1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
'\"
'\" Generated from file 'calculus\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2002,2003,2004 Arjen Markus
'\"
.TH "math::calculus" n 1\&.1 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::calculus \- Integration and ordinary differential equations
.SH SYNOPSIS
package require \fBTcl 8\&.5 9\fR
.sp
package require \fBmath::calculus 1\&.1\fR
.sp
\fB::math::calculus::integral\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIfunc\fR
.sp
\fB::math::calculus::integralExpr\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIexpression\fR
.sp
\fB::math::calculus::integral2D\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::integral2D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::integral3D\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::integral3D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::qk15\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
.sp
\fB::math::calculus::qk15_detailed\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
.sp
\fB::math::calculus::eulerStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
.sp
\fB::math::calculus::heunStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
.sp
\fB::math::calculus::rungeKuttaStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
.sp
\fB::math::calculus::boundaryValueSecondOrder\fR \fIcoeff_func\fR \fIforce_func\fR \fIleftbnd\fR \fIrightbnd\fR \fInostep\fR
.sp
\fB::math::calculus::solveTriDiagonal\fR \fIacoeff\fR \fIbcoeff\fR \fIccoeff\fR \fIdvalue\fR
.sp
\fB::math::calculus::newtonRaphson\fR \fIfunc\fR \fIderiv\fR \fIinitval\fR
.sp
\fB::math::calculus::newtonRaphsonParameters\fR \fImaxiter\fR \fItolerance\fR
.sp
\fB::math::calculus::regula_falsi\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_bisection\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_secant\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_brent\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_chandrupatla\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several simple mathematical algorithms:
.IP \(bu
The integration of a function over an interval
.IP \(bu
The numerical integration of a system of ordinary differential
equations\&.
.IP \(bu
Estimating the root(s) of an equation of one variable\&.
.PP
.PP
The package is fully implemented in Tcl\&. No particular attention has
been paid to the accuracy of the calculations\&. Instead, well-known
algorithms have been used in a straightforward manner\&.
.PP
This document describes the procedures and explains their usage\&.
.SH PROCEDURES
This package defines the following public procedures:
.TP
\fB::math::calculus::integral\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIfunc\fR
Determine the integral of the given function using the Simpson
rule\&. The interval for the integration is [\fIbegin\fR, \fIend\fR]\&.
The remaining arguments are:
.RS
.TP
\fInosteps\fR
Number of steps in which the interval is divided\&.
.TP
\fIfunc\fR
Function to be integrated\&. It should take one single argument\&.
.RE
.sp
.TP
\fB::math::calculus::integralExpr\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIexpression\fR
Similar to the previous proc, this one determines the integral of
the given \fIexpression\fR using the Simpson rule\&.
The interval for the integration is [\fIbegin\fR, \fIend\fR]\&.
The remaining arguments are:
.RS
.TP
\fInosteps\fR
Number of steps in which the interval is divided\&.
.TP
\fIexpression\fR
Expression to be integrated\&. It should
use the variable "x" as the only variable (the "integrate")
.RE
.sp
.TP
\fB::math::calculus::integral2D\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
.TP
\fB::math::calculus::integral2D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
The commands \fBintegral2D\fR and \fBintegral2D_accurate\fR calculate the
integral of a function of two variables over the rectangle given by the
first two arguments, each a list of three items, the start and
stop interval for the variable and the number of steps\&.
.sp
The command \fBintegral2D\fR evaluates the function at the centre of
each rectangle, whereas the command \fBintegral2D_accurate\fR uses a
four-point quadrature formula\&. This results in an exact integration of
polynomials of third degree or less\&.
.sp
The function must take two arguments and return the function
value\&.
.TP
\fB::math::calculus::integral3D\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
.TP
\fB::math::calculus::integral3D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
The commands \fBintegral3D\fR and \fBintegral3D_accurate\fR are the
three-dimensional equivalent of \fBintegral2D\fR and \fBintegral3D_accurate\fR\&.
The function \fIfunc\fR takes three arguments and is integrated over the block in
3D space given by three intervals\&.
.TP
\fB::math::calculus::qk15\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
Determine the integral of the given function using the Gauss-Kronrod 15 points quadrature rule\&.
The returned value is the estimate of the integral over the interval [\fIxstart\fR, \fIxend\fR]\&.
The remaining arguments are:
.RS
.TP
\fIfunc\fR
Function to be integrated\&. It should take one single argument\&.
.TP
?nosteps?
Number of steps in which the interval is divided\&. Defaults to 1\&.
.RE
.sp
.TP
\fB::math::calculus::qk15_detailed\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
Determine the integral of the given function using the Gauss-Kronrod 15 points quadrature rule\&.
The interval for the integration is [\fIxstart\fR, \fIxend\fR]\&.
The procedure returns a list of four values:
.RS
.IP \(bu
The estimate of the integral over the specified interval (I)\&.
.IP \(bu
An estimate of the absolute error in I\&.
.IP \(bu
The estimate of the integral of the absolute value of the function over the interval\&.
.IP \(bu
The estimate of the integral of the absolute value of the function minus its mean over the interval\&.
.RE
.IP
The remaining arguments are:
.RS
.TP
\fIfunc\fR
Function to be integrated\&. It should take one single argument\&.
.TP
?nosteps?
Number of steps in which the interval is divided\&. Defaults to 1\&.
.RE
.sp
.TP
\fB::math::calculus::eulerStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
Set a single step in the numerical integration of a system of
differential equations\&. The method used is Euler's\&.
.RS
.TP
\fIt\fR
Value of the independent variable (typically time)
at the beginning of the step\&.
.TP
\fItstep\fR
Step size for the independent variable\&.
.TP
\fIxvec\fR
List (vector) of dependent values
.TP
\fIfunc\fR
Function of t and the dependent values, returning
a list of the derivatives of the dependent values\&. (The lengths of
xvec and the return value of "func" must match)\&.
.RE
.sp
.TP
\fB::math::calculus::heunStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
Set a single step in the numerical integration of a system of
differential equations\&. The method used is Heun's\&.
.RS
.TP
\fIt\fR
Value of the independent variable (typically time)
at the beginning of the step\&.
.TP
\fItstep\fR
Step size for the independent variable\&.
.TP
\fIxvec\fR
List (vector) of dependent values
.TP
\fIfunc\fR
Function of t and the dependent values, returning
a list of the derivatives of the dependent values\&. (The lengths of
xvec and the return value of "func" must match)\&.
.RE
.sp
.TP
\fB::math::calculus::rungeKuttaStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
Set a single step in the numerical integration of a system of
differential equations\&. The method used is Runge-Kutta 4th
order\&.
.RS
.TP
\fIt\fR
Value of the independent variable (typically time)
at the beginning of the step\&.
.TP
\fItstep\fR
Step size for the independent variable\&.
.TP
\fIxvec\fR
List (vector) of dependent values
.TP
\fIfunc\fR
Function of t and the dependent values, returning
a list of the derivatives of the dependent values\&. (The lengths of
xvec and the return value of "func" must match)\&.
.RE
.sp
.TP
\fB::math::calculus::boundaryValueSecondOrder\fR \fIcoeff_func\fR \fIforce_func\fR \fIleftbnd\fR \fIrightbnd\fR \fInostep\fR
Solve a second order linear differential equation with boundary
values at two sides\&. The equation has to be of the form (the
"conservative" form):
.CS
d dy d
-- A(x)-- + -- B(x)y + C(x)y = D(x)
dx dx dx
.CE
.IP
Ordinarily, such an equation would be written as:
.CS
d2y dy
a(x)--- + b(x)-- + c(x) y = D(x)
dx2 dx
.CE
.IP
The first form is easier to discretise (by integrating over a
finite volume) than the second form\&. The relation between the two
forms is fairly straightforward:
.CS
A(x) = a(x)
B(x) = b(x) - a'(x)
C(x) = c(x) - B'(x) = c(x) - b'(x) + a''(x)
.CE
.IP
Because of the differentiation, however, it is much easier to ask
the user to provide the functions A, B and C directly\&.
.RS
.TP
\fIcoeff_func\fR
Procedure returning the three coefficients
(A, B, C) of the equation, taking as its one argument the x-coordinate\&.
.TP
\fIforce_func\fR
Procedure returning the right-hand side
(D) as a function of the x-coordinate\&.
.TP
\fIleftbnd\fR
A list of two values: the x-coordinate of the
left boundary and the value at that boundary\&.
.TP
\fIrightbnd\fR
A list of two values: the x-coordinate of the
right boundary and the value at that boundary\&.
.TP
\fInostep\fR
Number of steps by which to discretise the
interval\&.
The procedure returns a list of x-coordinates and the approximated
values of the solution\&.
.RE
.sp
.TP
\fB::math::calculus::solveTriDiagonal\fR \fIacoeff\fR \fIbcoeff\fR \fIccoeff\fR \fIdvalue\fR
Solve a system of linear equations Ax = b with A a tridiagonal
matrix\&. Returns the solution as a list\&.
.RS
.TP
\fIacoeff\fR
List of values on the lower diagonal
.TP
\fIbcoeff\fR
List of values on the main diagonal
.TP
\fIccoeff\fR
List of values on the upper diagonal
.TP
\fIdvalue\fR
List of values on the righthand-side
.RE
.sp
.TP
\fB::math::calculus::newtonRaphson\fR \fIfunc\fR \fIderiv\fR \fIinitval\fR
Determine the root of an equation given by
.CS
func(x) = 0
.CE
.IP
using the method of Newton-Raphson\&. The procedure takes the following
arguments:
.RS
.TP
\fIfunc\fR
Procedure that returns the value the function at x
.TP
\fIderiv\fR
Procedure that returns the derivative of the function at x
.TP
\fIinitval\fR
Initial value for x
.RE
.sp
.TP
\fB::math::calculus::newtonRaphsonParameters\fR \fImaxiter\fR \fItolerance\fR
Set the numerical parameters for the Newton-Raphson method:
.RS
.TP
\fImaxiter\fR
Maximum number of iteration steps (defaults to 20)
.TP
\fItolerance\fR
Relative precision (defaults to 0\&.001)
.RE
.TP
\fB::math::calculus::regula_falsi\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIregula falsi\fR or
\fIfalse position\fR method\&. It is a straightforward implementation\&.
The method is robust, but requires that the interval brackets a zero or
at least an uneven number of zeros, so that the value of the function at
the start has a different sign than the value at the end\&.
.sp
In contrast to Newton-Raphson there is no need for the computation of
the function's derivative\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-4)
.RE
.TP
\fB::math::calculus::root_bisection\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIbisection\fR\&. For properties: see the \fIregula falsi\fR procedure\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.TP
\fB::math::calculus::root_secant\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIsecant\fR method\&. For properties: see the \fIregula falsi\fR procedure\&.
Note that this method is not guaranteed to produce a zero, but it is fast\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.TP
\fB::math::calculus::root_brent\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIBrent\fR method\&. For properties: see the \fIregula falsi\fR procedure\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.TP
\fB::math::calculus::root_chandrupatla\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIChandrupatla\fR method\&. It is a variant of the Brent method and
is reputed to be faster\&. See \fIhttps://www\&.embeddedrelated\&.com/showarticle/855\&.php\fR for a discussion\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.PP
.PP
\fINotes:\fR
.PP
Several of the above procedures take the \fInames\fR of procedures as
arguments\&. To avoid problems with the \fIvisibility\fR of these
procedures, the fully-qualified name of these procedures is determined
inside the calculus routines\&. For the user this has only one
consequence: the named procedure must be visible in the calling
procedure\&. For instance:
.CS
namespace eval ::mySpace {
namespace export calcfunc
proc calcfunc { x } { return $x }
}
#
# Use a fully-qualified name
#
namespace eval ::myCalc {
proc detIntegral { begin end } {
return [integral $begin $end 100 ::mySpace::calcfunc]
}
}
#
# Import the name
#
namespace eval ::myCalc {
namespace import ::mySpace::calcfunc
proc detIntegral { begin end } {
return [integral $begin $end 100 calcfunc]
}
}
.CE
.PP
Enhancements for the second-order boundary value problem:
.IP \(bu
Other types of boundary conditions (zero gradient, zero flux)
.IP \(bu
Other schematisation of the first-order term (now central
differences are used, but upstream differences might be useful too)\&.
.IP \(bu
The various root finding methods differ in robustness, ease of use and convergence rates\&. While the Newton-Raphson
method is quite fast (quadratic convergence), it is not guaranteed to produce an answer\&. The methods
that bracket the root, require two starting points, but except for the secant method are guaranteed to
deliver a good estimate\&.
.PP
.SH EXAMPLES
Let us take a few simple examples:
.PP
Integrate x over the interval [0,100] (20 steps):
.CS
proc linear_func { x } { return $x }
puts "Integral: [::math::calculus::integral 0 100 20 linear_func]"
.CE
For simple functions, the alternative could be:
.CS
puts "Integral: [::math::calculus::integralExpr 0 100 20 {$x}]"
.CE
Do not forget the braces!
.PP
The differential equation for a dampened oscillator:
.PP
.CS
x'' + rx' + wx = 0
.CE
.PP
can be split into a system of first-order equations:
.PP
.CS
x' = y
y' = -ry - wx
.CE
.PP
Then this system can be solved with code like this:
.PP
.CS
proc dampened_oscillator { t xvec } {
set x [lindex $xvec 0]
set x1 [lindex $xvec 1]
return [list $x1 [expr {-$x1-$x}]]
}
set xvec { 1\&.0 0\&.0 }
set t 0\&.0
set tstep 0\&.1
for { set i 0 } { $i < 20 } { incr i } {
set result [::math::calculus::eulerStep $t $tstep $xvec dampened_oscillator]
puts "Result ($t): $result"
set t [expr {$t+$tstep}]
set xvec $result
}
.CE
.PP
Suppose we have the boundary value problem:
.PP
.CS
Dy'' + ky = 0
x = 0: y = 1
x = L: y = 0
.CE
.PP
This boundary value problem could originate from the diffusion of a
decaying substance\&.
.PP
It can be solved with the following fragment:
.PP
.CS
proc coeffs { x } { return [list $::Diff 0\&.0 $::decay] }
proc force { x } { return 0\&.0 }
set Diff 1\&.0e-2
set decay 0\&.0001
set length 100\&.0
set y [::math::calculus::boundaryValueSecondOrder \\
coeffs force {0\&.0 1\&.0} [list $length 0\&.0] 100]
.CE
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: calculus\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH "SEE ALSO"
romberg
.SH KEYWORDS
calculus, differential equations, integration, math, roots
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2002,2003,2004 Arjen Markus
.fi
|