File: bigfloat.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (828 lines) | stat: -rw-r--r-- 22,640 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
'\"
'\" Generated from file 'bigfloat\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004-2008, by Stephane Arnold <stephanearnold at yahoo dot fr>
'\"
.TH "math::bigfloat" n 2\&.0\&.6 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::bigfloat \- Arbitrary precision floating-point numbers
.SH SYNOPSIS
package require \fBTcl 8\&.5 9\fR
.sp
package require \fBmath::bigfloat ?2\&.0\&.6?\fR
.sp
\fBfromstr\fR \fInumber\fR ?\fItrailingZeros\fR?
.sp
\fBtostr\fR ?\fB-nosci\fR? \fInumber\fR
.sp
\fBfromdouble\fR \fIdouble\fR ?\fIdecimals\fR?
.sp
\fBtodouble\fR \fInumber\fR
.sp
\fBisInt\fR \fInumber\fR
.sp
\fBisFloat\fR \fInumber\fR
.sp
\fBint2float\fR \fIinteger\fR ?\fIdecimals\fR?
.sp
\fBadd\fR \fIx\fR \fIy\fR
.sp
\fBsub\fR \fIx\fR \fIy\fR
.sp
\fBmul\fR \fIx\fR \fIy\fR
.sp
\fBdiv\fR \fIx\fR \fIy\fR
.sp
\fBmod\fR \fIx\fR \fIy\fR
.sp
\fBabs\fR \fIx\fR
.sp
\fBopp\fR \fIx\fR
.sp
\fBpow\fR \fIx\fR \fIn\fR
.sp
\fBiszero\fR \fIx\fR
.sp
\fBequal\fR \fIx\fR \fIy\fR
.sp
\fBcompare\fR \fIx\fR \fIy\fR
.sp
\fBsqrt\fR \fIx\fR
.sp
\fBlog\fR \fIx\fR
.sp
\fBexp\fR \fIx\fR
.sp
\fBcos\fR \fIx\fR
.sp
\fBsin\fR \fIx\fR
.sp
\fBtan\fR \fIx\fR
.sp
\fBcotan\fR \fIx\fR
.sp
\fBacos\fR \fIx\fR
.sp
\fBasin\fR \fIx\fR
.sp
\fBatan\fR \fIx\fR
.sp
\fBcosh\fR \fIx\fR
.sp
\fBsinh\fR \fIx\fR
.sp
\fBtanh\fR \fIx\fR
.sp
\fBpi\fR \fIn\fR
.sp
\fBrad2deg\fR \fIradians\fR
.sp
\fBdeg2rad\fR \fIdegrees\fR
.sp
\fBround\fR \fIx\fR
.sp
\fBceil\fR \fIx\fR
.sp
\fBfloor\fR \fIx\fR
.sp
.BE
.SH DESCRIPTION
The bigfloat package provides arbitrary precision floating-point math
capabilities to the Tcl language\&. It is designed to work with Tcl 8\&.5,
but for Tcl 8\&.4 is provided an earlier version of this package\&.
See \fBWHAT ABOUT TCL 8\&.4 ?\fR for more explanations\&.
By convention, we will talk about the numbers treated in this library as :
.IP \(bu
BigFloat for floating-point numbers of arbitrary length\&.
.IP \(bu
integers for arbitrary length signed integers, just as basic integers since Tcl 8\&.5\&.
.PP
Each BigFloat is an interval, namely [\fIm-d, m+d\fR],
where \fIm\fR is the mantissa and \fId\fR the uncertainty, representing the
limitation of that number's precision\&.
This is why we call such mathematics \fIinterval computations\fR\&.
Just take an example in physics : when you measure a temperature, not all
digits you read are \fIsignificant\fR\&. Sometimes you just cannot trust all digits - not to mention if doubles (f\&.p\&. numbers) can handle all these digits\&.
BigFloat can handle this problem - trusting the digits you get - plus the ability to store numbers with an arbitrary precision\&.
BigFloats are internally represented at Tcl lists: this
package provides a set of procedures operating against
the internal representation in order to :
.IP \(bu
perform math operations on BigFloats and (optionnaly) with integers\&.
.IP \(bu
convert BigFloats from their internal representations to strings, and vice versa\&.
.PP
.SH INTRODUCTION
.TP
\fBfromstr\fR \fInumber\fR ?\fItrailingZeros\fR?
Converts \fInumber\fR into a BigFloat\&. Its precision
is at least the number of digits provided by \fInumber\fR\&.
If the \fInumber\fR contains only digits and eventually a minus sign, it is considered as
an integer\&. Subsequently, no conversion is done at all\&.
.sp
\fItrailingZeros\fR - the number of zeros to append at the end of the floating-point number
to get more precision\&. It cannot be applied to an integer\&.
.CS


# x and y are BigFloats : the first string contained a dot, and the second an e sign
set x [fromstr -1\&.000000]
set y [fromstr 2000e30]
# let's see how we get integers
set t 20000000000000
# the old way (package 1\&.2) is still supported for backwards compatibility :
set m [fromstr 10000000000]
# but we do not need fromstr for integers anymore
set n -39
# t, m and n are integers

.CE
.sp
The \fInumber\fR's last digit is considered by the procedure to be true at +/-1,
For example, 1\&.00 is the interval [0\&.99, 1\&.01],
and 0\&.43 the interval [0\&.42, 0\&.44]\&.
The Pi constant may be approximated by the number "3\&.1415"\&.
This string could be considered as the interval [3\&.1414 , 3\&.1416] by \fBfromstr\fR\&.
So, when you mean 1\&.0 as a double, you may have to write 1\&.000000 to get enough precision\&.
To learn more about this subject, see \fBPRECISION\fR\&.
.sp
For example :
.CS


set x [fromstr 1\&.0000000000]
# the next line does the same, but smarter
set y [fromstr 1\&. 10]

.CE
.TP
\fBtostr\fR ?\fB-nosci\fR? \fInumber\fR
Returns a string form of a BigFloat, in which all digits are exacts\&.
\fIAll exact digits\fR means a rounding may occur, for example to zero,
if the uncertainty interval does not clearly show the true digits\&.
\fInumber\fR may be an integer, causing the command to return exactly the input argument\&.
With the \fB-nosci\fR option, the number returned is never shown in scientific
notation, i\&.e\&. not like '3\&.4523e+5' but like '345230\&.'\&.
.CS


puts [tostr [fromstr 0\&.99999]] ;# 1\&.0000
puts [tostr [fromstr 1\&.00001]] ;# 1\&.0000
puts [tostr [fromstr 0\&.002]] ;# 0\&.e-2

.CE
.IP
See \fBPRECISION\fR for that matter\&.
See also \fBiszero\fR for how to detect zeros, which is useful when performing a division\&.
.TP
\fBfromdouble\fR \fIdouble\fR ?\fIdecimals\fR?
Converts a double (a simple floating-point value) to a BigFloat, with
exactly \fIdecimals\fR digits\&.  Without the \fIdecimals\fR argument,
it behaves like \fBfromstr\fR\&.
Here, the only important feature you might care of is the ability
to create BigFloats with a fixed number of \fIdecimals\fR\&.
.CS


tostr [fromstr 1\&.111 4]
# returns : 1\&.111000 (3 zeros)
tostr [fromdouble 1\&.111 4]
# returns : 1\&.111

.CE
.TP
\fBtodouble\fR \fInumber\fR
Returns a double, that may be used in \fIexpr\fR,
from a BigFloat\&.
.TP
\fBisInt\fR \fInumber\fR
Returns 1 if \fInumber\fR is an integer, 0 otherwise\&.
.TP
\fBisFloat\fR \fInumber\fR
Returns 1 if \fInumber\fR is a BigFloat, 0 otherwise\&.
.TP
\fBint2float\fR \fIinteger\fR ?\fIdecimals\fR?
Converts an integer to a BigFloat with \fIdecimals\fR trailing zeros\&.
The default, and minimal, number of \fIdecimals\fR is 1\&.
When converting back to string, one decimal is lost:
.CS


set n 10
set x [int2float $n]; # like fromstr 10\&.0
puts [tostr $x]; # prints "10\&."
set x [int2float $n 3]; # like fromstr 10\&.000
puts [tostr $x]; # prints "10\&.00"

.CE
.PP
.SH ARITHMETICS
.TP
\fBadd\fR \fIx\fR \fIy\fR
.TP
\fBsub\fR \fIx\fR \fIy\fR
.TP
\fBmul\fR \fIx\fR \fIy\fR
Return the sum, difference and product of \fIx\fR by \fIy\fR\&.
\fIx\fR - may be either a BigFloat or an integer
\fIy\fR - may be either a BigFloat or an integer
When both are integers, these commands behave like \fBexpr\fR\&.
.TP
\fBdiv\fR \fIx\fR \fIy\fR
.TP
\fBmod\fR \fIx\fR \fIy\fR
Return the quotient and the rest of \fIx\fR divided by \fIy\fR\&.
Each argument (\fIx\fR and \fIy\fR) can be either a BigFloat or an integer,
but you cannot divide an integer by a BigFloat
Divide by zero throws an error\&.
.TP
\fBabs\fR \fIx\fR
Returns the absolute value of \fIx\fR
.TP
\fBopp\fR \fIx\fR
Returns the opposite of \fIx\fR
.TP
\fBpow\fR \fIx\fR \fIn\fR
Returns \fIx\fR taken to the \fIn\fRth power\&.
It only works if \fIn\fR is an integer\&.
\fIx\fR might be a BigFloat or an integer\&.
.PP
.SH COMPARISONS
.TP
\fBiszero\fR \fIx\fR
Returns 1 if \fIx\fR is :
.RS
.IP \(bu
a BigFloat close enough to zero to raise "divide by zero"\&.
.IP \(bu
the integer 0\&.
.RE
.IP
See here how numbers that are close to zero are converted to strings:
.CS


tostr [fromstr 0\&.001] ; # -> 0\&.e-2
tostr [fromstr 0\&.000000] ; # -> 0\&.e-5
tostr [fromstr -0\&.000001] ; # -> 0\&.e-5
tostr [fromstr 0\&.0] ; # -> 0\&.
tostr [fromstr 0\&.002] ; # -> 0\&.e-2

set a [fromstr 0\&.002] ; # uncertainty interval : 0\&.001, 0\&.003
tostr  $a ; # 0\&.e-2
iszero $a ; # false

set a [fromstr 0\&.001] ; # uncertainty interval : 0\&.000, 0\&.002
tostr  $a ; # 0\&.e-2
iszero $a ; # true

.CE
.TP
\fBequal\fR \fIx\fR \fIy\fR
Returns 1 if \fIx\fR and \fIy\fR are equal, 0 elsewhere\&.
.TP
\fBcompare\fR \fIx\fR \fIy\fR
Returns 0 if both BigFloat arguments are equal,
1 if \fIx\fR is greater than \fIy\fR,
and -1 if \fIx\fR is lower than \fIy\fR\&.
You would not be able to compare an integer to a BigFloat :
the operands should be both BigFloats, or both integers\&.
.PP
.SH ANALYSIS
.TP
\fBsqrt\fR \fIx\fR
.TP
\fBlog\fR \fIx\fR
.TP
\fBexp\fR \fIx\fR
.TP
\fBcos\fR \fIx\fR
.TP
\fBsin\fR \fIx\fR
.TP
\fBtan\fR \fIx\fR
.TP
\fBcotan\fR \fIx\fR
.TP
\fBacos\fR \fIx\fR
.TP
\fBasin\fR \fIx\fR
.TP
\fBatan\fR \fIx\fR
.TP
\fBcosh\fR \fIx\fR
.TP
\fBsinh\fR \fIx\fR
.TP
\fBtanh\fR \fIx\fR
The above functions return, respectively, the following :
square root, logarithm, exponential, cosine, sine,
tangent, cotangent, arc cosine, arc sine, arc tangent, hyperbolic
cosine, hyperbolic sine, hyperbolic tangent, of a BigFloat named \fIx\fR\&.
.TP
\fBpi\fR \fIn\fR
Returns a BigFloat representing the Pi constant with \fIn\fR digits after the dot\&.
\fIn\fR is a positive integer\&.
.TP
\fBrad2deg\fR \fIradians\fR
.TP
\fBdeg2rad\fR \fIdegrees\fR
\fIradians\fR - angle expressed in radians (BigFloat)
.sp
\fIdegrees\fR - angle expressed in degrees (BigFloat)
.sp
Convert an angle from radians to degrees, and \fIvice versa\fR\&.
.PP
.SH ROUNDING
.TP
\fBround\fR \fIx\fR
.TP
\fBceil\fR \fIx\fR
.TP
\fBfloor\fR \fIx\fR
The above functions return the \fIx\fR BigFloat,
rounded like with the same mathematical function in \fIexpr\fR,
and returns it as an integer\&.
.PP
.SH PRECISION
How do conversions work with precision ?
.IP \(bu
When a BigFloat is converted from string, the internal representation
holds its uncertainty as 1 at the level of the last digit\&.
.IP \(bu
During computations, the uncertainty of each result
is internally computed the closest to the reality, thus saving the memory used\&.
.IP \(bu
When converting back to string, the digits that are printed
are not subject to uncertainty\&. However, some rounding is done, as not doing so
causes severe problems\&.
.PP
Uncertainties are kept in the internal representation of the number ;
it is recommended to use \fBtostr\fR only for outputting data (on the screen or in a file),
and NEVER call \fBfromstr\fR with the result of \fBtostr\fR\&.
It is better to always keep operands in their internal representation\&.
Due to the internals of this library, the uncertainty interval may be slightly
wider than expected, but this should not cause false digits\&.
.PP
Now you may ask this question : What precision am I going to get
after calling add, sub, mul or div?
First you set a number from the string representation and,
by the way, its uncertainty is set:
.CS


set a [fromstr 1\&.230]
# $a belongs to [1\&.229, 1\&.231]
set a [fromstr 1\&.000]
# $a belongs to [0\&.999, 1\&.001]
# $a has a relative uncertainty of 0\&.1% : 0\&.001(the uncertainty)/1\&.000(the medium value)

.CE
The uncertainty of the sum, or the difference, of two numbers, is the sum
of their respective uncertainties\&.
.CS


set a [fromstr 1\&.230]
set b [fromstr 2\&.340]
set sum [add $a $b]]
# the result is : [3\&.568, 3\&.572] (the last digit is known with an uncertainty of 2)
tostr $sum ; # 3\&.57

.CE
But when, for example, we add or substract an integer to a BigFloat,
the relative uncertainty of the result is unchanged\&. So it is desirable
not to convert integers to BigFloats:
.CS


set a [fromstr 0\&.999999999]
# now something dangerous
set b [fromstr 2\&.000]
# the result has only 3 digits
tostr [add $a $b]

# how to keep precision at its maximum
puts [tostr [add $a 2]]

.CE
.PP
For multiplication and division, the relative uncertainties of the product
or the quotient, is the sum of the relative uncertainties of the operands\&.
Take care of division by zero : check each divider with \fBiszero\fR\&.
.CS


set num [fromstr 4\&.00]
set denom [fromstr 0\&.01]

puts [iszero $denom];# true
set quotient [div $num $denom];# error : divide by zero

# opposites of our operands
puts [compare $num [opp $num]]; # 1
puts [compare $denom [opp $denom]]; # 0 !!!
# No suprise ! 0 and its opposite are the same\&.\&.\&.

.CE
Effects of the precision of a number considered equal to zero
to the cos function:
.CS


puts [tostr [cos [fromstr 0\&. 10]]]; # -> 1\&.000000000
puts [tostr [cos [fromstr 0\&. 5]]]; # -> 1\&.0000
puts [tostr [cos [fromstr 0e-10]]]; # -> 1\&.000000000
puts [tostr [cos [fromstr 1e-10]]]; # -> 1\&.000000000

.CE
BigFloats with different internal representations may be converted
to the same string\&.
.PP
For most analysis functions (cosine, square root, logarithm, etc\&.), determining the precision
of the result is difficult\&.
It seems however that in many cases, the loss of precision in the result
is of one or two digits\&.
There are some exceptions : for example,
.CS


tostr [exp [fromstr 100\&.0 10]]
# returns : 2\&.688117142e+43 which has only 10 digits of precision, although the entry
# has 14 digits of precision\&.

.CE
.SH "WHAT ABOUT TCL 8\&.4 ?"
If your setup do not provide Tcl 8\&.5 but supports 8\&.4, the package can still be loaded,
switching back to \fImath::bigfloat\fR 1\&.2\&. Indeed, an important function introduced in Tcl 8\&.5
is required - the ability to handle bignums, that we can do with \fBexpr\fR\&.
Before 8\&.5, this ability was provided by several packages,
including the pure-Tcl \fImath::bignum\fR package provided by \fItcllib\fR\&.
In this case, all you need to know, is that arguments to the commands explained here,
are expected to be in their internal representation\&.
So even with integers, you will need to call \fBfromstr\fR
and \fBtostr\fR in order to convert them between string and internal representations\&.
.CS


#
# with Tcl 8\&.5
# ============
set a [pi 20]
# round returns an integer and 'everything is a string' applies to integers
# whatever big they are
puts [round [mul $a 10000000000]]
#
# the same with Tcl 8\&.4
# =====================
set a [pi 20]
# bignums (arbitrary length integers) need a conversion hook
set b [fromstr 10000000000]
# round returns a bignum:
# before printing it, we need to convert it with 'tostr'
puts [tostr [round [mul $a $b]]]

.CE
.SH "NAMESPACES AND OTHER PACKAGES"
We have not yet discussed about namespaces
because we assumed that you had imported public commands into the global namespace,
like this:
.CS


namespace import ::math::bigfloat::*

.CE
If you matter much about avoiding names conflicts,
I considere it should be resolved by the following :
.CS


package require math::bigfloat
# beware: namespace ensembles are not available in Tcl 8\&.4
namespace eval ::math::bigfloat {namespace ensemble create -command ::bigfloat}
# from now, the bigfloat command takes as subcommands all original math::bigfloat::* commands
set a [bigfloat sub [bigfloat fromstr 2\&.000] [bigfloat fromstr 0\&.530]]
puts [bigfloat tostr $a]

.CE
.SH EXAMPLES
Guess what happens when you are doing some astronomy\&. Here is an example :
.CS


# convert acurrate angles with a millisecond-rated accuracy
proc degree-angle {degrees minutes seconds milliseconds} {
    set result 0
    set div 1
    foreach factor {1 1000 60 60} var [list $milliseconds $seconds $minutes $degrees] {
        # we convert each entry var into milliseconds
        set div [expr {$div*$factor}]
        incr result [expr {$var*$div}]
    }
    return [div [int2float $result] $div]
}
# load the package
package require math::bigfloat
namespace import ::math::bigfloat::*
# work with angles : a standard formula for navigation (taking bearings)
set angle1 [deg2rad [degree-angle 20 30 40   0]]
set angle2 [deg2rad [degree-angle 21  0 50 500]]
set opposite3 [deg2rad [degree-angle 51  0 50 500]]
set sinProduct [mul [sin $angle1] [sin $angle2]]
set cosProduct [mul [cos $angle1] [cos $angle2]]
set angle3 [asin [add [mul $sinProduct [cos $opposite3]] $cosProduct]]
puts "angle3 : [tostr [rad2deg $angle3]]"

.CE
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: bignum :: float\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
computations, floating-point, interval, math, multiprecision, tcl
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004-2008, by Stephane Arnold <stephanearnold at yahoo dot fr>

.fi