File: interpolate.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (597 lines) | stat: -rw-r--r-- 16,438 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
'\"
'\" Generated from file 'interpolate\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
'\" Copyright (c) 2004 Kevn B\&. Kenny <kennykb@users\&.sourceforge\&.net>
'\"
.TH "math::interpolate" n 1\&.1\&.4 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::interpolate \- Interpolation routines
.SH SYNOPSIS
package require \fBTcl ?8\&.5 9?\fR
.sp
package require \fBstruct\fR
.sp
package require \fBmath::interpolate ?1\&.1\&.4?\fR
.sp
\fB::math::interpolate::defineTable\fR \fIname\fR \fIcolnames\fR \fIvalues\fR
.sp
\fB::math::interpolate::interp-1d-table\fR \fIname\fR \fIxval\fR
.sp
\fB::math::interpolate::interp-table\fR \fIname\fR \fIxval\fR \fIyval\fR
.sp
\fB::math::interpolate::interp-linear\fR \fIxyvalues\fR \fIxval\fR
.sp
\fB::math::interpolate::interp-lagrange\fR \fIxyvalues\fR \fIxval\fR
.sp
\fB::math::interpolate::prepare-cubic-splines\fR \fIxcoord\fR \fIycoord\fR
.sp
\fB::math::interpolate::interp-cubic-splines\fR \fIcoeffs\fR \fIx\fR
.sp
\fB::math::interpolate::interp-spatial\fR \fIxyvalues\fR \fIcoord\fR
.sp
\fB::math::interpolate::interp-spatial-params\fR \fImax_search\fR \fIpower\fR
.sp
\fB::math::interpolate::neville\fR \fIxlist\fR \fIylist\fR \fIx\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several interpolation algorithms:
.IP \(bu
Interpolation into a table (one or two independent variables), this is useful
for example, if the data are static, like with tables of statistical functions\&.
.IP \(bu
Linear interpolation into a given set of data (organised as (x,y) pairs)\&.
.IP \(bu
Lagrange interpolation\&. This is mainly of theoretical interest, because there is
no guarantee about error bounds\&. One possible use: if you need a line or
a parabola through given points (it will calculate the values, but not return
the coefficients)\&.
.sp
A variation is Neville's method which has better behaviour and error
bounds\&.
.IP \(bu
Spatial interpolation using a straightforward distance-weight method\&. This procedure
allows any number of spatial dimensions and any number of dependent variables\&.
.IP \(bu
Interpolation in one dimension using cubic splines\&.
.PP
.PP
This document describes the procedures and explains their usage\&.
.SH "INCOMPATIBILITY WITH VERSION 1\&.0\&.3"
The interpretation of the tables in the \fB::math::interpolate::interpolate-1d-table\fR command
has been changed to be compatible with the interpretation for 2D interpolation in
the \fB::math::interpolate::interpolate-table\fR command\&. As a consequence this version is
incompatible with the previous versions of the command (1\&.0\&.x)\&.
.SH PROCEDURES
The interpolation package defines the following public procedures:
.TP
\fB::math::interpolate::defineTable\fR \fIname\fR \fIcolnames\fR \fIvalues\fR
Define a table with one or two independent variables (the distinction is implicit in
the data)\&. The procedure returns the name of the table - this name is used whenever you
want to interpolate the values\&. \fINote:\fR this procedure is a convenient wrapper for the
struct::matrix procedure\&. Therefore you can access the data at any location in your program\&.
.RS
.TP
string \fIname\fR (in)
Name of the table to be created
.TP
list \fIcolnames\fR (in)
List of column names
.TP
list \fIvalues\fR (in)
List of values (the number of elements should be a
multiple of the number of columns\&. See \fBEXAMPLES\fR for more information on the
interpretation of the data\&.
.sp
The values must be sorted with respect to the independent variable(s)\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-1d-table\fR \fIname\fR \fIxval\fR
Interpolate into the one-dimensional table "name" and return a list of values, one for
each dependent column\&.
.RS
.TP
string \fIname\fR (in)
Name of an existing table
.TP
float \fIxval\fR (in)
Value of the independent \fIrow\fR variable
.RE
.sp
.TP
\fB::math::interpolate::interp-table\fR \fIname\fR \fIxval\fR \fIyval\fR
Interpolate into the two-dimensional table "name" and return the interpolated value\&.
.RS
.TP
string \fIname\fR (in)
Name of an existing table
.TP
float \fIxval\fR (in)
Value of the independent \fIrow\fR variable
.TP
float \fIyval\fR (in)
Value of the independent \fIcolumn\fR variable
.RE
.sp
.TP
\fB::math::interpolate::interp-linear\fR \fIxyvalues\fR \fIxval\fR
Interpolate linearly into the list of x,y pairs and return the interpolated value\&.
.RS
.TP
list \fIxyvalues\fR (in)
List of pairs of (x,y) values, sorted to increasing x\&.
They are used as the breakpoints of a piecewise linear function\&.
.TP
float \fIxval\fR (in)
Value of the independent variable for which the value of y
must be computed\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-lagrange\fR \fIxyvalues\fR \fIxval\fR
Use the list of x,y pairs to construct the unique polynomial of lowest degree
that passes through all points and return the interpolated value\&.
.RS
.TP
list \fIxyvalues\fR (in)
List of pairs of (x,y) values
.TP
float \fIxval\fR (in)
Value of the independent variable for which the value of y
must be computed\&.
.RE
.sp
.TP
\fB::math::interpolate::prepare-cubic-splines\fR \fIxcoord\fR \fIycoord\fR
Returns a list of coefficients for the second routine
\fIinterp-cubic-splines\fR to actually interpolate\&.
.RS
.TP
list \fIxcoord\fR
List of x-coordinates for the value of the
function to be interpolated is known\&. The coordinates must be strictly
ascending\&. At least three points are required\&.
.TP
list \fIycoord\fR
List of y-coordinates (the values of the
function at the given x-coordinates)\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-cubic-splines\fR \fIcoeffs\fR \fIx\fR
Returns the interpolated value at coordinate x\&. The coefficients are
computed by the procedure \fIprepare-cubic-splines\fR\&.
.RS
.TP
list \fIcoeffs\fR
List of coefficients as returned by
prepare-cubic-splines
.TP
float \fIx\fR
x-coordinate at which to estimate the function\&. Must
be between the first and last x-coordinate for which values were given\&.
.RE
.sp
.TP
\fB::math::interpolate::interp-spatial\fR \fIxyvalues\fR \fIcoord\fR
Use a straightforward interpolation method with weights as function of the
inverse distance to interpolate in 2D and N-dimensional space
.sp
The list xyvalues is a list of lists:
.CS


    {   {x1 y1 z1 {v11 v12 v13 v14}}
	{x2 y2 z2 {v21 v22 v23 v24}}
	\&.\&.\&.
    }

.CE
.IP
The last element of each inner list is either a single number or a list in itself\&.
In the latter case the return value is a list with the same number of elements\&.
.sp
The method is influenced by the search radius and the power of the inverse distance
.RS
.TP
list \fIxyvalues\fR (in)
List of lists, each sublist being a list of coordinates and
of dependent values\&.
.TP
list \fIcoord\fR (in)
List of coordinates for which the values must be calculated
.RE
.sp
.TP
\fB::math::interpolate::interp-spatial-params\fR \fImax_search\fR \fIpower\fR
Set the parameters for spatial interpolation
.RS
.TP
float \fImax_search\fR (in)
Search radius (data points further than this are ignored)
.TP
integer \fIpower\fR (in)
Power for the distance (either 1 or 2; defaults to 2)
.RE
.TP
\fB::math::interpolate::neville\fR \fIxlist\fR \fIylist\fR \fIx\fR
Interpolates between the tabulated values of a function
whose abscissae are \fIxlist\fR
and whose ordinates are \fIylist\fR to produce an estimate for the value
of the function at \fIx\fR\&.  The result is a two-element list; the first
element is the function's estimated value, and the second is an estimate
of the absolute error of the result\&.  Neville's algorithm for polynomial
interpolation is used\&.  Note that a large table of values will use an
interpolating polynomial of high degree, which is likely to result in
numerical instabilities; one is better off using only a few tabulated
values near the desired abscissa\&.
.PP
.SH EXAMPLES
\fIExample of using one-dimensional tables:\fR
.PP
Suppose you have several tabulated functions of one variable:
.CS


    x     y1     y2
  0\&.0    0\&.0    0\&.0
  1\&.0    1\&.0    1\&.0
  2\&.0    4\&.0    8\&.0
  3\&.0    9\&.0   27\&.0
  4\&.0   16\&.0   64\&.0

.CE
Then to estimate the values at 0\&.5, 1\&.5, 2\&.5 and 3\&.5, you can use:
.CS


   set table [::math::interpolate::defineTable table1  {x y1 y2} {   -      1      2
                   0\&.0    0\&.0    0\&.0
                   1\&.0    1\&.0    1\&.0
                   2\&.0    4\&.0    8\&.0
                   3\&.0    9\&.0   27\&.0
                   4\&.0   16\&.0   64\&.0}]
   foreach x {0\&.5 1\&.5 2\&.5 3\&.5} {
       puts "$x: [::math::interpolate::interp-1d-table $table $x]"
   }

.CE
For one-dimensional tables the first row is not used\&. For two-dimensional
tables, the first row represents the values for the second independent variable\&.
.PP
\fIExample of using the cubic splines:\fR
.PP
Suppose the following values are given:
.CS


    x       y
  0\&.1     1\&.0
  0\&.3     2\&.1
  0\&.4     2\&.2
  0\&.8     4\&.11
  1\&.0     4\&.12

.CE
Then to estimate the values at 0\&.1, 0\&.2, 0\&.3, \&.\&.\&. 1\&.0, you can use:
.CS


   set coeffs [::math::interpolate::prepare-cubic-splines  {0\&.1 0\&.3 0\&.4 0\&.8  1\&.0}  {1\&.0 2\&.1 2\&.2 4\&.11 4\&.12}]
   foreach x {0\&.1 0\&.2 0\&.3 0\&.4 0\&.5 0\&.6 0\&.7 0\&.8 0\&.9 1\&.0} {
      puts "$x: [::math::interpolate::interp-cubic-splines $coeffs $x]"
   }

.CE
to get the following output:
.CS


0\&.1: 1\&.0
0\&.2: 1\&.68044117647
0\&.3: 2\&.1
0\&.4: 2\&.2
0\&.5: 3\&.11221507353
0\&.6: 4\&.25242647059
0\&.7: 5\&.41804227941
0\&.8: 4\&.11
0\&.9: 3\&.95675857843
1\&.0: 4\&.12

.CE
As you can see, the values at the abscissae are reproduced perfectly\&.
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: interpolate\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
interpolation, math, spatial interpolation
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
Copyright (c) 2004 Kevn B\&. Kenny <kennykb@users\&.sourceforge\&.net>

.fi