File: metrictsp.test

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (208 lines) | stat: -rw-r--r-- 9,532 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- tcl -*-
#Metric Travelling Salesman Algorithm - Tests
#
#Finding Hamilton Cycle in graph satisfying triangle inequality.
#Set of tests covers also subprocedures used by MTSP algorithm.

#------------------------------------------------------------------------------------
#Tests concerning returning right values by algorithm

#Test 1.0 - graph which can cause reaching maximum approximation factor
# - The Tcl implementation yields a near-optimal route (having a
#   length of 7, over 6).
# - The C implementation with different node ordering yields route off
#   by two (8 over 6), this is still within 2x approximation factor,
#   and also demonstrates how this algorithm is a heuristic and easy
#   to disturb by even small things.

test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.0 { MetricTravellingSalesman, graph simulation } -setup {
    SETUP_TSP_1
} -body {
    toursort [struct::graph::op::MetricTravellingSalesman mygraph]
} -cleanup {
    mygraph destroy
} -result [tmE \
       {node1 node4 node3 node2 node6 node5 node1} \
       {node1 node3 node2 node6 node5 node4 node1}]

#Test 1.1 - case with double edges and different edge weights at them
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.1 { MetricTravellingSalesman, graph simulation } -setup {
    SETUP_TSP_3
} -body {
    toursorta [struct::graph::op::MetricTravellingSalesman mygraph]
} -cleanup {
    mygraph destroy
} -result {node1 node2 node3 node4 node1}

#Test 1.2 - graph which can cause reaching maximum approximation factor.
# We have slightly different tours based on the chosen implementation
# (Not only of struct::graph, but also of struct::set).
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.2 { MetricTravellingSalesman, graph simulation } -setup {
    SETUP_TSP_2
} -body {
    toursort [struct::graph::op::MetricTravellingSalesman mygraph]
} -cleanup {
    mygraph destroy
} -result [tmE [tmSE \
		    {node1 node2 node3 node4 node5 node1} \
		    {node1 node4 node3 node2 node5 node1}] \
	       {node1 node3 node2 node5 node4 node1}]

#Test 1.3 - testing subprocedure createTGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.3 { createTGraph, option 0 } -setup {
    SETUP_CREATETGRAPH_1 E
} -body {
    set tg [struct::graph::op::createTGraph mygraph $E 0]
    list \
	[lsort [$tg arcs]] \
	[lsort [$tg nodes]]
} -cleanup {
    $tg destroy
    mygraph destroy
} -result {{{node1 node2} {node1 node4} {node2 node1} {node4 node1}} {node1 node2 node3 node4}}

#Test 1.4 - testing subprocedure createTGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.4 { createTGraph, option 1 } -setup {
    SETUP_CREATETGRAPH_1 E
} -body {
    set tg [struct::graph::op::createTGraph mygraph $E 1]
    list \
	[lsort [$tg arcs]] \
	[lsort [$tg nodes]]
} -cleanup {
    $tg destroy
    mygraph destroy
} -result {{{node2 node1} {node4 node1}} {node1 node2 node3 node4}}

#Test 1.5 - testing subprocedure createTGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.5 { createTGraph, no edges exception } -setup {
    SETUP_CREATETGRAPH_2 E
} -body {
    struct::graph::op::createTGraph mygraph $E 0
} -returnCodes 1 -cleanup {
    mygraph destroy
} -result [LackOfEdgesOccurance {mygraph} {edge1}]

#Test 1.6 - testing subprocedure createTGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.6 { createTGraph, no edges exception } -setup {
    SETUP_CREATETGRAPH_2 E
} -body {
     struct::graph::op::createTGraph mygraph $E 1
} -returnCodes 1 -cleanup {
    mygraph destroy
} -result [LackOfEdgesOccurance {mygraph} {edge1}]

#Test 1.7 - testing subprocedure createTGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.7 { createTGraph, option 1 } -setup {
    SETUP_CREATETGRAPH_3 E
} -body {
    set tg [struct::graph::op::createTGraph mygraph $E 1]
    list \
	[lsort [$tg arcs]] \
	[lsort [$tg nodes]]
} -cleanup {
    $tg destroy
    mygraph destroy
} -result {{{node1 node4} {node3 node1} {node4 node1}} {node1 node2 node3 node4}}

#Test 1.8 - testing subprocedure createTGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.8 { createTGraph, option 0 } -setup {
    SETUP_CREATETGRAPH_3 E
} -body {
    set tg [struct::graph::op::createTGraph mygraph $E 0]
    list \
	[lsort [$tg arcs]] \
	[lsort [$tg nodes]]
} -cleanup {
    $tg destroy
    mygraph destroy
} -result {{{node1 node3} {node1 node4} {node3 node1} {node4 node1}} {node1 node2 node3 node4}}

#Test 1.9 - testing subprocedure createCompleteGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.9 { createCompleteGraph, no edges } -setup {
    SETUP_NOEDGES_1
} -body {
    struct::graph::op::createCompleteGraph mygraph originalEdges
    list \
	[lsort [undirected [mygraph arcs]]] \
	[lsort [mygraph nodes]] \
	[lsort $originalEdges]
} -cleanup {
    mygraph destroy
} -result {{{node1 node2} {node1 node3} {node1 node4} {node2 node3} {node2 node4} {node3 node4}} {node1 node2 node3 node4} {}}

#Test 1.10 - testing subprocedure createCompleteGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.10 { createCompleteGraph, complete graph } -setup {
    SETUP_UNDIRECTED_K4
} -body {
    struct::graph::op::createCompleteGraph mygraph originalEdges
    list \
	[lsort [mygraph arcs]]  \
	[lsort [mygraph nodes]] \
	[lsort $originalEdges]
} -cleanup {
    mygraph destroy
} -result {{edge12 edge13 edge14 edge23 edge24 edge34} {node1 node2 node3 node4} {{node1 node2} {node1 node3} {node1 node4} {node2 node3} {node2 node4} {node3 node4}}}

#Test 1.11 - testing subprocedure createCompleteGraph used by Metric Travelling Salesman procedure
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.11 { createCompleteGraph, partially connected graph } -setup {
    SETUP_PARTIALLYCONNECTED_1
} -body {
    struct::graph::op::createCompleteGraph mygraph originalEdges
    list \
	[lsort [undirected [mygraph arcs]]] \
	[lsort [mygraph nodes]] \
	[lsort $originalEdges]
} -cleanup {
    mygraph destroy
} -result {{arc1 arc2 arc3 arc4 {node1 node2} {node1 node3} {node1 node4} {node2 node3} {node2 node4} {node3 node4}} {node1 node2 node3 node4 node5} {{node1 node5} {node2 node5} {node3 node5} {node4 node5}}}

#Test 1.12 - graph which can cause reaching maximum approximation factor
# this also has considerable freedom in the order it can choose the nodes
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-1.12 { MetricTravellingSalesman, graph simulation } -setup {
    SETUP_PARTIALLYCONNECTED_1
} -body {
    toursort [struct::graph::op::MetricTravellingSalesman mygraph]
} -cleanup {
    mygraph destroy
} -result {node1 node5 node4 node5 node3 node5 node2 node5 node1}

# -------------------------------------------------------------------------
# Wrong # args: Missing, Too many

test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-2.0 { MetricTravellingSalesman, wrong args, missing } {
    catch {struct::graph::op::MetricTravellingSalesman} msg
    set msg
} [tcltest::wrongNumArgs struct::graph::op::MetricTravellingSalesman {G} 0]

test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-2.1 { MetricTravellingSalesman, wrong args, too many} {
    catch {struct::graph::op::MetricTravellingSalesman G y x} msg
    set msg
} [tcltest::tooManyArgs struct::graph::op::MetricTravellingSalesman {G}]

# -------------------------------------------------------------------------
# Logical arguments checks and failures

#Test 3.0 - case when given graph doesn't have weights at all edges
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-3.0 {MetricTravellingSalesman, lack of weights at edges } {
    SETUP_UNWEIGHTED_K4
    catch {struct::graph::op::MetricTravellingSalesman mygraph} result
    mygraph destroy
    set result
} [UnweightedArcOccurance]

#Test 3.1 - case when given graph doesn't have weights at all edges
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-3.1 {MetricTravellingSalesman, lack of weights at edges } {
    SETUP_UNWEIGHTED_K4
    catch {struct::graph::op::MetricTravellingSalesman mygraph} result
    mygraph destroy
    set result
} [UnweightedArcOccurance]

#Test 3.2 - case when given graph is not a connected graph
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-MetricTravellingSalesman-3.2 { MetricTravellingSalesman, unconnected graph } {
    SETUP_NOEDGES_1
    catch { struct::graph::op::MetricTravellingSalesman mygraph } result
    mygraph destroy
    set result
} [UnconnectedGraphOccurance {mygraph}]