18 60.03 -7.5 }
{ 36.97 15.52 34.24 14.61 }
{-29.57 21.85 83.36 -7. }
{-16.9 11.79 51.67 -6.56 }
{ 14.09 16.24 36.97 -12.84}
{ 31.52 20.93 45.99 -25.4 }
{ 24.05 20.69 50.27 17.27}
{ 22.23 16.91 45.07 -4.3 }
{ 40.79 20.49 38.92 -.73 }
{-10.35 17.24 58.77 18.78}}
# Call the ols routine
set results [::math::statistics::mv-ols $data]
# Pretty-print the results
puts "R-squared: [lindex $results 0]"
puts "Adj R-squared: [lindex $results 1]"
puts "Coefficients $pm s.e. -- \[95% confidence interval\]:"
foreach val [lindex $results 2] se [lindex $results 3] bounds [lindex $results 4] {
set lb [lindex $bounds 0]
set ub [lindex $bounds 1]
puts " $val $pm $se -- \[$lb to $ub\]"
}
}]
[section "STATISTICAL DISTRIBUTIONS"]
In the literature a large number of probability distributions can be
found. The statistics package supports:
[list_begin itemized]
[item]
The normal or Gaussian distribution as well as the log-normal distribution
[item]
The uniform distribution - equal probability for all data within a given
interval
[item]
The exponential distribution - useful as a model for certain
extreme-value distributions.
[item]
The gamma distribution - based on the incomplete Gamma integral
[item]
The beta distribution
[item]
The chi-square distribution
[item]
The student's T distribution
[item]
The Poisson distribution
[item]
The Pareto distribution
[item]
The Gumbel distribution
[item]
The Weibull distribution
[item]
The Cauchy distribution
[item]
The F distribution (only the cumulative density function)
[item]
PM - binomial.
[list_end]
In principle for each distribution one has procedures for:
[list_begin itemized]
[item]
The probability density (pdf-*)
[item]
The cumulative density (cdf-*)
[item]
Quantiles for the given distribution (quantiles-*)
[item]
Histograms for the given distribution (histogram-*)
[item]
List of random values with the given distribution (random-*)
[list_end]
The following procedures have been implemented:
[list_begin definitions]
[call [cmd ::math::statistics::pdf-normal] [arg mean] [arg stdev] [arg value]]
Return the probability of a given value for a normal distribution with
given mean and standard deviation.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-lognormal] [arg mean] [arg stdev] [arg value]]
Return the probability of a given value for a log-normal distribution with
given mean and standard deviation.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-exponential] [arg mean] [arg value]]
Return the probability of a given value for an exponential
distribution with given mean.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-uniform] [arg xmin] [arg xmax] [arg value]]
Return the probability of a given value for a uniform
distribution with given extremes.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-triangular] [arg xmin] [arg xmax] [arg value]]
Return the probability of a given value for a triangular
distribution with given extremes. If the argument min is lower than the argument max, then smaller
values have higher probability and vice versa. In the first case the probability
density function is of the form [emph {f(x) = 2(1-x)}] and the other case it is of the form [emph {f(x) = 2x}].
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-symmetric-triangular] [arg xmin] [arg xmax] [arg value]]
Return the probability of a given value for a symmetric triangular
distribution with given extremes.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-gamma] [arg alpha] [arg beta] [arg value]]
Return the probability of a given value for a Gamma
distribution with given shape and rate parameters
[list_begin arguments]
[arg_def float alpha] - Shape parameter
[arg_def float beta] - Rate parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-poisson] [arg mu] [arg k]]
Return the probability of a given number of occurrences in the same
interval (k) for a Poisson distribution with given mean (mu)
[list_begin arguments]
[arg_def float mu] - Mean number of occurrences
[arg_def int k] - Number of occurences
[list_end]
[para]
[call [cmd ::math::statistics::pdf-chisquare] [arg df] [arg value]]
Return the probability of a given value for a chi square
distribution with given degrees of freedom
[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-student-t] [arg df] [arg value]]
Return the probability of a given value for a Student's t
distribution with given degrees of freedom
[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-gamma] [arg a] [arg b] [arg value]]
Return the probability of a given value for a Gamma
distribution with given shape and rate parameters
[list_begin arguments]
[arg_def float a] - Shape parameter
[arg_def float b] - Rate parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-beta] [arg a] [arg b] [arg value]]
Return the probability of a given value for a Beta
distribution with given shape parameters
[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-weibull] [arg scale] [arg shape] [arg value]]
Return the probability of a given value for a Weibull
distribution with given scale and shape parameters
[list_begin arguments]
[arg_def float location] - Scale parameter
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-gumbel] [arg location] [arg scale] [arg value]]
Return the probability of a given value for a Gumbel
distribution with given location and shape parameters
[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-pareto] [arg scale] [arg shape] [arg value]]
Return the probability of a given value for a Pareto
distribution with given scale and shape parameters
[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-cauchy] [arg location] [arg scale] [arg value]]
Return the probability of a given value for a Cauchy
distribution with given location and shape parameters. Note that the Cauchy distribution
has no finite higher-order moments.
[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-laplace] [arg location] [arg scale] [arg value]]
Return the probability of a given value for a Laplace
distribution with given location and shape parameters. The Laplace distribution
consists of two exponential functions, is peaked and has heavier tails than the
normal distribution.
[list_begin arguments]
[arg_def float location] - Location parameter (mean)
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-kumaraswamy] [arg a] [arg b] [arg value]]
Return the probability of a given value for a Kumaraswamy
distribution with given parameters a and b. The Kumaraswamy distribution
is related to the Beta distribution, but has a tractable cumulative distribution function.
[list_begin arguments]
[arg_def float a] - Parameter a
[arg_def float b] - Parameter b
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::pdf-negative-binomial] [arg r] [arg p] [arg value]]
Return the probability of a given value for a negative binomial
distribution with an allowed number of failures and the probability of success.
[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def float p] - Probability of success
[arg_def int value] - Number of successes for which the probability is to be returned
[list_end]
[para]
[call [cmd ::math::statistics::cdf-normal] [arg mean] [arg stdev] [arg value]]
Return the cumulative probability of a given value for a normal
distribution with given mean and standard deviation, that is the
probability for values up to the given one.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-lognormal] [arg mean] [arg stdev] [arg value]]
Return the cumulative probability of a given value for a log-normal
distribution with given mean and standard deviation, that is the
probability for values up to the given one.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-exponential] [arg mean] [arg value]]
Return the cumulative probability of a given value for an exponential
distribution with given mean.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-uniform] [arg xmin] [arg xmax] [arg value]]
Return the cumulative probability of a given value for a uniform
distribution with given extremes.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-triangular] [arg xmin] [arg xmax] [arg value]]
Return the cumulative probability of a given value for a triangular
distribution with given extremes. If xmin < xmax, then lower values have
a higher probability and vice versa, see also [emph pdf-triangular]
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-symmetric-triangular] [arg xmin] [arg xmax] [arg value]]
Return the cumulative probability of a given value for a symmetric triangular
distribution with given extremes.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmin] - Maximum value of the distribution
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-students-t] [arg degrees] [arg value]]
Return the cumulative probability of a given value for a Student's t
distribution with given number of degrees.
[list_begin arguments]
[arg_def int degrees] - Number of degrees of freedom
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-gamma] [arg alpha] [arg beta] [arg value]]
Return the cumulative probability of a given value for a Gamma
distribution with given shape and rate parameters.
[list_begin arguments]
[arg_def float alpha] - Shape parameter
[arg_def float beta] - Rate parameter
[arg_def float value] - Value for which the cumulative probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-poisson] [arg mu] [arg k]]
Return the cumulative probability of a given number of occurrences in
the same interval (k) for a Poisson distribution with given mean (mu).
[list_begin arguments]
[arg_def float mu] - Mean number of occurrences
[arg_def int k] - Number of occurences
[list_end]
[para]
[call [cmd ::math::statistics::cdf-beta] [arg a] [arg b] [arg value]]
Return the cumulative probability of a given value for a Beta
distribution with given shape parameters
[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-weibull] [arg scale] [arg shape] [arg value]]
Return the cumulative probability of a given value for a Weibull
distribution with given scale and shape parameters.
[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-gumbel] [arg location] [arg scale] [arg value]]
Return the cumulative probability of a given value for a Gumbel
distribution with given location and scale parameters.
[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-pareto] [arg scale] [arg shape] [arg value]]
Return the cumulative probability of a given value for a Pareto
distribution with given scale and shape parameters
[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-cauchy] [arg location] [arg scale] [arg value]]
Return the cumulative probability of a given value for a Cauchy
distribution with given location and scale parameters.
[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-F] [arg nf1] [arg nf2] [arg value]]
Return the cumulative probability of a given value for an F
distribution with nf1 and nf2 degrees of freedom.
[list_begin arguments]
[arg_def float nf1] - Degrees of freedom for the numerator
[arg_def float nf2] - Degrees of freedom for the denominator
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-laplace] [arg location] [arg scale] [arg value]]
Return the cumulative probability of a given value for a Laplace
distribution with given location and shape parameters. The Laplace distribution
consists of two exponential functions, is peaked and has heavier tails than the
normal distribution.
[list_begin arguments]
[arg_def float location] - Location parameter (mean)
[arg_def float scale] - Shape parameter
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-kumaraswamy] [arg a] [arg b] [arg value]]
Return the cumulative probability of a given value for a Kumaraswamy
distribution with given parameters a and b. The Kumaraswamy distribution
is related to the Beta distribution, but has a tractable cumulative distribution function.
[list_begin arguments]
[arg_def float a] - Parameter a
[arg_def float b] - Parameter b
[arg_def float value] - Value for which the probability is required
[list_end]
[para]
[call [cmd ::math::statistics::cdf-negative-binomial] [arg r] [arg p] [arg value]]
Return the cumulative probability of a given value for a negative binomial
distribution with an allowed number of failures and the probability of success.
[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def float p] - Probability of success
[arg_def int value] - Greatest number of successes
[list_end]
[para]
[call [cmd ::math::statistics::empirical-distribution] [arg values]]
Return a list of values and their empirical probability. The values are sorted in increasing order.
(The implementation follows the description at the corresponding Wikipedia page)
[list_begin arguments]
[arg_def list values] - List of data to be examined
[list_end]
[para]
[call [cmd ::math::statistics::random-normal] [arg mean] [arg stdev] [arg number]]
Return a list of "number" random values satisfying a normal
distribution with given mean and standard deviation.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-lognormal] [arg mean] [arg stdev] [arg number]]
Return a list of "number" random values satisfying a log-normal
distribution with given mean and standard deviation.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def float stdev] - Standard deviation of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-exponential] [arg mean] [arg number]]
Return a list of "number" random values satisfying an exponential
distribution with given mean.
[list_begin arguments]
[arg_def float mean] - Mean value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-uniform] [arg xmin] [arg xmax] [arg number]]
Return a list of "number" random values satisfying a uniform
distribution with given extremes.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-triangular] [arg xmin] [arg xmax] [arg number]]
Return a list of "number" random values satisfying a triangular
distribution with given extremes. If xmin < xmax, then lower values have a higher probability
and vice versa (see also [emph pdf-triangular].
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-symmetric-triangular] [arg xmin] [arg xmax] [arg number]]
Return a list of "number" random values satisfying a symmetric triangular
distribution with given extremes.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-gamma] [arg alpha] [arg beta] [arg number]]
Return a list of "number" random values satisfying
a Gamma distribution with given shape and rate parameters.
[list_begin arguments]
[arg_def float alpha] - Shape parameter
[arg_def float beta] - Rate parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-poisson] [arg mu] [arg number]]
Return a list of "number" random values satisfying
a Poisson distribution with given mean.
[list_begin arguments]
[arg_def float mu] - Mean of the distribution
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-chisquare] [arg df] [arg number]]
Return a list of "number" random values satisfying
a chi square distribution with given degrees of freedom.
[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-student-t] [arg df] [arg number]]
Return a list of "number" random values satisfying
a Student's t distribution with given degrees of freedom.
[list_begin arguments]
[arg_def float df] - Degrees of freedom
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-beta] [arg a] [arg b] [arg number]]
Return a list of "number" random values satisfying
a Beta distribution with given shape parameters.
[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-weibull] [arg scale] [arg shape] [arg number]]
Return a list of "number" random values satisfying
a Weibull distribution with given scale and shape parameters.
[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-gumbel] [arg location] [arg scale] [arg number]]
Return a list of "number" random values satisfying
a Gumbel distribution with given location and scale parameters.
[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-pareto] [arg scale] [arg shape] [arg number]]
Return a list of "number" random values satisfying
a Pareto distribution with given scale and shape parameters.
[list_begin arguments]
[arg_def float scale] - Scale parameter
[arg_def float shape] - Shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-cauchy] [arg location] [arg scale] [arg number]]
Return a list of "number" random values satisfying
a Cauchy distribution with given location and scale parameters.
[list_begin arguments]
[arg_def float location] - Location parameter
[arg_def float scale] - Scale parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-laplace] [arg location] [arg scale] [arg number]]
Return a list of "number" random values satisfying a Laplace
distribution with given location and shape parameters. The Laplace distribution
consists of two exponential functions, is peaked and has heavier tails than the
normal distribution.
[list_begin arguments]
[arg_def float location] - Location parameter (mean)
[arg_def float scale] - Shape parameter
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-kumaraswamy] [arg a] [arg b] [arg number]]
Return a list of "number" random values satisying a Kumaraswamy
distribution with given parameters a and b. The Kumaraswamy distribution
is related to the Beta distribution, but has a tractable cumulative distribution function.
[list_begin arguments]
[arg_def float a] - Parameter a
[arg_def float b] - Parameter b
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::random-negative-binomial] [arg r] [arg p] [arg number]]
Return a list of "number" random values satisying a negative binomial distribution.
[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def float p] - Probability of success
[arg_def int number] - Number of values to be returned
[list_end]
[para]
[call [cmd ::math::statistics::histogram-uniform] [arg xmin] [arg xmax] [arg limits] [arg number]]
Return the expected histogram for a uniform distribution.
[list_begin arguments]
[arg_def float xmin] - Minimum value of the distribution
[arg_def float xmax] - Maximum value of the distribution
[arg_def list limits] - Upper limits for the buckets in the histogram
[arg_def int number] - Total number of "observations" in the histogram
[list_end]
[para]
[call [cmd ::math::statistics::incompleteGamma] [arg x] [arg p] [opt tol]]
Evaluate the incomplete Gamma integral
[example {
1 / x p-1
P(p,x) = -------- | dt exp(-t) * t
Gamma(p) / 0
}]
[list_begin arguments]
[arg_def float x] - Value of x (limit of the integral)
[arg_def float p] - Value of p in the integrand
[arg_def float tol] - Required tolerance (default: 1.0e-9)
[list_end]
[para]
[call [cmd ::math::statistics::incompleteBeta] [arg a] [arg b] [arg x] [opt tol]]
Evaluate the incomplete Beta integral
[list_begin arguments]
[arg_def float a] - First shape parameter
[arg_def float b] - Second shape parameter
[arg_def float x] - Value of x (limit of the integral)
[arg_def float tol] - Required tolerance (default: 1.0e-9)
[list_end]
[para]
[call [cmd ::math::statistics::estimate-pareto] [arg values]]
Estimate the parameters for the Pareto distribution that comes closest to the given values.
Returns the estimated scale and shape parameters, as well as the standard error for the shape parameter.
[list_begin arguments]
[arg_def list values] - List of values, assumed to be distributed according to a Pareto distribution
[list_end]
[para]
[call [cmd ::math::statistics::estimate-exponential] [arg values]]
Estimate the parameter for the exponential distribution that comes closest to the given values.
Returns an estimate of the one parameter and of the standard error.
[list_begin arguments]
[arg_def list values] - List of values, assumed to be distributed according to an exponential distribution
[list_end]
[para]
[call [cmd ::math::statistics::estimate-laplace] [arg values]]
Estimate the parameters for the Laplace distribution that comes closest to the given values.
Returns an estimate of respectively the location and scale parameters, based on maximum likelihood.
[list_begin arguments]
[arg_def list values] - List of values, assumed to be distributed according to an exponential distribution
[list_end]
[para]
[call [cmd ::math::statistics::estimante-negative-binomial] [arg r] [arg values]]
Estimate the probability of success for the negative binomial distribution that comes closest to the given values.
The allowed number of failures must be given.
[list_begin arguments]
[arg_def int r] - Allowed number of failures (at least 1)
[arg_def int number] - List of values, assumed to be distributed according to a negative binomial distribution.
[list_end]
[para]
[list_end]
TO DO: more function descriptions to be added
[section "DATA MANIPULATION"]
The data manipulation procedures act on lists or lists of lists:
[list_begin definitions]
[call [cmd ::math::statistics::filter] [arg varname] [arg data] [arg expression]]
Return a list consisting of the data for which the logical
expression is true (this command works analogously to the command [cmd foreach]).
[list_begin arguments]
[arg_def string varname] - Name of the variable used in the expression
[arg_def list data] - List of data
[arg_def string expression] - Logical expression using the variable name
[list_end]
[para]
[call [cmd ::math::statistics::map] [arg varname] [arg data] [arg expression]]
Return a list consisting of the data that are transformed via the
expression.
[list_begin arguments]
[arg_def string varname] - Name of the variable used in the expression
[arg_def list data] - List of data
[arg_def string expression] - Expression to be used to transform (map) the data
[list_end]
[para]
[call [cmd ::math::statistics::samplescount] [arg varname] [arg list] [arg expression]]
Return a list consisting of the [term counts] of all data in the
sublists of the "list" argument for which the expression is true.
[list_begin arguments]
[arg_def string varname] - Name of the variable used in the expression
[arg_def list data] - List of sublists, each containing the data
[arg_def string expression] - Logical expression to test the data (defaults to
"true").
[list_end]
[para]
[call [cmd ::math::statistics::subdivide]]
Routine [emph PM] - not implemented yet
[para]
[list_end]
[section "PLOT PROCEDURES"]
The following simple plotting procedures are available:
[list_begin definitions]
[call [cmd ::math::statistics::plot-scale] [arg canvas] \
[arg xmin] [arg xmax] [arg ymin] [arg ymax]]
Set the scale for a plot in the given canvas. All plot routines expect
this function to be called first. There is no automatic scaling
provided.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def float xmin] - Minimum x value
[arg_def float xmax] - Maximum x value
[arg_def float ymin] - Minimum y value
[arg_def float ymax] - Maximum y value
[list_end]
[para]
[call [cmd ::math::statistics::plot-xydata] [arg canvas] \
[arg xdata] [arg ydata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a collection of dots. The tag can be used to manipulate the
appearance.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def float xdata] - Series of independent data
[arg_def float ydata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]
[call [cmd ::math::statistics::plot-xyline] [arg canvas] \
[arg xdata] [arg ydata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a line through the data points. The tag can be used to
manipulate the appearance.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list xdata] - Series of independent data
[arg_def list ydata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]
[call [cmd ::math::statistics::plot-tdata] [arg canvas] \
[arg tdata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a collection of dots. The horizontal coordinate is equal to the
index. The tag can be used to manipulate the appearance.
This type of presentation is suitable for autocorrelation functions for
instance or for inspecting the time-dependent behaviour.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list tdata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]
[call [cmd ::math::statistics::plot-tline] [arg canvas] \
[arg tdata] [arg tag]]
Create a simple XY plot in the given canvas - the data are
shown as a line. See plot-tdata for an explanation.
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list tdata] - Series of dependent data
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]
[call [cmd ::math::statistics::plot-histogram] [arg canvas] \
[arg counts] [arg limits] [arg tag]]
Create a simple histogram in the given canvas
[list_begin arguments]
[arg_def widget canvas] - Canvas widget to use
[arg_def list counts] - Series of bucket counts
[arg_def list limits] - Series of upper limits for the buckets
[arg_def string tag] - Tag to give to the plotted data (defaults to xyplot)
[list_end]
[para]
[list_end]
[section {THINGS TO DO}]
The following procedures are yet to be implemented:
[list_begin itemized]
[item]
F-test-stdev
[item]
interval-mean-stdev
[item]
histogram-normal
[item]
histogram-exponential
[item]
test-histogram
[item]
test-corr
[item]
quantiles-*
[item]
fourier-coeffs
[item]
fourier-residuals
[item]
onepar-function-fit
[item]
onepar-function-residuals
[item]
plot-linear-model
[item]
subdivide
[list_end]
[section EXAMPLES]
The code below is a small example of how you can examine a set of
data:
[para]
[example_begin]
# Simple example:
# - Generate data (as a cheap way of getting some)
# - Perform statistical analysis to describe the data
#
package require math::statistics
#
# Two auxiliary procs
#
proc pause {time} {
set wait 0
after [lb]expr {$time*1000}[rb] {set ::wait 1}
vwait wait
}
proc print-histogram {counts limits} {
foreach count $counts limit $limits {
if { $limit != {} } {
puts [lb]format "<%12.4g\t%d" $limit $count[rb]
set prev_limit $limit
} else {
puts [lb]format ">%12.4g\t%d" $prev_limit $count[rb]
}
}
}
#
# Our source of arbitrary data
#
proc generateData { data1 data2 } {
upvar 1 $data1 _data1
upvar 1 $data2 _data2
set d1 0.0
set d2 0.0
for { set i 0 } { $i < 100 } { incr i } {
set d1 [lb]expr {10.0-2.0*cos(2.0*3.1415926*$i/24.0)+3.5*rand()}[rb]
set d2 [lb]expr {0.7*$d2+0.3*$d1+0.7*rand()}[rb]
lappend _data1 $d1
lappend _data2 $d2
}
return {}
}
#
# The analysis session
#
package require Tk
console show
canvas .plot1
canvas .plot2
pack .plot1 .plot2 -fill both -side top
generateData data1 data2
puts "Basic statistics:"
set b1 [lb]::math::statistics::basic-stats $data1[rb]
set b2 [lb]::math::statistics::basic-stats $data2[rb]
foreach label {mean min max number stdev var} v1 $b1 v2 $b2 {
puts "$label\t$v1\t$v2"
}
puts "Plot the data as function of \"time\" and against each other"
::math::statistics::plot-scale .plot1 0 100 0 20
::math::statistics::plot-scale .plot2 0 20 0 20
::math::statistics::plot-tline .plot1 $data1
::math::statistics::plot-tline .plot1 $data2
::math::statistics::plot-xydata .plot2 $data1 $data2
puts "Correlation coefficient:"
puts [lb]::math::statistics::corr $data1 $data2[rb]
pause 2
puts "Plot histograms"
.plot2 delete all
::math::statistics::plot-scale .plot2 0 20 0 100
set limits [lb]::math::statistics::minmax-histogram-limits 7 16[rb]
set histogram_data [lb]::math::statistics::histogram $limits $data1[rb]
::math::statistics::plot-histogram .plot2 $histogram_data $limits
puts "First series:"
print-histogram $histogram_data $limits
pause 2
set limits [lb]::math::statistics::minmax-histogram-limits 0 15 10[rb]
set histogram_data [lb]::math::statistics::histogram $limits $data2[rb]
::math::statistics::plot-histogram .plot2 $histogram_data $limits d2
.plot2 itemconfigure d2 -fill red
puts "Second series:"
print-histogram $histogram_data $limits
puts "Autocorrelation function:"
set autoc [lb]::math::statistics::autocorr $data1[rb]
puts [lb]::math::statistics::map $autoc {[lb]format "%.2f" $x[rb]}[rb]
puts "Cross-correlation function:"
set crossc [lb]::math::statistics::crosscorr $data1 $data2[rb]
puts [lb]::math::statistics::map $crossc {[lb]format "%.2f" $x[rb]}[rb]
::math::statistics::plot-scale .plot1 0 100 -1 4
::math::statistics::plot-tline .plot1 $autoc "autoc"
::math::statistics::plot-tline .plot1 $crossc "crossc"
.plot1 itemconfigure autoc -fill green
.plot1 itemconfigure crossc -fill yellow
puts "Quantiles: 0.1, 0.2, 0.5, 0.8, 0.9"
puts "First: [lb]::math::statistics::quantiles $data1 {0.1 0.2 0.5 0.8 0.9}[rb]"
puts "Second: [lb]::math::statistics::quantiles $data2 {0.1 0.2 0.5 0.8 0.9}[rb]"
[example_end]
If you run this example, then the following should be clear:
[list_begin itemized]
[item]
There is a strong correlation between two time series, as displayed by
the raw data and especially by the correlation functions.
[item]
Both time series show a significant periodic component
[item]
The histograms are not very useful in identifying the nature of the time
series - they do not show the periodic nature.
[list_end]
[vset CATEGORY {math :: statistics}]
[include ../common-text/feedback.inc]
[manpage_end]
|