1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
'\"
'\" Generated from file 'interpolate\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
'\" Copyright (c) 2004 Kevn B\&. Kenny <kennykb@users\&.sourceforge\&.net>
'\"
.TH "math::interpolate" n 1\&.1\&.4 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::interpolate \- Interpolation routines
.SH SYNOPSIS
package require \fBTcl ?8\&.5 9?\fR
.sp
package require \fBstruct\fR
.sp
package require \fBmath::interpolate ?1\&.1\&.4?\fR
.sp
\fB::math::interpolate::defineTable\fR \fIname\fR \fIcolnames\fR \fIvalues\fR
.sp
\fB::math::interpolate::interp-1d-table\fR \fIname\fR \fIxval\fR
.sp
\fB::math::interpolate::interp-table\fR \fIname\fR \fIxval\fR \fIyval\fR
.sp
\fB::math::interpolate::interp-linear\fR \fIxyvalues\fR \fIxval\fR
.sp
\fB::math::interpolate::interp-lagrange\fR \fIxyvalues\fR \fIxval\fR
.sp
\fB::math::interpolate::prepare-cubic-splines\fR \fIxcoord\fR \fIycoord\fR
.sp
\fB::math::interpolate::interp-cubic-splines\fR \fIcoeffs\fR \fIx\fR
.sp
\fB::math::interpolate::interp-spatial\fR \fIxyvalues\fR \fIcoord\fR
.sp
\fB::math::interpolate::interp-spatial-params\fR \fImax_search\fR \fIpower\fR
.sp
\fB::math::interpolate::neville\fR \fIxlist\fR \fIylist\fR \fIx\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several interpolation algorithms:
.IP \(bu
Interpolation into a table (one or two independent variables), this is useful
for example, if the data are static, like with tables of statistical functions\&.
.IP \(bu
Linear interpolation into a given set of data (organised as (x,y) pairs)\&.
.IP \(bu
Lagrange interpolation\&. This is mainly of theoretical interest, because there is
no guarantee about error bounds\&. One possible use: if you need a line or
a parabola through given points (it will calculate the values, but not return
the coefficients)\&.
.sp
A variation is Neville's method which has better behaviour and error
bounds\&.
.IP \(bu
Spatial interpolation using a straightforward distance-weight method\&. This procedure
allows any number of spatial dimensions and any number of dependent variables\&.
.IP \(bu
Interpolation in one dimension using cubic splines\&.
.PP
.PP
This document describes the procedures and explains their usage\&.
.SH "INCOMPATIBILITY WITH VERSION 1\&.0\&.3"
The interpretation of the tables in the \fB::math::interpolate::interpolate-1d-table\fR command
has been changed to be compatible with the interpretation for 2D interpolation in
the \fB::math::interpolate::interpolate-table\fR command\&. As a consequence this version is
incompatible with the previous versions of the command (1\&.0\&.x)\&.
.SH PROCEDURES
The interpolation package defines the following public procedures:
.TP
\fB::math::interpolate::defineTable\fR \fIname\fR \fIcolnames\fR \fIvalues\fR
Define a table with one or two independent variables (the distinction is implicit in
the data)\&. The procedure returns the name of the table - this name is used whenever you
want to interpolate the values\&. \fINote:\fR this procedure is a convenient wrapper for the
struct::matrix procedure\&. Therefore you can access the data at any location in your program\&.
.RS
.TP
string \fIname\fR (in)
Name of the table to be created
.TP
list \fIcolnames\fR (in)
List of column names
.TP
list \fIvalues\fR (in)
List of values (the number of elements should be a
multiple of the number of columns\&. See \fBEXAMPLES\fR for more information on the
interpretation of the data\&.
.sp
The values must be sorted with respect to the independent variable(s)\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-1d-table\fR \fIname\fR \fIxval\fR
Interpolate into the one-dimensional table "name" and return a list of values, one for
each dependent column\&.
.RS
.TP
string \fIname\fR (in)
Name of an existing table
.TP
float \fIxval\fR (in)
Value of the independent \fIrow\fR variable
.RE
.sp
.TP
\fB::math::interpolate::interp-table\fR \fIname\fR \fIxval\fR \fIyval\fR
Interpolate into the two-dimensional table "name" and return the interpolated value\&.
.RS
.TP
string \fIname\fR (in)
Name of an existing table
.TP
float \fIxval\fR (in)
Value of the independent \fIrow\fR variable
.TP
float \fIyval\fR (in)
Value of the independent \fIcolumn\fR variable
.RE
.sp
.TP
\fB::math::interpolate::interp-linear\fR \fIxyvalues\fR \fIxval\fR
Interpolate linearly into the list of x,y pairs and return the interpolated value\&.
.RS
.TP
list \fIxyvalues\fR (in)
List of pairs of (x,y) values, sorted to increasing x\&.
They are used as the breakpoints of a piecewise linear function\&.
.TP
float \fIxval\fR (in)
Value of the independent variable for which the value of y
must be computed\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-lagrange\fR \fIxyvalues\fR \fIxval\fR
Use the list of x,y pairs to construct the unique polynomial of lowest degree
that passes through all points and return the interpolated value\&.
.RS
.TP
list \fIxyvalues\fR (in)
List of pairs of (x,y) values
.TP
float \fIxval\fR (in)
Value of the independent variable for which the value of y
must be computed\&.
.RE
.sp
.TP
\fB::math::interpolate::prepare-cubic-splines\fR \fIxcoord\fR \fIycoord\fR
Returns a list of coefficients for the second routine
\fIinterp-cubic-splines\fR to actually interpolate\&.
.RS
.TP
list \fIxcoord\fR
List of x-coordinates for the value of the
function to be interpolated is known\&. The coordinates must be strictly
ascending\&. At least three points are required\&.
.TP
list \fIycoord\fR
List of y-coordinates (the values of the
function at the given x-coordinates)\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-cubic-splines\fR \fIcoeffs\fR \fIx\fR
Returns the interpolated value at coordinate x\&. The coefficients are
computed by the procedure \fIprepare-cubic-splines\fR\&.
.RS
.TP
list \fIcoeffs\fR
List of coefficients as returned by
prepare-cubic-splines
.TP
float \fIx\fR
x-coordinate at which to estimate the function\&. Must
be between the first and last x-coordinate for which values were given\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-spatial\fR \fIxyvalues\fR \fIcoord\fR
Use a straightforward interpolation method with weights as function of the
inverse distance to interpolate in 2D and N-dimensional space
.sp
The list xyvalues is a list of lists:
.CS
{ {x1 y1 z1 {v11 v12 v13 v14}}
{x2 y2 z2 {v21 v22 v23 v24}}
\&.\&.\&.
}
.CE
.IP
The last element of each inner list is either a single number or a list in itself\&.
In the latter case the return value is a list with the same number of elements\&.
.sp
The method is influenced by the search radius and the power of the inverse distance
.RS
.TP
list \fIxyvalues\fR (in)
List of lists, each sublist being a list of coordinates and
of dependent values\&.
.TP
list \fIcoord\fR (in)
List of coordinates for which the values must be calculated
.RE
.sp
.TP
\fB::math::interpolate::interp-spatial-params\fR \fImax_search\fR \fIpower\fR
Set the parameters for spatial interpolation
.RS
.TP
float \fImax_search\fR (in)
Search radius (data points further than this are ignored)
.TP
integer \fIpower\fR (in)
Power for the distance (either 1 or 2; defaults to 2)
.RE
.TP
\fB::math::interpolate::neville\fR \fIxlist\fR \fIylist\fR \fIx\fR
Interpolates between the tabulated values of a function
whose abscissae are \fIxlist\fR
and whose ordinates are \fIylist\fR to produce an estimate for the value
of the function at \fIx\fR\&. The result is a two-element list; the first
element is the function's estimated value, and the second is an estimate
of the absolute error of the result\&. Neville's algorithm for polynomial
interpolation is used\&. Note that a large table of values will use an
interpolating polynomial of high degree, which is likely to result in
numerical instabilities; one is better off using only a few tabulated
values near the desired abscissa\&.
.PP
.SH EXAMPLES
\fIExample of using one-dimensional tables:\fR
.PP
Suppose you have several tabulated functions of one variable:
.CS
x y1 y2
0\&.0 0\&.0 0\&.0
1\&.0 1\&.0 1\&.0
2\&.0 4\&.0 8\&.0
3\&.0 9\&.0 27\&.0
4\&.0 16\&.0 64\&.0
.CE
Then to estimate the values at 0\&.5, 1\&.5, 2\&.5 and 3\&.5, you can use:
.CS
set table [::math::interpolate::defineTable table1 {x y1 y2} { - 1 2
0\&.0 0\&.0 0\&.0
1\&.0 1\&.0 1\&.0
2\&.0 4\&.0 8\&.0
3\&.0 9\&.0 27\&.0
4\&.0 16\&.0 64\&.0}]
foreach x {0\&.5 1\&.5 2\&.5 3\&.5} {
puts "$x: [::math::interpolate::interp-1d-table $table $x]"
}
.CE
For one-dimensional tables the first row is not used\&. For two-dimensional
tables, the first row represents the values for the second independent variable\&.
.PP
\fIExample of using the cubic splines:\fR
.PP
Suppose the following values are given:
.CS
x y
0\&.1 1\&.0
0\&.3 2\&.1
0\&.4 2\&.2
0\&.8 4\&.11
1\&.0 4\&.12
.CE
Then to estimate the values at 0\&.1, 0\&.2, 0\&.3, \&.\&.\&. 1\&.0, you can use:
.CS
set coeffs [::math::interpolate::prepare-cubic-splines {0\&.1 0\&.3 0\&.4 0\&.8 1\&.0} {1\&.0 2\&.1 2\&.2 4\&.11 4\&.12}]
foreach x {0\&.1 0\&.2 0\&.3 0\&.4 0\&.5 0\&.6 0\&.7 0\&.8 0\&.9 1\&.0} {
puts "$x: [::math::interpolate::interp-cubic-splines $coeffs $x]"
}
.CE
to get the following output:
.CS
0\&.1: 1\&.0
0\&.2: 1\&.68044117647
0\&.3: 2\&.1
0\&.4: 2\&.2
0\&.5: 3\&.11221507353
0\&.6: 4\&.25242647059
0\&.7: 5\&.41804227941
0\&.8: 4\&.11
0\&.9: 3\&.95675857843
1\&.0: 4\&.12
.CE
As you can see, the values at the abscissae are reproduced perfectly\&.
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: interpolate\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
interpolation, math, spatial interpolation
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
Copyright (c) 2004 Kevn B\&. Kenny <kennykb@users\&.sourceforge\&.net>
.fi
|