File: list.tcl

package info (click to toggle)
tcllib 1.20%2Bdfsg-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 68,064 kB
  • sloc: tcl: 216,842; ansic: 14,250; sh: 2,846; xml: 1,766; yacc: 1,145; pascal: 881; makefile: 107; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1831 lines) | stat: -rw-r--r-- 48,215 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
#----------------------------------------------------------------------
#
# list.tcl --
#
#	Definitions for extended processing of Tcl lists.
#
# Copyright (c) 2003 by Kevin B. Kenny.  All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: list.tcl,v 1.27 2011/09/17 14:35:36 mic42 Exp $
#
#----------------------------------------------------------------------

package require Tcl 8.4
package require cmdline

namespace eval ::struct { namespace eval list {} }

namespace eval ::struct::list {
    namespace export list

    if {0} {
	# Possibly in the future.
	namespace export Lassign
	namespace export LdbJoin
	namespace export LdbJoinOuter
	namespace export Ldelete
	namespace export Lequal
	namespace export Lfilter
	namespace export Lfilterfor
	namespace export Lfirstperm
	namespace export Lflatten
	namespace export Lfold
	namespace export Lforeachperm
	namespace export Liota
	namespace export LlcsInvert
	namespace export LlcsInvert2
	namespace export LlcsInvertMerge
	namespace export LlcsInvertMerge2
	namespace export LlongestCommonSubsequence
	namespace export LlongestCommonSubsequence2
	namespace export Lmap
	namespace export Lmapfor
	namespace export Lnextperm
	namespace export Lpermutations
	namespace export Lrepeat
	namespace export Lrepeatn
	namespace export Lreverse
	namespace export Lshift
	namespace export Lswap
	namespace export Lshuffle
    }
}

##########################
# Public functions

# ::struct::list::list --
#
#	Command that access all list commands.
#
# Arguments:
#	cmd	Name of the subcommand to dispatch to.
#	args	Arguments for the subcommand.
#
# Results:
#	Whatever the result of the subcommand is.

proc ::struct::list::list {cmd args} {
    # Do minimal args checks here
    if { [llength [info level 0]] == 1 } {
	return -code error "wrong # args: should be \"$cmd ?arg arg ...?\""
    }
    set sub L$cmd
    if { [llength [info commands ::struct::list::$sub]] == 0 } {
	set optlist [info commands ::struct::list::L*]
	set xlist {}
	foreach p $optlist {
	    lappend xlist [string range $p 1 end]
	}
	return -code error \
		"bad option \"$cmd\": must be [linsert [join $xlist ", "] "end-1" "or"]"
    }
    return [uplevel 1 [linsert $args 0 ::struct::list::$sub]]
}

##########################
# Private functions follow

proc ::struct::list::K { x y } { set x }

##########################
# Implementations of the functionality.
#

# ::struct::list::LlongestCommonSubsequence --
#
#       Computes the longest common subsequence of two lists.
#
# Parameters:
#       sequence1, sequence2 -- Two lists to compare.
#	maxOccurs -- If provided, causes the procedure to ignore
#		     lines that appear more than $maxOccurs times
#		     in the second sequence.  See below for a discussion.
# Results:
#       Returns a list of two lists of equal length.
#       The first sublist is of indices into sequence1, and the
#       second sublist is of indices into sequence2.  Each corresponding
#       pair of indices corresponds to equal elements in the sequences;
#       the sequence returned is the longest possible.
#
# Side effects:
#       None.
#
# Notes:
#
#	While this procedure is quite rapid for many tasks of file
# comparison, its performance degrades severely if the second list
# contains many equal elements (as, for instance, when using this
# procedure to compare two files, a quarter of whose lines are blank.
# This drawback is intrinsic to the algorithm used (see the References
# for details).  One approach to dealing with this problem that is
# sometimes effective in practice is arbitrarily to exclude elements
# that appear more than a certain number of times.  This number is
# provided as the 'maxOccurs' parameter.  If frequent lines are
# excluded in this manner, they will not appear in the common subsequence
# that is computed; the result will be the longest common subsequence
# of infrequent elements.
#
#	The procedure struct::list::LongestCommonSubsequence2
# functions as a wrapper around this procedure; it computes the longest
# common subsequence of infrequent elements, and then subdivides the
# subsequences that lie between the matches to approximate the true
# longest common subsequence.
#
# References:
#	J. W. Hunt and M. D. McIlroy, "An algorithm for differential
#	file comparison," Comp. Sci. Tech. Rep. #41, Bell Telephone
#	Laboratories (1976). Available on the Web at the second
#	author's personal site: http://www.cs.dartmouth.edu/~doug/

proc ::struct::list::LlongestCommonSubsequence {
    sequence1
    sequence2
    {maxOccurs 0x7fffffff}
} {
    # Construct a set of equivalence classes of lines in file 2

    set index 0
    foreach string $sequence2 {
	lappend eqv($string) $index
	incr index
    }

    # K holds descriptions of the common subsequences.
    # Initially, there is one common subsequence of length 0,
    # with a fence saying that it includes line -1 of both files.
    # The maximum subsequence length is 0; position 0 of
    # K holds a fence carrying the line following the end
    # of both files.

    lappend K [::list -1 -1 {}]
    lappend K [::list [llength $sequence1] [llength $sequence2] {}]
    set k 0

    # Walk through the first file, letting i be the index of the line and
    # string be the line itself.

    set i 0
    foreach string $sequence1 {
	# Consider each possible corresponding index j in the second file.

	if { [info exists eqv($string)]
	     && [llength $eqv($string)] <= $maxOccurs } {

	    # c is the candidate match most recently found, and r is the
	    # length of the corresponding subsequence.

	    set r 0
	    set c [lindex $K 0]

	    foreach j $eqv($string) {
		# Perform a binary search to find a candidate common
		# subsequence to which may be appended this match.

		set max $k
		set min $r
		set s [expr { $k + 1 }]
		while { $max >= $min } {
		    set mid [expr { ( $max + $min ) / 2 }]
		    set bmid [lindex [lindex $K $mid] 1]
		    if { $j == $bmid } {
			break
		    } elseif { $j < $bmid } {
			set max [expr {$mid - 1}]
		    } else {
			set s $mid
			set min [expr { $mid + 1 }]
		    }
		}

		# Go to the next match point if there is no suitable
		# candidate.

		if { $j == [lindex [lindex $K $mid] 1] || $s > $k} {
		    continue
		}

		# s is the sequence length of the longest sequence
		# to which this match point may be appended. Make
		# a new candidate match and store the old one in K
		# Set r to the length of the new candidate match.

		set newc [::list $i $j [lindex $K $s]]
		if { $r >= 0 } {
		    lset K $r $c
		}
		set c $newc
		set r [expr { $s + 1 }]

		# If we've extended the length of the longest match,
		# we're done; move the fence.

		if { $s >= $k } {
		    lappend K [lindex $K end]
		    incr k
		    break
		}
	    }

	    # Put the last candidate into the array

	    lset K $r $c
	}

	incr i
    }

    # Package the common subsequence in a convenient form

    set seta {}
    set setb {}
    set q [lindex $K $k]

    for { set i 0 } { $i < $k } {incr i } {
	lappend seta {}
	lappend setb {}
    }
    while { [lindex $q 0] >= 0 } {
	incr k -1
	lset seta $k [lindex $q 0]
	lset setb $k [lindex $q 1]
	set q [lindex $q 2]
    }

    return [::list $seta $setb]
}

# ::struct::list::LlongestCommonSubsequence2 --
#
#	Derives an approximation to the longest common subsequence
#	of two lists.
#
# Parameters:
#	sequence1, sequence2 - Lists to be compared
#	maxOccurs - Parameter for imprecise matching - see below.
#
# Results:
#       Returns a list of two lists of equal length.
#       The first sublist is of indices into sequence1, and the
#       second sublist is of indices into sequence2.  Each corresponding
#       pair of indices corresponds to equal elements in the sequences;
#       the sequence returned is an approximation to the longest possible.
#
# Side effects:
#       None.
#
# Notes:
#	This procedure acts as a wrapper around the companion procedure
#	struct::list::LongestCommonSubsequence and accepts the same
#	parameters.  It first computes the longest common subsequence of
#	elements that occur no more than $maxOccurs times in the
#	second list.  Using that subsequence to align the two lists,
#	it then tries to augment the subsequence by computing the true
#	longest common subsequences of the sublists between matched pairs.

proc ::struct::list::LlongestCommonSubsequence2 {
    sequence1
    sequence2
    {maxOccurs 0x7fffffff}
} {
    # Derive the longest common subsequence of elements that occur at
    # most $maxOccurs times

    foreach { l1 l2 } \
	[LlongestCommonSubsequence $sequence1 $sequence2 $maxOccurs] {
	    break
	}

    # Walk through the match points in the sequence just derived.

    set result1 {}
    set result2 {}
    set n1 0
    set n2 0
    foreach i1 $l1 i2 $l2 {
	if { $i1 != $n1 && $i2 != $n2 } {
	    # The match points indicate that there are unmatched
	    # elements lying between them in both input sequences.
	    # Extract the unmatched elements and perform precise
	    # longest-common-subsequence analysis on them.

	    set subl1 [lrange $sequence1 $n1 [expr { $i1 - 1 }]]
	    set subl2 [lrange $sequence2 $n2 [expr { $i2 - 1 }]]
	    foreach { m1 m2 } [LlongestCommonSubsequence $subl1 $subl2] break
	    foreach j1 $m1 j2 $m2 {
		lappend result1 [expr { $j1 + $n1 }]
		lappend result2 [expr { $j2 + $n2 }]
	    }
	}

	# Add the current match point to the result

	lappend result1 $i1
	lappend result2 $i2
	set n1 [expr { $i1 + 1 }]
	set n2 [expr { $i2 + 1 }]
    }

    # If there are unmatched elements after the last match in both files,
    # perform precise longest-common-subsequence matching on them and
    # add the result to our return.

    if { $n1 < [llength $sequence1] && $n2 < [llength $sequence2] } {
	set subl1 [lrange $sequence1 $n1 end]
	set subl2 [lrange $sequence2 $n2 end]
	foreach { m1 m2 } [LlongestCommonSubsequence $subl1 $subl2] break
	foreach j1 $m1 j2 $m2 {
	    lappend result1 [expr { $j1 + $n1 }]
	    lappend result2 [expr { $j2 + $n2 }]
	}
    }

    return [::list $result1 $result2]
}

# ::struct::list::LlcsInvert --
#
#	Takes the data describing a longest common subsequence of two
#	lists and inverts the information in the sense that the result
#	of this command will describe the differences between the two
#	sequences instead of the identical parts.
#
# Parameters:
#	lcsData		longest common subsequence of two lists as
#			returned by longestCommonSubsequence(2).
# Results:
#	Returns a single list whose elements describe the differences
#	between the original two sequences. Each element describes
#	one difference through three pieces, the type of the change,
#	a pair of indices in the first sequence and a pair of indices
#	into the second sequence, in this order.
#
# Side effects:
#       None.

proc ::struct::list::LlcsInvert {lcsData len1 len2} {
    return [LlcsInvert2 [::lindex $lcsData 0] [::lindex $lcsData 1] $len1 $len2]
}

proc ::struct::list::LlcsInvert2 {idx1 idx2 len1 len2} {
    set result {}
    set last1 -1
    set last2 -1

    foreach a $idx1 b $idx2 {
	# Four possible cases.
	# a) last1 ... a and last2 ... b are not empty.
	#    This is a 'change'.
	# b) last1 ... a is empty, last2 ... b is not.
	#    This is an 'addition'.
	# c) last1 ... a is not empty, last2 ... b is empty.
	#    This is a deletion.
	# d) If both ranges are empty we can ignore the
	#    two current indices.

	set empty1 [expr {($a - $last1) <= 1}]
	set empty2 [expr {($b - $last2) <= 1}]

	if {$empty1 && $empty2} {
	    # Case (d), ignore the indices
	} elseif {$empty1} {
	    # Case (b), 'addition'.
	    incr last2 ; incr b -1
	    lappend result [::list added [::list $last1 $a] [::list $last2 $b]]
	    incr b
	} elseif {$empty2} {
	    # Case (c), 'deletion'
	    incr last1 ; incr a -1
	    lappend result [::list deleted [::list $last1 $a] [::list $last2 $b]]
	    incr a
	} else {
	    # Case (q), 'change'.
	    incr last1 ; incr a -1
	    incr last2 ; incr b -1
	    lappend result [::list changed [::list $last1 $a] [::list $last2 $b]]
	    incr a
	    incr b
	}

	set last1 $a
	set last2 $b
    }

    # Handle the last chunk, using the information about the length of
    # the original sequences.

    set empty1 [expr {($len1 - $last1) <= 1}]
    set empty2 [expr {($len2 - $last2) <= 1}]

    if {$empty1 && $empty2} {
	# Case (d), ignore the indices
    } elseif {$empty1} {
	# Case (b), 'addition'.
	incr last2 ; incr len2 -1
	lappend result [::list added [::list $last1 $len1] [::list $last2 $len2]]
    } elseif {$empty2} {
	# Case (c), 'deletion'
	incr last1 ; incr len1 -1
	lappend result [::list deleted [::list $last1 $len1] [::list $last2 $len2]]
    } else {
	# Case (q), 'change'.
	incr last1 ; incr len1 -1
	incr last2 ; incr len2 -1
	lappend result [::list changed [::list $last1 $len1] [::list $last2 $len2]]
    }

    return $result
}

proc ::struct::list::LlcsInvertMerge {lcsData len1 len2} {
    return [LlcsInvertMerge2 [::lindex $lcsData 0] [::lindex $lcsData 1] $len1 $len2]
}

proc ::struct::list::LlcsInvertMerge2 {idx1 idx2 len1 len2} {
    set result {}
    set last1 -1
    set last2 -1

    foreach a $idx1 b $idx2 {
	# Four possible cases.
	# a) last1 ... a and last2 ... b are not empty.
	#    This is a 'change'.
	# b) last1 ... a is empty, last2 ... b is not.
	#    This is an 'addition'.
	# c) last1 ... a is not empty, last2 ... b is empty.
	#    This is a deletion.
	# d) If both ranges are empty we can ignore the
	#    two current indices. For merging we simply
	#    take the information from the input.

	set empty1 [expr {($a - $last1) <= 1}]
	set empty2 [expr {($b - $last2) <= 1}]

	if {$empty1 && $empty2} {
	    # Case (d), add 'unchanged' chunk.
	    set type --
	    foreach {type left right} [lindex $result end] break
	    if {[string match unchanged $type]} {
		# There is an existing result to extend
		lset left end $a
		lset right end $b
		lset result end [::list unchanged $left $right]
	    } else {
		# There is an unchanged result at the start of the list;
		# it may be extended.
		lappend result [::list unchanged [::list $a $a] [::list $b $b]]
	    }
	} else {
	    if {$empty1} {
		# Case (b), 'addition'.
		incr last2 ; incr b -1
		lappend result [::list added [::list $last1 $a] [::list $last2 $b]]
		incr b
	    } elseif {$empty2} {
		# Case (c), 'deletion'
		incr last1 ; incr a -1
		lappend result [::list deleted [::list $last1 $a] [::list $last2 $b]]
		incr a
	    } else {
		# Case (a), 'change'.
		incr last1 ; incr a -1
		incr last2 ; incr b -1
		lappend result [::list changed [::list $last1 $a] [::list $last2 $b]]
		incr a
		incr b
	    }
	    # Finally, the two matching lines are a new unchanged region
	    lappend result [::list unchanged [::list $a $a] [::list $b $b]]
	}
	set last1 $a
	set last2 $b
    }

    # Handle the last chunk, using the information about the length of
    # the original sequences.

    set empty1 [expr {($len1 - $last1) <= 1}]
    set empty2 [expr {($len2 - $last2) <= 1}]

    if {$empty1 && $empty2} {
	# Case (d), ignore the indices
    } elseif {$empty1} {
	# Case (b), 'addition'.
	incr last2 ; incr len2 -1
	lappend result [::list added [::list $last1 $len1] [::list $last2 $len2]]
    } elseif {$empty2} {
	# Case (c), 'deletion'
	incr last1 ; incr len1 -1
	lappend result [::list deleted [::list $last1 $len1] [::list $last2 $len2]]
    } else {
	# Case (q), 'change'.
	incr last1 ; incr len1 -1
	incr last2 ; incr len2 -1
	lappend result [::list changed [::list $last1 $len1] [::list $last2 $len2]]
    }

    return $result
}

# ::struct::list::Lreverse --
#
#	Reverses the contents of the list and returns the reversed
#	list as the result of the command.
#
# Parameters:
#	sequence	List to be reversed.
#
# Results:
#	The sequence in reverse.
#
# Side effects:
#       None.

proc ::struct::list::Lreverse {sequence} {
    set l [::llength $sequence]

    # Shortcut for lists where reversing yields the list itself
    if {$l < 2} {return $sequence}

    # Perform true reversal
    set res [::list]
    while {$l} {
	::lappend res [::lindex $sequence [incr l -1]]
    }
    return $res
}


# ::struct::list::Lassign --
#
#	Assign list elements to variables.
#
# Parameters:
#	sequence	List to assign
#	args		Names of the variables to assign to.
#
# Results:
#	The unassigned part of the sequence. Can be empty.
#
# Side effects:
#       None.

# Do a compatibility version of [assign] for pre-8.5 versions of Tcl.

if { [package vcompare [package provide Tcl] 8.5] < 0 } {
    # 8.4
    proc ::struct::list::Lassign {sequence v args} {
	set args [linsert $args 0 $v]
	set a [::llength $args]

	# Nothing to assign.
	#if {$a == 0} {return $sequence}

	# Perform assignments
	set i 0
	foreach v $args {
	    upvar 1 $v var
	    set      var [::lindex $sequence $i]
	    incr i
	}

	# Return remainder, if there is any.
	return [::lrange $sequence $a end]
}

} else {
    # For 8.5+ simply redirect the method to the core command.

    interp alias {} ::struct::list::Lassign {} lassign
}


# ::struct::list::Lshift --
#
#	Shift a list in a variable one element down, and return first element
#
# Parameters:
#	listvar		Name of variable containing the list to shift.
#
# Results:
#	The first element of the list.
#
# Side effects:
#       After the call the list variable will contain
#	the second to last elements of the list.

proc ::struct::list::Lshift {listvar} {
    upvar 1 $listvar list
    set list [Lassign [K $list [set list {}]] v]
    return $v
}


# ::struct::list::Lflatten --
#
#	Remove nesting from the input
#
# Parameters:
#	sequence	List to flatten
#
# Results:
#	The input list with one or all levels of nesting removed.
#
# Side effects:
#       None.

proc ::struct::list::Lflatten {args} {
    if {[::llength $args] < 1} {
	return -code error \
		"wrong#args: should be \"::struct::list::Lflatten ?-full? ?--? sequence\""
    }

    set full 0
    while {[string match -* [set opt [::lindex $args 0]]]} {
	switch -glob -- $opt {
	    -full   {set full 1}
	    --      {
                set args [::lrange $args 1 end]
                break ; # fix ticket 6e778502b8 -- break exits while loop
            }
	    default {
		return -code error "Unknown option \"$opt\", should be either -full, or --"
	    }
	}
	set args [::lrange $args 1 end]
    }

    if {[::llength $args] != 1} {
	return -code error \
		"wrong#args: should be \"::struct::list::Lflatten ?-full? ?--? sequence\""
    }

    set sequence [::lindex $args 0]
    set cont 1
    while {$cont} {
	set cont 0
	set result [::list]
	foreach item $sequence {
	    # catch/llength detects if the item is following the list
	    # syntax.

	    if {[catch {llength $item} len]} {
		# Element is not a list in itself, no flatten, add it
		# as is.
		lappend result $item
	    } else {
		# Element is parseable as list, add all sub-elements
		# to the result.
		foreach e $item {
		    lappend result $e
		}
	    }
	}
	if {$full && [string compare $sequence $result]} {set cont 1}
	set sequence $result
    }
    return $result
}


# ::struct::list::Lmap --
#
#	Apply command to each element of a list and return concatenated results.
#
# Parameters:
#	sequence	List to operate on
#	cmdprefix	Operation to perform on the elements.
#
# Results:
#	List containing the result of applying cmdprefix to the elements of the
#	sequence.
#
# Side effects:
#       None of its own, but the command prefix can perform arbitry actions.

proc ::struct::list::Lmap {sequence cmdprefix} {
    # Shortcut when nothing is to be done.
    if {[::llength $sequence] == 0} {return $sequence}

    set res [::list]
    foreach item $sequence {
	lappend res [uplevel 1 [linsert $cmdprefix end $item]]
    }
    return $res
}

# ::struct::list::Lmapfor --
#
#	Apply a script to each element of a list and return concatenated results.
#
# Parameters:
#	sequence	List to operate on
#	script		The script to run on the elements.
#
# Results:
#	List containing the result of running script on the elements of the
#	sequence.
#
# Side effects:
#       None of its own, but the script can perform arbitry actions.

proc ::struct::list::Lmapfor {var sequence script} {
    # Shortcut when nothing is to be done.
    if {[::llength $sequence] == 0} {return $sequence}
    upvar 1 $var item

    set res [::list]
    foreach item $sequence {
	lappend res [uplevel 1 $script]
    }
    return $res
}

# ::struct::list::Lfilter --
#
#	Apply command to each element of a list and return elements passing the test.
#
# Parameters:
#	sequence	List to operate on
#	cmdprefix	Test to perform on the elements.
#
# Results:
#	List containing the elements of the input passing the test command.
#
# Side effects:
#       None of its own, but the command prefix can perform arbitrary actions.

proc ::struct::list::Lfilter {sequence cmdprefix} {
    # Shortcut when nothing is to be done.
    if {[::llength $sequence] == 0} {return $sequence}
    return [uplevel 1 [::list ::struct::list::Lfold $sequence {} [::list ::struct::list::FTest $cmdprefix]]]
}

proc ::struct::list::FTest {cmdprefix result item} {
    set pass [uplevel 1 [::linsert $cmdprefix end $item]]
    if {$pass} {::lappend result $item}
    return $result
}

# ::struct::list::Lfilterfor --
#
#	Apply expr condition to each element of a list and return elements passing the test.
#
# Parameters:
#	sequence	List to operate on
#	expr		Test to perform on the elements.
#
# Results:
#	List containing the elements of the input passing the test expression.
#
# Side effects:
#       None of its own, but the command prefix can perform arbitrary actions.

proc ::struct::list::Lfilterfor {var sequence expr} {
    # Shortcut when nothing is to be done.
    if {[::llength $sequence] == 0} {return $sequence}

    upvar 1 $var item
    set result {}
    foreach item $sequence {
	if {[uplevel 1 [::list ::expr $expr]]} {
	    lappend result $item
	}
    }
    return $result
}

# ::struct::list::Lsplit --
#
#	Apply command to each element of a list and return elements passing
#	and failing the test. Basic idea by Salvatore Sanfilippo
#	(http://wiki.tcl.tk/lsplit). The implementation here is mine (AK),
#	and the interface is slightly different (Command prefix with the
#	list element given to it as argument vs. variable + script).
#
# Parameters:
#	sequence	List to operate on
#	cmdprefix	Test to perform on the elements.
#	args = empty | (varPass varFail)
#
# Results:
#	If the variables are specified then a list containing the
#	numbers of passing and failing elements, in this
#	order. Otherwise a list having two elements, the lists of
#	passing and failing elements, in this order.
#
# Side effects:
#       None of its own, but the command prefix can perform arbitrary actions.

proc ::struct::list::Lsplit {sequence cmdprefix args} {
    set largs [::llength $args]
    if {$largs == 0} {
	# Shortcut when nothing is to be done.
	if {[::llength $sequence] == 0} {return {{} {}}}
	return [Lfold $sequence {} [::list ::struct::list::PFTest $cmdprefix]]
    } elseif {$largs == 2} {
	# Shortcut when nothing is to be done.
	foreach {pv fv} $args break
	upvar 1 $pv pass $fv fail
	if {[::llength $sequence] == 0} {
	    set pass {}
	    set fail {}
	    return {0 0}
	}
	foreach {pass fail} [uplevel 1 [::list ::struct::list::Lfold $sequence {} [::list ::struct::list::PFTest $cmdprefix]]] break
	return [::list [llength $pass] [llength $fail]]
    } else {
	return -code error \
		"wrong#args: should be \"::struct::list::Lsplit sequence cmdprefix ?passVar failVar?"
    }
}

proc ::struct::list::PFTest {cmdprefix result item} {
    set passing [uplevel 1 [::linsert $cmdprefix end $item]]
    set pass {} ; set fail {}
    foreach {pass fail} $result break
    if {$passing} {
	::lappend pass $item
    } else {
	::lappend fail $item
    }
    return [::list $pass $fail]
}

# ::struct::list::Lfold --
#
#	Fold list into one value.
#
# Parameters:
#	sequence	List to operate on
#	cmdprefix	Operation to perform on the elements.
#
# Results:
#	Result of applying cmdprefix to the elements of the
#	sequence.
#
# Side effects:
#       None of its own, but the command prefix can perform arbitry actions.

proc ::struct::list::Lfold {sequence initialvalue cmdprefix} {
    # Shortcut when nothing is to be done.
    if {[::llength $sequence] == 0} {return $initialvalue}

    set res $initialvalue
    foreach item $sequence {
	set res [uplevel 1 [linsert $cmdprefix end $res $item]]
    }
    return $res
}

# ::struct::list::Liota --
#
#	Return a list containing the integer numbers 0 ... n-1
#
# Parameters:
#	n	First number not in the generated list.
#
# Results:
#	A list containing integer numbers.
#
# Side effects:
#       None

proc ::struct::list::Liota {n} {
    set retval [::list]
    for {set i 0} {$i < $n} {incr i} {
	::lappend retval $i
    }
    return $retval
}

# ::struct::list::Ldelete --
#
#	Delete an element from a list by name.
#	Similar to 'struct::set exclude', however
#	this here preserves order and list intrep.
#
# Parameters:
#	a	First list to compare.
#	b	Second list to compare.
#
# Results:
#	A boolean. True if the lists are delete.
#
# Side effects:
#       None

proc ::struct::list::Ldelete {var item} {
    upvar 1 $var list
    set pos [lsearch -exact $list $item]
    if {$pos < 0} return
    set list [lreplace [K $list [set list {}]] $pos $pos]
    return
}

# ::struct::list::Lequal --
#
#	Compares two lists for equality
#	(Same length, Same elements in same order).
#
# Parameters:
#	a	First list to compare.
#	b	Second list to compare.
#
# Results:
#	A boolean. True if the lists are equal.
#
# Side effects:
#       None

proc ::struct::list::Lequal {a b} {
    # Author of this command is "Richard Suchenwirth"

    if {[::llength $a] != [::llength $b]} {return 0}
    if {[::lindex $a 0] == $a && [::lindex $b 0] == $b} {return [string equal $a $b]}
    foreach i $a j $b {if {![Lequal $i $j]} {return 0}}
    return 1
}

# ::struct::list::Lrepeatn --
#
#	Create a list repeating the same value over again.
#
# Parameters:
#	value	value to use in the created list.
#	args	Dimension(s) of the (nested) list to create.
#
# Results:
#	A list
#
# Side effects:
#       None

proc ::struct::list::Lrepeatn {value args} {
    if {[::llength $args] == 1} {set args [::lindex $args 0]}
    set buf {}
    foreach number $args {
	incr number 0 ;# force integer (1)
	set buf {}
	for {set i 0} {$i<$number} {incr i} {
	    ::lappend buf $value
	}
	set value $buf
    }
    return $buf
    # (1): See 'Stress testing' (wiki) for why this makes the code safer.
}

# ::struct::list::Lrepeat --
#
#	Create a list repeating the same value over again.
#	[Identical to the Tcl 8.5 lrepeat command]
#
# Parameters:
#	n	Number of replications.
#	args	values to use in the created list.
#
# Results:
#	A list
#
# Side effects:
#       None

# Do a compatibility version of [repeat] for pre-8.5 versions of Tcl.

if { [package vcompare [package provide Tcl] 8.5] < 0 } {

    proc ::struct::list::Lrepeat {positiveCount value args} {
	if {![string is integer -strict $positiveCount]} {
	    return -code error "expected integer but got \"$positiveCount\""
	} elseif {$positiveCount < 1} {
	    return -code error {must have a count of at least 1}
	}

	set args   [linsert $args 0 $value]

	if {$positiveCount == 1} {
	    # Tcl itself has already listified the incoming parameters
	    # via 'args'.
	    return $args
	}

	set result [::list]
	while {$positiveCount > 0} {
	    if {($positiveCount % 2) == 0} {
		set args [concat $args $args]
		set positiveCount [expr {$positiveCount/2}]
	    } else {
		set result [concat $result $args]
		incr positiveCount -1
	    }
	}
	return $result
    }

} else {
    # For 8.5 simply redirect the method to the core command.

    interp alias {} ::struct::list::Lrepeat {} lrepeat
}

# ::struct::list::LdbJoin(Keyed) --
#
#	Relational table joins.
#
# Parameters:
#	args	key specs and tables to join
#
# Results:
#	A table/matrix as nested list. See
#	struct/matrix set/get rect for structure.
#
# Side effects:
#       None

proc ::struct::list::LdbJoin {args} {
    # --------------------------------
    # Process options ...

    set mode   inner
    set keyvar {}

    while {[llength $args]} {
        set err [::cmdline::getopt args {inner left right full keys.arg} opt arg]
	if {$err == 1} {
	    if {[string equal $opt keys]} {
		set keyvar $arg
	    } else {
		set mode $opt
	    }
	} elseif {$err < 0} {
	    return -code error "wrong#args: dbJoin ?-inner|-left|-right|-full? ?-keys varname? \{key table\}..."
	} else {
	    # Non-option argument found, stop processing.
	    break
	}
    }

    set inner       [string equal $mode inner]
    set innerorleft [expr {$inner || [string equal $mode left]}]

    # --------------------------------
    # Process tables ...

    if {([llength $args] % 2) != 0} {
	return -code error "wrong#args: dbJoin ?-inner|-left|-right|-full? \{key table\}..."
    }

    # One table only, join is identity
    if {[llength $args] == 2} {return [lindex $args 1]}

    # Use first table for setup.

    foreach {key table} $args break

    # Check for possible early abort
    if {$innerorleft && ([llength $table] == 0)} {return {}}

    set width 0
    array set state {}

    set keylist [InitMap state width $key $table]

    # Extend state with the remaining tables.

    foreach {key table} [lrange $args 2 end] {
	# Check for possible early abort
	if {$inner && ([llength $table] == 0)} {return {}}

	switch -exact -- $mode {
	    inner {set keylist [MapExtendInner      state       $key $table]}
	    left  {set keylist [MapExtendLeftOuter  state width $key $table]}
	    right {set keylist [MapExtendRightOuter state width $key $table]}
	    full  {set keylist [MapExtendFullOuter  state width $key $table]}
	}

	# Check for possible early abort
	if {$inner && ([llength $keylist] == 0)} {return {}}
    }

    if {[string length $keyvar]} {
	upvar 1 $keyvar keys
	set             keys $keylist
    }

    return [MapToTable state $keylist]
}

proc ::struct::list::LdbJoinKeyed {args} {
    # --------------------------------
    # Process options ...

    set mode   inner
    set keyvar {}

    while {[llength $args]} {
        set err [::cmdline::getopt args {inner left right full keys.arg} opt arg]
	if {$err == 1} {
	    if {[string equal $opt keys]} {
		set keyvar $arg
	    } else {
		set mode $opt
	    }
	} elseif {$err < 0} {
	    return -code error "wrong#args: dbJoin ?-inner|-left|-right|-full? table..."
	} else {
	    # Non-option argument found, stop processing.
	    break
	}
    }

    set inner       [string equal $mode inner]
    set innerorleft [expr {$inner || [string equal $mode left]}]

    # --------------------------------
    # Process tables ...

    # One table only, join is identity
    if {[llength $args] == 1} {
	return [Dekey [lindex $args 0]]
    }

    # Use first table for setup.

    set table [lindex $args 0]

    # Check for possible early abort
    if {$innerorleft && ([llength $table] == 0)} {return {}}

    set width 0
    array set state {}

    set keylist [InitKeyedMap state width $table]

    # Extend state with the remaining tables.

    foreach table [lrange $args 1 end] {
	# Check for possible early abort
	if {$inner && ([llength $table] == 0)} {return {}}

	switch -exact -- $mode {
	    inner {set keylist [MapKeyedExtendInner      state       $table]}
	    left  {set keylist [MapKeyedExtendLeftOuter  state width $table]}
	    right {set keylist [MapKeyedExtendRightOuter state width $table]}
	    full  {set keylist [MapKeyedExtendFullOuter  state width $table]}
	}

	# Check for possible early abort
	if {$inner && ([llength $keylist] == 0)} {return {}}
    }

    if {[string length $keyvar]} {
	upvar 1 $keyvar keys
	set             keys $keylist
    }

    return [MapToTable state $keylist]
}

## Helpers for the relational joins.
## Map is an array mapping from keys to a list
## of rows with that key

proc ::struct::list::Cartesian {leftmap rightmap key} {
    upvar $leftmap left $rightmap right
    set joined [::list]
    foreach lrow $left($key) {
	foreach row $right($key) {
	    lappend joined [concat $lrow $row]
	}
    }
    set left($key) $joined
    return
}

proc ::struct::list::SingleRightCartesian {mapvar key rightrow} {
    upvar $mapvar map
    set joined [::list]
    foreach lrow $map($key) {
	lappend joined [concat $lrow $rightrow]
    }
    set map($key) $joined
    return
}

proc ::struct::list::MapToTable {mapvar keys} {
    # Note: keys must not appear multiple times in the list.

    upvar $mapvar map
    set table [::list]
    foreach k $keys {
	foreach row $map($k) {lappend table $row}
    }
    return $table
}

## More helpers, core join operations: Init, Extend.

proc ::struct::list::InitMap {mapvar wvar key table} {
    upvar $mapvar map $wvar width
    set width [llength [lindex $table 0]]
    foreach row $table {
	set keyval [lindex $row $key]
	if {[info exists map($keyval)]} {
	    lappend map($keyval) $row
	} else {
	    set map($keyval) [::list $row]
	}
    }
    return [array names map]
}

proc ::struct::list::MapExtendInner {mapvar key table} {
    upvar $mapvar map
    array set used {}

    # Phase I - Find all keys in the second table matching keys in the
    # first. Remember all their rows.
    foreach row $table {
	set keyval [lindex $row $key]
	if {[info exists map($keyval)]} {
	    if {[info exists used($keyval)]} {
		lappend used($keyval) $row
	    } else {
		set used($keyval) [::list $row]
	    }
	} ; # else: Nothing to do for missing keys.
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map, and eliminate all entries which have no keys in
    # the second table.
    foreach k [array names map] {
	if {[info exists  used($k)]} {
	    Cartesian map used $k
	} else {
	    unset map($k)
	}
    }
    return [array names map]
}

proc ::struct::list::MapExtendRightOuter {mapvar wvar key table} {
    upvar $mapvar map $wvar width
    array set used {}

    # Phase I - We keep all keys of the right table, even if they are
    # missing in the left one <=> Definition of right outer join.

    set w [llength [lindex $table 0]]
    foreach row $table {
	set keyval [lindex $row $key]
	if {[info exists used($keyval)]} {
	    lappend used($keyval) $row
	} else {
	    set used($keyval) [::list $row]
	}
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map, and eliminate all entries which have no keys in
    # the second table. If there is nothing in the left table we
    # create an appropriate empty row for the cartesian => definition
    # of right outer join.

    # We go through used, because map can be empty for outer

    foreach k [array names map] {
	if {![info exists used($k)]} {
	    unset map($k)
	}
    }
    foreach k [array names used] {
	if {![info exists map($k)]} {
	    set map($k) [::list [Lrepeatn {} $width]]
	}
	Cartesian map used $k
    }

    incr width $w
    return [array names map]
}

proc ::struct::list::MapExtendLeftOuter {mapvar wvar key table} {
    upvar $mapvar map $wvar width
    array set used {}

    ## Keys: All in inner join + additional left keys 
    ##       == All left keys = array names map after
    ##          all is said and done with it.

    # Phase I - Find all keys in the second table matching keys in the
    # first. Remember all their rows.
    set w [llength [lindex $table 0]]
    foreach row $table {
	set keyval [lindex $row $key]
	if {[info exists map($keyval)]} {
	    if {[info exists used($keyval)]} {
		lappend used($keyval) $row
	    } else {
		set used($keyval) [::list $row]
	    }
	} ; # else: Nothing to do for missing keys.
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map. We keep entries which have no keys in the second
    # table, we actually extend them <=> Left outer join.

    foreach k [array names map] {
	if {[info exists  used($k)]} {
	    Cartesian map used $k
	} else {
	    SingleRightCartesian map $k [Lrepeatn {} $w]
	}
    }
    incr width $w
    return [array names map]
}

proc ::struct::list::MapExtendFullOuter {mapvar wvar key table} {
    upvar $mapvar map $wvar width
    array set used {}

    # Phase I - We keep all keys of the right table, even if they are
    # missing in the left one <=> Definition of right outer join.

    set w [llength [lindex $table 0]]
    foreach row $table {
	set keyval [lindex $row $key]
	if {[info exists used($keyval)]} {
	    lappend used($keyval) $row
	} else {
	    lappend keylist $keyval
	    set used($keyval) [::list $row]
	}
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map. We keep entries which have no keys in the second
    # table, we actually extend them <=> Left outer join.
    # If there is nothing in the left table we create an appropriate
    # empty row for the cartesian => definition of right outer join.

    # We go through used, because map can be empty for outer

    foreach k [array names map] {
	if {![info exists used($k)]} {
	    SingleRightCartesian map $k [Lrepeatn {} $w]
	}
    }
    foreach k [array names used] {
	if {![info exists map($k)]} {
	    set map($k) [::list [Lrepeatn {} $width]]
	}
	Cartesian map used $k
    }

    incr width $w
    return [array names map]
}

## Keyed helpers

proc ::struct::list::InitKeyedMap {mapvar wvar table} {
    upvar $mapvar map $wvar width
    set width [llength [lindex [lindex $table 0] 1]]
    foreach row $table {
	foreach {keyval rowdata} $row break
	if {[info exists map($keyval)]} {
	    lappend map($keyval) $rowdata
	} else {
	    set map($keyval) [::list $rowdata]
	}
    }
    return [array names map]
}

proc ::struct::list::MapKeyedExtendInner {mapvar table} {
    upvar $mapvar map
    array set used {}

    # Phase I - Find all keys in the second table matching keys in the
    # first. Remember all their rows.
    foreach row $table {
	foreach {keyval rowdata} $row break
	if {[info exists map($keyval)]} {
	    if {[info exists used($keyval)]} {
		lappend used($keyval) $rowdata
	    } else {
		set used($keyval) [::list $rowdata]
	    }
	} ; # else: Nothing to do for missing keys.
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map, and eliminate all entries which have no keys in
    # the second table.
    foreach k [array names map] {
	if {[info exists  used($k)]} {
	    Cartesian map used $k
	} else {
	    unset map($k)
	}
    }

    return [array names map]
}

proc ::struct::list::MapKeyedExtendRightOuter {mapvar wvar table} {
    upvar $mapvar map $wvar width
    array set used {}

    # Phase I - We keep all keys of the right table, even if they are
    # missing in the left one <=> Definition of right outer join.

    set w [llength [lindex $table 0]]
    foreach row $table {
	foreach {keyval rowdata} $row break
	if {[info exists used($keyval)]} {
	    lappend used($keyval) $rowdata
	} else {
	    set used($keyval) [::list $rowdata]
	}
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map, and eliminate all entries which have no keys in
    # the second table. If there is nothing in the left table we
    # create an appropriate empty row for the cartesian => definition
    # of right outer join.

    # We go through used, because map can be empty for outer

    foreach k [array names map] {
	if {![info exists used($k)]} {
	    unset map($k)
	}
    }
    foreach k [array names used] {
	if {![info exists map($k)]} {
	    set map($k) [::list [Lrepeatn {} $width]]
	}
	Cartesian map used $k
    }

    incr width $w
    return [array names map]
}

proc ::struct::list::MapKeyedExtendLeftOuter {mapvar wvar table} {
    upvar $mapvar map $wvar width
    array set used {}

    ## Keys: All in inner join + additional left keys 
    ##       == All left keys = array names map after
    ##          all is said and done with it.

    # Phase I - Find all keys in the second table matching keys in the
    # first. Remember all their rows.
    set w [llength [lindex $table 0]]
    foreach row $table {
	foreach {keyval rowdata} $row break
	if {[info exists map($keyval)]} {
	    if {[info exists used($keyval)]} {
		lappend used($keyval) $rowdata
	    } else {
		set used($keyval) [::list $rowdata]
	    }
	} ; # else: Nothing to do for missing keys.
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map. We keep entries which have no keys in the second
    # table, we actually extend them <=> Left outer join.

    foreach k [array names map] {
	if {[info exists  used($k)]} {
	    Cartesian map used $k
	} else {
	    SingleRightCartesian map $k [Lrepeatn {} $w]
	}
    }
    incr width $w
    return [array names map]
}

proc ::struct::list::MapKeyedExtendFullOuter {mapvar wvar table} {
    upvar $mapvar map $wvar width
    array set used {}

    # Phase I - We keep all keys of the right table, even if they are
    # missing in the left one <=> Definition of right outer join.

    set w [llength [lindex $table 0]]
    foreach row $table {
	foreach {keyval rowdata} $row break
	if {[info exists used($keyval)]} {
	    lappend used($keyval) $rowdata
	} else {
	    lappend keylist $keyval
	    set used($keyval) [::list $rowdata]
	}
    }

    # Phase II - Merge the collected rows of the second (right) table
    # into the map. We keep entries which have no keys in the second
    # table, we actually extend them <=> Left outer join.
    # If there is nothing in the left table we create an appropriate
    # empty row for the cartesian => definition of right outer join.

    # We go through used, because map can be empty for outer

    foreach k [array names map] {
	if {![info exists used($k)]} {
	    SingleRightCartesian map $k [Lrepeatn {} $w]
	}
    }
    foreach k [array names used] {
	if {![info exists map($k)]} {
	    set map($k) [::list [Lrepeatn {} $width]]
	}
	Cartesian map used $k
    }

    incr width $w
    return [array names map]
}

proc ::struct::list::Dekey {keyedtable} {
    set table [::list]
    foreach row $keyedtable {lappend table [lindex $row 1]}
    return $table
}

# ::struct::list::Lswap --
#
#	Exchange two elements of a list.
#
# Parameters:
#	listvar	Name of the variable containing the list to manipulate.
#	i, j	Indices of the list elements to exchange.
#
# Results:
#	The modified list
#
# Side effects:
#       None

proc ::struct::list::Lswap {listvar i j} {
    upvar $listvar list

    if {($i < 0) || ($j < 0)} {
	return -code error {list index out of range}
    }
    set len [llength $list]
    if {($i >= $len) || ($j >= $len)} {
	return -code error {list index out of range}
    }

    if {$i != $j} {
	set tmp      [lindex $list $i]
	lset list $i [lindex $list $j]
	lset list $j $tmp
    }
    return $list
}

# ::struct::list::Lfirstperm --
#
#	Returns the lexicographically first permutation of the
#	specified list.
#
# Parameters:
#	list	The list whose first permutation is sought.
#
# Results:
#	A modified list containing the lexicographically first
#	permutation of the input.
#
# Side effects:
#       None

proc ::struct::list::Lfirstperm {list} {
    return [lsort $list]
}

# ::struct::list::Lnextperm --
#
#	Accepts a permutation of a set of elements and returns the
#	next permutatation in lexicographic sequence.
#
# Parameters:
#	list	The list containing the current permutation.
#
# Results:
#	A modified list containing the lexicographically next
#	permutation after the input permutation.
#
# Side effects:
#       None

proc ::struct::list::Lnextperm {perm} {
    # Find the smallest subscript j such that we have already visited
    # all permutations beginning with the first j elements.

    set len [expr {[llength $perm] - 1}]

    set j $len
    set ajp1 [lindex $perm $j]
    while { $j > 0 } {
	incr j -1
	set aj [lindex $perm $j]
	if { [string compare $ajp1 $aj] > 0 } {
	    set foundj {}
	    break
	}
	set ajp1 $aj
    }
    if { ![info exists foundj] } return

    # Find the smallest element greater than the j'th among the elements
    # following aj. Let its index be l, and interchange aj and al.

    set l $len
    while { [string compare $aj [set al [lindex $perm $l]]] >= 0 } {
	incr l -1
    }
    lset perm $j $al
    lset perm $l $aj

    # Reverse a_j+1 ... an

    set k [expr {$j + 1}]
    set l $len
    while { $k < $l } {
	set al [lindex $perm $l]
	lset perm $l [lindex $perm $k]
	lset perm $k $al
	incr k
	incr l -1
    }

    return $perm
}

# ::struct::list::Lpermutations --
#
#	Returns a list containing all the permutations of the
#	specified list, in lexicographic order.
#
# Parameters:
#	list	The list whose permutations are sought.
#
# Results:
#	A list of lists, containing all	permutations of the
#	input.
#
# Side effects:
#       None

proc ::struct::list::Lpermutations {list} {

    if {[llength $list] < 2} {
	return [::list $list]
    }

    set res {}
    set p [Lfirstperm $list]
    while {[llength $p]} {
	lappend res $p
	set p [Lnextperm $p]
    }
    return $res
}

# ::struct::list::Lforeachperm --
#
#	Executes a script for all the permutations of the
#	specified list, in lexicographic order.
#
# Parameters:
#	var	Name of the loop variable.
#	list	The list whose permutations are sought.
#	body	The tcl script to run per permutation of
#		the input.
#
# Results:
#	The empty string.
#
# Side effects:
#       None

proc ::struct::list::Lforeachperm {var list body} {
    upvar $var loopvar

    if {[llength $list] < 2} {
	set loopvar $list
	# TODO run body.

	# The first invocation of the body, also the last, as only one
	# permutation is possible. That makes handling of the result
	# codes easier.

	set code [catch {uplevel 1 $body} result]

	# decide what to do upon the return code:
	#
	#               0 - the body executed successfully
	#               1 - the body raised an error
	#               2 - the body invoked [return]
	#               3 - the body invoked [break]
	#               4 - the body invoked [continue]
	# everything else - return and pass on the results
	#
	switch -exact -- $code {
	    0 {}
	    1 {
		return -errorinfo [ErrorInfoAsCaller uplevel foreachperm]  \
		    -errorcode $::errorCode -code error $result
	    }
	    3 {}
	    4 {}
	    default {
		# Includes code 2
		return -code $code $result
	    }
	}
	return
    }

    set p [Lfirstperm $list]
    while {[llength $p]} {
	set loopvar $p

	set code [catch {uplevel 1 $body} result]

	# decide what to do upon the return code:
	#
	#               0 - the body executed successfully
	#               1 - the body raised an error
	#               2 - the body invoked [return]
	#               3 - the body invoked [break]
	#               4 - the body invoked [continue]
	# everything else - return and pass on the results
	#
	switch -exact -- $code {
	    0 {}
	    1 {
		return -errorinfo [ErrorInfoAsCaller uplevel foreachperm]  \
		    -errorcode $::errorCode -code error $result
	    }
	    3 {
		# FRINK: nocheck
		return
	    }
	    4 {}
	    default {
		return -code $code $result
	    }
	}
	set p [Lnextperm $p]
    }
    return
}

proc ::struct::list::Lshuffle {list} {
    for {set i [llength $list]} {$i > 1} {lset list $j $t} {
	set j [expr {int(rand() * $i)}]
	set t [lindex $list [incr i -1]]
	lset list $i [lindex $list $j]
    }
    return $list
}

# ### ### ### ######### ######### #########

proc ::struct::list::ErrorInfoAsCaller {find replace} {
    set info $::errorInfo
    set i [string last "\n    (\"$find" $info]
    if {$i == -1} {return $info}
    set result [string range $info 0 [incr i 6]]	;# keep "\n    (\""
    append result $replace			;# $find -> $replace
    incr i [string length $find]
    set j [string first ) $info [incr i]]	;# keep rest of parenthetical
    append result [string range $info $i $j]
    return $result
}

# ### ### ### ######### ######### #########
## Ready

namespace eval ::struct {
    # Get 'list::list' into the general structure namespace.
    namespace import -force list::list
    namespace export list
}
package provide struct::list 1.8.4