1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
# wilcoxon.tcl --
# Implementation of the Wilcoxon test: test if the medians
# of two samples are the same
#
# Also: Levene's and Brown-Forsythe's test
#
# test-Wilcoxon
# Compute the statistic that indicates if the medians of two
# samples are the same
#
# Arguments:
# sample_a List of values in the first sample
# sample_b List of values in the second sample
#
# Result:
# Statistic for the test (if both samples have 10 or more
# values, the statistic behaves as a standard normal variable)
#
proc ::math::statistics::test-Wilcoxon {sample_a sample_b} {
#
# Construct the sorted list for both
#
set sorted {}
set count_a 0
set count_b 0
foreach sample {sample_a sample_b} code {0 1} count {count_a count_b} {
foreach v [set $sample] {
if { $v ne {} } {
incr $count
lappend sorted [list $v $code]
}
}
}
set raw_sorted [lsort -index 0 -real $sorted]
#
# Resolve the ties (TODO)
# - Make sure the previous value is never equal to the first
# - Take care of the last part of the sorted samples
#
set previous [expr {0.5*[lindex $raw_sorted 0 0] - 1.0}]
set sorted $raw_sorted
set rank 0
set sum_ranks 0
set count 0
set first 0
set index 0
foreach v [concat $raw_sorted {{} -1}] {
set sum_ranks [expr {$sum_ranks + $rank}]
incr count
set current [lindex $v 0]
if { $current != $previous } {
set new_rank [expr {$sum_ranks / $count}]
if { $index > [llength $raw_sorted] } {
set index [llength $raw_sorted]
}
for {set elem $first} {$elem < $index} {incr elem} {
lset sorted $elem 0 $new_rank
}
set previous $current
set first $index
set count 0
set sum_ranks 0
}
incr index
incr rank
}
#
# Sum the ranks for the first sample and determine
# the statistic
#
if { $count_a < 2 || $count_b < 2 } {
return -code error \
-errorcode DATA -errorinfo {Too few data in one or both samples}
}
set sum 0
foreach v $sorted {
if { [lindex $v 1] == 0 } {
set rank [lindex $v 0]
set sum [expr {$sum + $rank}]
}
}
set expected [expr {$count_a * ($count_a + $count_b + 1)/2.0}]
set stdev [expr {sqrt($count_b * $expected/6.0)}]
set statistic [expr {($sum-$expected)/$stdev}]
return $statistic
}
# SpearmanRankData --
# Auxiliary procedure to rank the data
#
# Arguments:
# sample Series of data to be ranked
#
# Returns:
# Ranks of the data
#
proc ::math::statistics::SpearmanRankData {sample} {
set counted_sample {}
set count 0
foreach v $sample {
if { $v ne {} } {
incr count
lappend counted_sample [list $v 0 $count]
}
}
set raw_sorted [lsort -index 0 -real $counted_sample]
#
# Resolve the ties (TODO)
# - Make sure the previous value is never equal to the first
# - Take care of the last part of the sorted samples
#
set previous [expr {0.5*[lindex $raw_sorted 0 0] - 1.0}]
set sorted $raw_sorted
set rank 0
set sum_ranks 0
set count 0
set first 0
set index 0
foreach v [concat $raw_sorted {{} -1}] {
set sum_ranks [expr {$sum_ranks + $rank}]
incr count
set current [lindex $v 0]
if { $current != $previous } {
set new_rank [expr {$sum_ranks / $count}]
if { $index > [llength $raw_sorted] } {
set index [llength $raw_sorted]
}
for {set elem $first} {$elem < $index} {incr elem} {
lset sorted $elem 1 $new_rank
}
set previous $current
set first $index
set count 0
set sum_ranks 0
}
incr index
incr rank
}
#
# Return the ranks of the data in the original order
#
set ranks {}
foreach values [lsort -index 2 -integer $sorted] {
lappend ranks [lindex $values 1]
}
return $ranks
}
# spearman-rank-extended --
# Compute the Spearman's rank correlation coefficient and
# associated parameters
#
# Arguments:
# sample_a List of values in the first sample
# sample_b List of values in the second sample
#
# Result:
# List of:
# - Rank correlation coefficient
# - Number of data
# - z-score to test the null hyothesis
#
proc ::math::statistics::spearman-rank-extended {sample_a sample_b} {
#
# Filter out missing data
#
if { [llength $sample_a] != [llength $sample_b] } {
return -code error \
-errorcode DATA -errorinfo {The two samples should have the same number of data}
}
set new_sample_a {}
set new_sample_b {}
foreach a $sample_a b $sample_b {
if { $a != {} && $b != {} } {
lappend new_sample_a $a
lappend new_sample_b $b
}
}
#
# Construct the ranks
#
set rank_a [SpearmanRankData $new_sample_a]
set rank_b [SpearmanRankData $new_sample_b]
set rcorr [corr $rank_a $rank_b]
set number [llength $new_sample_a]
set zscore [expr {sqrt(($number-3)/1.06) * 0.5 * log((1.0+$rcorr)/(1.0-$rcorr))}]
return [list $rcorr $number $zscore]
}
# spearman-rank --
# Compute the Spearman's rank correlation coefficient
#
# Arguments:
# sample_a List of values in the first sample
# sample_b List of values in the second sample
#
# Result:
# Rank correlation coefficient
#
proc ::math::statistics::spearman-rank {sample_a sample_b} {
return [lindex [spearman-rank-extended $sample_a $sample_b] 0]
}
# test-Levene --
# Compute the Levene statistic that indicates if the variances of
# groups of data are the same
#
# Arguments:
# groups List of groups of values to be examined
#
# Result:
# Statistic for the test (an F statistic with k-1, N-k degrees
# of freedom - k the number of groups and N the total number
# of values)
# The test uses the mean of the values in the groups.
#
proc ::math::statistics::test-Levene {groups} {
return [Test-Levene-Brown-Forsythe 0 $groups]
}
# test-Brown-Forsythe --
# Compute the Brown-Forsythe statistic that indicates if the variances of
# groups of data are the same
#
# Arguments:
# groups List of groups of values to be examined
#
# Result:
# Statistic for the test (an F statistic with k-1, N-k degrees
# of freedom - k the number of groups and N the total number
# of values)
# The test uses the median of the values in the groups.
#
proc ::math::statistics::test-Brown-Forsythe {groups} {
return [Test-Levene-Brown-Forsythe 1 $groups]
}
# Test-Levene-Brown-Forsythe --
# Compute either the Levene or the Brown-Forsythe statistic that indicates
# if the variances of groups of data are the same
#
# Arguments:
# choice Which of the two versions
# groups List of groups of values to be examined
#
# Result:
# Statistic for the test
# The test uses either the mean or the median of the values in the groups.
#
proc ::math::statistics::Test-Levene-Brown-Forsythe {choice groups} {
#
# Compute the deviations from the mean/median within each group
#
set alldevs {}
set zscores {}
set zmeans {}
foreach group $groups {
if { $choice } {
set zm [median $group]
} else {
set zm [mean $group]
}
set zgroup {}
foreach element $group {
lappend zgroup [expr {abs($element-$zm)}]
}
set alldevs [concat $alldevs $zgroup]
lappend zscores $zgroup
lappend zmeans [mean $zgroup]
}
set zoverall [mean $alldevs]
set ndata [llength $alldevs]
set ngroups [llength $groups]
#
# Compute the numerator of the statistic
#
set sumsqmeans 0.0
foreach zm $zmeans group $groups {
set n [llength $group]
set sumsqmeans [expr { $sumsqmeans + $n * ($zm - $zoverall)**2 }]
}
#
# Compute the denominator
#
set sumsqpergroup 0.0
foreach zm $zmeans zs $zscores {
set sumsq 0.0
foreach z $zs {
set sumsq [expr {$sumsq + ($z-$zm)**2}]
}
set sumsqpergroup [expr { $sumsqpergroup + $sumsq }]
}
#
# Finally, the statistic
#
return [expr { ($ndata-$ngroups) * $sumsqmeans / double( ($ngroups-1) * $sumsqpergroup ) }]
}
|