File: special.tcl

package info (click to toggle)
tcllib 1.8-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 13,628 kB
  • ctags: 4,897
  • sloc: tcl: 88,012; sh: 7,856; ansic: 4,174; xml: 1,765; yacc: 753; perl: 84; f90: 84; makefile: 60; python: 33; ruby: 13; php: 11
file content (188 lines) | stat: -rwxr-xr-x 4,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# special.tcl --
#    Provide well-known special mathematical functions
#
# This file contains a collection of tests for one or more of the Tcllib
# procedures.  Sourcing this file into Tcl runs the tests and
# generates output for errors.  No output means no errors were found.
#
# Copyright (c) 2004 by Arjen Markus. All rights reserved.
#
# RCS: @(#) $Id: special.tcl,v 1.9 2005/10/06 05:16:37 andreas_kupries Exp $
#
package require math
package require math::constants
package require math::statistics

# namespace special
#    Create a convenient namespace for the "special" mathematical functions
#
namespace eval ::math::special {
    #
    # Define a number of common mathematical constants
    #
    ::math::constants::constants pi
    variable halfpi [expr {$pi/2.0}]

    #
    # Functions defined in other math submodules
    #
    if { [info commands Beta] == {} } {
       namespace import ::math::Beta
    }
    if { [info commands Beta] == {} } {
       namespace import ::math::ln_Gamma
    }

    #
    # Export the various functions
    #
    namespace export Beta ln_Gamma Gamma erf erfc fresnel_C fresnel_S sinc
}

# Gamma --
#    The Gamma function - synonym for "factorial"
#
proc ::math::special::Gamma {x} {
    ::math::factorial [expr { $x + 1 }]
}

# erf --
#    The error function
# Arguments:
#    x          The value for which the function must be evaluated
# Result:
#    erf(x)
#
proc ::math::special::erf {x} {
    set x2 $x
    if { $x > 0.0 } {
        set x2 [expr {-$x}]
    }
    if { $x2 != 0.0 } {
        set r [::math::statistics::cdf-normal 0.0 [expr {sqrt(0.5)}] $x2]
        if { $x > 0.0 } {
            return [expr {1.0-2.0*$r}]
        } else {
            return [expr {2.0*$r-1.0}]
        }
    } else {
        return 0.0
    }
}

# erfc --
#    The complement of the error function
# Arguments:
#    x          The value for which the function must be evaluated
# Result:
#    erfc(x) = 1.0-erf(x)
#
proc ::math::special::erfc {x} {
    set x2 $x
    if { $x > 0.0 } {
        set x2 [expr {-$x}]
    }
    if { $x2 != 0.0 } {
        set r [::math::statistics::cdf-normal 0.0 [expr {sqrt(0.5)}] $x2]
        if { $x > 0.0 } {
            return [expr {2.0*$r}]
        } else {
            return [expr {2.0-2.0*$r}]
        }
    } else {
        return 1.0
    }
}

# ComputeFG --
#    Compute the auxiliary functions f and g
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Approximate values for f and g
# Note:
#    See Abramowitz and Stegun. The accuracy is 2.0e-3.
#
proc ::math::special::ComputeFG {x} {
    list [expr {(1.0+0.926*$x)/(2.0+1.792*$x+3.104*$x*$x)}] \
        [expr {1.0/(2.0+4.142*$x+3.492*$x*$x+6.670*$x*$x*$x)}]
}

# fresnel_C --
#    Compute the Fresnel cosine integral
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Value of C(x) = integral from 0 to x of cos(0.5*pi*x^2)
# Note:
#    This relies on a rational approximation of the two auxiliary functions f and g
#
proc ::math::special::fresnel_C {x} {
    variable halfpi
    if { $x < 0.0 } {
        error "Domain error: x must be non-negative"
    }

    if { $x == 0.0 } {
        return 0.0
    }

    foreach {f g} [ComputeFG $x] {break}

    set xarg [expr {$halfpi*$x*$x}]

    return [expr {0.5+$f*sin($xarg)-$g*cos($xarg)}]
}

# fresnel_S --
#    Compute the Fresnel sine integral
#
# Arguments:
#    x            Parameter of the integral (x>=0)
# Result:
#    Value of S(x) = integral from 0 to x of sin(0.5*pi*x^2)
# Note:
#    This relies on a rational approximation of the two auxiliary functions f and g
#
proc ::math::special::fresnel_S {x} {
    variable halfpi
    if { $x < 0.0 } {
        error "Domain error: x must be non-negative"
    }

    if { $x == 0.0 } {
        return 0.0
    }

    foreach {f g} [ComputeFG $x] {break}

    set xarg [expr {$halfpi*$x*$x}]

    return [expr {0.5-$f*cos($xarg)-$g*sin($xarg)}]
}

# sinc --
#    Compute the sinc function
# Arguments:
#    x       Value of the argument
# Result:
#    sin(x)/x
#
proc ::math::special::sinc {x} {
    if { $x == 0.0 } {
        return 1.0
    } else {
        return [expr {sin($x)/$x}]
    }
}

# Bessel functions and elliptic integrals --
#
source [file join [file dirname [info script]] "bessel.tcl"]
source [file join [file dirname [info script]] "classic_polyns.tcl"]
source [file join [file dirname [info script]] "elliptic.tcl"]
source [file join [file dirname [info script]] "exponential.tcl"]

package provide math::special 0.2