File: calculus.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (909 lines) | stat: -rw-r--r-- 24,664 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
'\"
'\" Generated from file 'calculus\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2002,2003,2004 Arjen Markus
'\"
.TH "math::calculus" n 1\&.1 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::calculus \- Integration and ordinary differential equations
.SH SYNOPSIS
package require \fBTcl 8\&.5 9\fR
.sp
package require \fBmath::calculus 1\&.1\fR
.sp
\fB::math::calculus::integral\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIfunc\fR
.sp
\fB::math::calculus::integralExpr\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIexpression\fR
.sp
\fB::math::calculus::integral2D\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::integral2D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::integral3D\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::integral3D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
.sp
\fB::math::calculus::qk15\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
.sp
\fB::math::calculus::qk15_detailed\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
.sp
\fB::math::calculus::eulerStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
.sp
\fB::math::calculus::heunStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
.sp
\fB::math::calculus::rungeKuttaStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
.sp
\fB::math::calculus::boundaryValueSecondOrder\fR \fIcoeff_func\fR \fIforce_func\fR \fIleftbnd\fR \fIrightbnd\fR \fInostep\fR
.sp
\fB::math::calculus::solveTriDiagonal\fR \fIacoeff\fR \fIbcoeff\fR \fIccoeff\fR \fIdvalue\fR
.sp
\fB::math::calculus::newtonRaphson\fR \fIfunc\fR \fIderiv\fR \fIinitval\fR
.sp
\fB::math::calculus::newtonRaphsonParameters\fR \fImaxiter\fR \fItolerance\fR
.sp
\fB::math::calculus::regula_falsi\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_bisection\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_secant\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_brent\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
\fB::math::calculus::root_chandrupatla\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several simple mathematical algorithms:
.IP \(bu
The integration of a function over an interval
.IP \(bu
The numerical integration of a system of ordinary differential
equations\&.
.IP \(bu
Estimating the root(s) of an equation of one variable\&.
.PP
.PP
The package is fully implemented in Tcl\&. No particular attention has
been paid to the accuracy of the calculations\&. Instead, well-known
algorithms have been used in a straightforward manner\&.
.PP
This document describes the procedures and explains their usage\&.
.SH PROCEDURES
This package defines the following public procedures:
.TP
\fB::math::calculus::integral\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIfunc\fR
Determine the integral of the given function using the Simpson
rule\&. The interval for the integration is [\fIbegin\fR, \fIend\fR]\&.
The remaining arguments are:
.RS
.TP
\fInosteps\fR
Number of steps in which the interval is divided\&.
.TP
\fIfunc\fR
Function to be integrated\&. It should take one single argument\&.
.RE
.sp
.TP
\fB::math::calculus::integralExpr\fR \fIbegin\fR \fIend\fR \fInosteps\fR \fIexpression\fR
Similar to the previous proc, this one determines the integral of
the given \fIexpression\fR using the Simpson rule\&.
The interval for the integration is [\fIbegin\fR, \fIend\fR]\&.
The remaining arguments are:
.RS
.TP
\fInosteps\fR
Number of steps in which the interval is divided\&.
.TP
\fIexpression\fR
Expression to be integrated\&. It should
use the variable "x" as the only variable (the "integrate")
.RE
.sp
.TP
\fB::math::calculus::integral2D\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
.TP
\fB::math::calculus::integral2D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIfunc\fR
The commands \fBintegral2D\fR and \fBintegral2D_accurate\fR calculate the
integral of a function of two variables over the rectangle given by the
first two arguments, each a list of three items, the start and
stop interval for the variable and the number of steps\&.
.sp
The command \fBintegral2D\fR evaluates the function at the centre of
each rectangle, whereas the command \fBintegral2D_accurate\fR uses a
four-point quadrature formula\&. This results in an exact integration of
polynomials of third degree or less\&.
.sp
The function must take two arguments and return the function
value\&.
.TP
\fB::math::calculus::integral3D\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
.TP
\fB::math::calculus::integral3D_accurate\fR \fIxinterval\fR \fIyinterval\fR \fIzinterval\fR \fIfunc\fR
The commands \fBintegral3D\fR and \fBintegral3D_accurate\fR are the
three-dimensional equivalent of \fBintegral2D\fR and \fBintegral3D_accurate\fR\&.
The function \fIfunc\fR takes three arguments and is integrated over the block in
3D space given by three intervals\&.
.TP
\fB::math::calculus::qk15\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
Determine the integral of the given function using the Gauss-Kronrod 15 points quadrature rule\&.
The returned value is the estimate of the integral over the interval [\fIxstart\fR, \fIxend\fR]\&.
The remaining arguments are:
.RS
.TP
\fIfunc\fR
Function to be integrated\&. It should take one single argument\&.
.TP
?nosteps?
Number of steps in which the interval is divided\&. Defaults to 1\&.
.RE
.sp
.TP
\fB::math::calculus::qk15_detailed\fR \fIxstart\fR \fIxend\fR \fIfunc\fR \fInosteps\fR
Determine the integral of the given function using the Gauss-Kronrod 15 points quadrature rule\&.
The interval for the integration is [\fIxstart\fR, \fIxend\fR]\&.
The procedure returns a list of four values:
.RS
.IP \(bu
The estimate of the integral over the specified interval (I)\&.
.IP \(bu
An estimate of the absolute error in I\&.
.IP \(bu
The estimate of the integral of the absolute value of the function over the interval\&.
.IP \(bu
The estimate of the integral of the absolute value of the function minus its mean over the interval\&.
.RE
.IP
The remaining arguments are:
.RS
.TP
\fIfunc\fR
Function to be integrated\&. It should take one single argument\&.
.TP
?nosteps?
Number of steps in which the interval is divided\&. Defaults to 1\&.
.RE
.sp
.TP
\fB::math::calculus::eulerStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
Set a single step in the numerical integration of a system of
differential equations\&. The method used is Euler's\&.
.RS
.TP
\fIt\fR
Value of the independent variable (typically time)
at the beginning of the step\&.
.TP
\fItstep\fR
Step size for the independent variable\&.
.TP
\fIxvec\fR
List (vector) of dependent values
.TP
\fIfunc\fR
Function of t and the dependent values, returning
a list of the derivatives of the dependent values\&. (The lengths of
xvec and the return value of "func" must match)\&.
.RE
.sp
.TP
\fB::math::calculus::heunStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
Set a single step in the numerical integration of a system of
differential equations\&. The method used is Heun's\&.
.RS
.TP
\fIt\fR
Value of the independent variable (typically time)
at the beginning of the step\&.
.TP
\fItstep\fR
Step size for the independent variable\&.
.TP
\fIxvec\fR
List (vector) of dependent values
.TP
\fIfunc\fR
Function of t and the dependent values, returning
a list of the derivatives of the dependent values\&. (The lengths of
xvec and the return value of "func" must match)\&.
.RE
.sp
.TP
\fB::math::calculus::rungeKuttaStep\fR \fIt\fR \fItstep\fR \fIxvec\fR \fIfunc\fR
Set a single step in the numerical integration of a system of
differential equations\&. The method used is Runge-Kutta 4th
order\&.
.RS
.TP
\fIt\fR
Value of the independent variable (typically time)
at the beginning of the step\&.
.TP
\fItstep\fR
Step size for the independent variable\&.
.TP
\fIxvec\fR
List (vector) of dependent values
.TP
\fIfunc\fR
Function of t and the dependent values, returning
a list of the derivatives of the dependent values\&. (The lengths of
xvec and the return value of "func" must match)\&.
.RE
.sp
.TP
\fB::math::calculus::boundaryValueSecondOrder\fR \fIcoeff_func\fR \fIforce_func\fR \fIleftbnd\fR \fIrightbnd\fR \fInostep\fR
Solve a second order linear differential equation with boundary
values at two sides\&. The equation has to be of the form (the
"conservative" form):
.CS


         d      dy     d
         -- A(x)--  +  -- B(x)y + C(x)y  =  D(x)
         dx     dx     dx

.CE
.IP
Ordinarily, such an equation would be written as:
.CS


             d2y        dy
         a(x)---  + b(x)-- + c(x) y  =  D(x)
             dx2        dx

.CE
.IP
The first form is easier to discretise (by integrating over a
finite volume) than the second form\&. The relation between the two
forms is fairly straightforward:
.CS


         A(x)  =  a(x)
         B(x)  =  b(x) - a'(x)
         C(x)  =  c(x) - B'(x)  =  c(x) - b'(x) + a''(x)

.CE
.IP
Because of the differentiation, however, it is much easier to ask
the user to provide the functions A, B and C directly\&.
.RS
.TP
\fIcoeff_func\fR
Procedure returning the three coefficients
(A, B, C) of the equation, taking as its one argument the x-coordinate\&.
.TP
\fIforce_func\fR
Procedure returning the right-hand side
(D) as a function of the x-coordinate\&.
.TP
\fIleftbnd\fR
A list of two values: the x-coordinate of the
left boundary and the value at that boundary\&.
.TP
\fIrightbnd\fR
A list of two values: the x-coordinate of the
right boundary and the value at that boundary\&.
.TP
\fInostep\fR
Number of steps by which to discretise the
interval\&.
The procedure returns a list of x-coordinates and the approximated
values of the solution\&.
.RE
.sp
.TP
\fB::math::calculus::solveTriDiagonal\fR \fIacoeff\fR \fIbcoeff\fR \fIccoeff\fR \fIdvalue\fR
Solve a system of linear equations Ax = b with A a tridiagonal
matrix\&. Returns the solution as a list\&.
.RS
.TP
\fIacoeff\fR
List of values on the lower diagonal
.TP
\fIbcoeff\fR
List of values on the main diagonal
.TP
\fIccoeff\fR
List of values on the upper diagonal
.TP
\fIdvalue\fR
List of values on the righthand-side
.RE
.sp
.TP
\fB::math::calculus::newtonRaphson\fR \fIfunc\fR \fIderiv\fR \fIinitval\fR
Determine the root of an equation given by
.CS


    func(x) = 0

.CE
.IP
using the method of Newton-Raphson\&. The procedure takes the following
arguments:
.RS
.TP
\fIfunc\fR
Procedure that returns the value the function at x
.TP
\fIderiv\fR
Procedure that returns the derivative of the function at x
.TP
\fIinitval\fR
Initial value for x
.RE
.sp
.TP
\fB::math::calculus::newtonRaphsonParameters\fR \fImaxiter\fR \fItolerance\fR
Set the numerical parameters for the Newton-Raphson method:
.RS
.TP
\fImaxiter\fR
Maximum number of iteration steps (defaults to 20)
.TP
\fItolerance\fR
Relative precision (defaults to 0\&.001)
.RE
.TP
\fB::math::calculus::regula_falsi\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIregula falsi\fR or
\fIfalse position\fR method\&. It is a straightforward implementation\&.
The method is robust, but requires that the interval brackets a zero or
at least an uneven number of zeros, so that the value of the function at
the start has a different sign than the value at the end\&.
.sp
In contrast to Newton-Raphson there is no need for the computation of
the function's derivative\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-4)
.RE
.TP
\fB::math::calculus::root_bisection\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIbisection\fR\&. For properties: see the \fIregula falsi\fR procedure\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.TP
\fB::math::calculus::root_secant\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIsecant\fR method\&. For properties: see the \fIregula falsi\fR procedure\&.
Note that this method is not guaranteed to produce a zero, but it is fast\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.TP
\fB::math::calculus::root_brent\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIBrent\fR method\&. For properties: see the \fIregula falsi\fR procedure\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.TP
\fB::math::calculus::root_chandrupatla\fR \fIf\fR \fIxb\fR \fIxe\fR \fIeps\fR
Return an estimate of the zero or one of the zeros of the function
contained in the interval [xb,xe]\&. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger\&.
.sp
The method used is the so-called \fIChandrupatla\fR method\&. It is a variant of the Brent method and
is reputed to be faster\&. See \fIhttps://www\&.embeddedrelated\&.com/showarticle/855\&.php\fR for a discussion\&.
.RS
.TP
command \fIf\fR
Name of the command that evaluates the function for
which the zero is to be returned
.TP
float \fIxb\fR
Start of the interval in which the zero is supposed
to lie
.TP
float \fIxe\fR
End of the interval
.TP
float \fIeps\fR
Relative allowed error (defaults to 1\&.0e-7)
.RE
.PP
.PP
\fINotes:\fR
.PP
Several of the above procedures take the \fInames\fR of procedures as
arguments\&. To avoid problems with the \fIvisibility\fR of these
procedures, the fully-qualified name of these procedures is determined
inside the calculus routines\&. For the user this has only one
consequence: the named procedure must be visible in the calling
procedure\&. For instance:
.CS


    namespace eval ::mySpace {
       namespace export calcfunc
       proc calcfunc { x } { return $x }
    }
    #
    # Use a fully-qualified name
    #
    namespace eval ::myCalc {
       proc detIntegral { begin end } {
          return [integral $begin $end 100 ::mySpace::calcfunc]
       }
    }
    #
    # Import the name
    #
    namespace eval ::myCalc {
       namespace import ::mySpace::calcfunc
       proc detIntegral { begin end } {
          return [integral $begin $end 100 calcfunc]
       }
    }

.CE
.PP
Enhancements for the second-order boundary value problem:
.IP \(bu
Other types of boundary conditions (zero gradient, zero flux)
.IP \(bu
Other schematisation of the first-order term (now central
differences are used, but upstream differences might be useful too)\&.
.IP \(bu
The various root finding methods differ in robustness, ease of use and convergence rates\&. While the Newton-Raphson
method is quite fast (quadratic convergence), it is not guaranteed to produce an answer\&. The methods
that bracket the root, require two starting points, but except for the secant method are guaranteed to
deliver a good estimate\&.
.PP
.SH EXAMPLES
Let us take a few simple examples:
.PP
Integrate x over the interval [0,100] (20 steps):
.CS


proc linear_func { x } { return $x }
puts "Integral: [::math::calculus::integral 0 100 20 linear_func]"

.CE
For simple functions, the alternative could be:
.CS


puts "Integral: [::math::calculus::integralExpr 0 100 20 {$x}]"

.CE
Do not forget the braces!
.PP
The differential equation for a dampened oscillator:
.PP
.CS


x'' + rx' + wx = 0

.CE
.PP
can be split into a system of first-order equations:
.PP
.CS


x' = y
y' = -ry - wx

.CE
.PP
Then this system can be solved with code like this:
.PP
.CS


proc dampened_oscillator { t xvec } {
   set x  [lindex $xvec 0]
   set x1 [lindex $xvec 1]
   return [list $x1 [expr {-$x1-$x}]]
}

set xvec   { 1\&.0 0\&.0 }
set t      0\&.0
set tstep  0\&.1
for { set i 0 } { $i < 20 } { incr i } {
   set result [::math::calculus::eulerStep $t $tstep $xvec dampened_oscillator]
   puts "Result ($t): $result"
   set t      [expr {$t+$tstep}]
   set xvec   $result
}

.CE
.PP
Suppose we have the boundary value problem:
.PP
.CS


    Dy'' + ky = 0
    x = 0: y = 1
    x = L: y = 0

.CE
.PP
This boundary value problem could originate from the diffusion of a
decaying substance\&.
.PP
It can be solved with the following fragment:
.PP
.CS


   proc coeffs { x } { return [list $::Diff 0\&.0 $::decay] }
   proc force  { x } { return 0\&.0 }

   set Diff   1\&.0e-2
   set decay  0\&.0001
   set length 100\&.0

   set y [::math::calculus::boundaryValueSecondOrder \\
      coeffs force {0\&.0 1\&.0} [list $length 0\&.0] 100]

.CE
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: calculus\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH "SEE ALSO"
romberg
.SH KEYWORDS
calculus, differential equations, integration, math, roots
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2002,2003,2004 Arjen Markus

.fi