File: linalg.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1493 lines) | stat: -rw-r--r-- 38,480 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
'\"
'\" Generated from file 'linalg\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004-2008 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
'\" Copyright (c) 2004 Ed Hume <http://www\&.hume\&.com/contact\&.us\&.htm>
'\" Copyright (c) 2008 Michael Buadin <relaxkmike@users\&.sourceforge\&.net>
'\"
.TH "math::linearalgebra" n 1\&.1\&.7 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::linearalgebra \- Linear Algebra
.SH SYNOPSIS
package require \fBTcl ?8\&.5 9?\fR
.sp
package require \fBmath::linearalgebra ?1\&.1\&.7?\fR
.sp
\fB::math::linearalgebra::mkVector\fR \fIndim\fR \fIvalue\fR
.sp
\fB::math::linearalgebra::mkUnitVector\fR \fIndim\fR \fIndir\fR
.sp
\fB::math::linearalgebra::mkMatrix\fR \fInrows\fR \fIncols\fR \fIvalue\fR
.sp
\fB::math::linearalgebra::getrow\fR \fImatrix\fR \fIrow\fR ?imin? ?imax?
.sp
\fB::math::linearalgebra::setrow\fR \fImatrix\fR \fIrow\fR \fInewvalues\fR ?imin? ?imax?
.sp
\fB::math::linearalgebra::getcol\fR \fImatrix\fR \fIcol\fR ?imin? ?imax?
.sp
\fB::math::linearalgebra::setcol\fR \fImatrix\fR \fIcol\fR \fInewvalues\fR ?imin? ?imax?
.sp
\fB::math::linearalgebra::getelem\fR \fImatrix\fR \fIrow\fR \fIcol\fR
.sp
\fB::math::linearalgebra::setelem\fR \fImatrix\fR \fIrow\fR ?col? \fInewvalue\fR
.sp
\fB::math::linearalgebra::swaprows\fR \fImatrix\fR \fIirow1\fR \fIirow2\fR ?imin? ?imax?
.sp
\fB::math::linearalgebra::swapcols\fR \fImatrix\fR \fIicol1\fR \fIicol2\fR ?imin? ?imax?
.sp
\fB::math::linearalgebra::show\fR \fIobj\fR ?format? ?rowsep? ?colsep?
.sp
\fB::math::linearalgebra::dim\fR \fIobj\fR
.sp
\fB::math::linearalgebra::shape\fR \fIobj\fR
.sp
\fB::math::linearalgebra::conforming\fR \fItype\fR \fIobj1\fR \fIobj2\fR
.sp
\fB::math::linearalgebra::symmetric\fR \fImatrix\fR ?eps?
.sp
\fB::math::linearalgebra::norm\fR \fIvector\fR \fItype\fR
.sp
\fB::math::linearalgebra::norm_one\fR \fIvector\fR
.sp
\fB::math::linearalgebra::norm_two\fR \fIvector\fR
.sp
\fB::math::linearalgebra::norm_max\fR \fIvector\fR ?index?
.sp
\fB::math::linearalgebra::normMatrix\fR \fImatrix\fR \fItype\fR
.sp
\fB::math::linearalgebra::dotproduct\fR \fIvect1\fR \fIvect2\fR
.sp
\fB::math::linearalgebra::unitLengthVector\fR \fIvector\fR
.sp
\fB::math::linearalgebra::normalizeStat\fR \fImv\fR
.sp
\fB::math::linearalgebra::axpy\fR \fIscale\fR \fImv1\fR \fImv2\fR
.sp
\fB::math::linearalgebra::add\fR \fImv1\fR \fImv2\fR
.sp
\fB::math::linearalgebra::sub\fR \fImv1\fR \fImv2\fR
.sp
\fB::math::linearalgebra::scale\fR \fIscale\fR \fImv\fR
.sp
\fB::math::linearalgebra::rotate\fR \fIc\fR \fIs\fR \fIvect1\fR \fIvect2\fR
.sp
\fB::math::linearalgebra::transpose\fR \fImatrix\fR
.sp
\fB::math::linearalgebra::matmul\fR \fImv1\fR \fImv2\fR
.sp
\fB::math::linearalgebra::angle\fR \fIvect1\fR \fIvect2\fR
.sp
\fB::math::linearalgebra::crossproduct\fR \fIvect1\fR \fIvect2\fR
.sp
\fB::math::linearalgebra::matmul\fR \fImv1\fR \fImv2\fR
.sp
\fB::math::linearalgebra::mkIdentity\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkDiagonal\fR \fIdiag\fR
.sp
\fB::math::linearalgebra::mkRandom\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkTriangular\fR \fIsize\fR ?uplo? ?value?
.sp
\fB::math::linearalgebra::mkHilbert\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkDingdong\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkOnes\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkMoler\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkFrank\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkBorder\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkWilkinsonW+\fR \fIsize\fR
.sp
\fB::math::linearalgebra::mkWilkinsonW-\fR \fIsize\fR
.sp
\fB::math::linearalgebra::solveGauss\fR \fImatrix\fR \fIbvect\fR
.sp
\fB::math::linearalgebra::solvePGauss\fR \fImatrix\fR \fIbvect\fR
.sp
\fB::math::linearalgebra::solveTriangular\fR \fImatrix\fR \fIbvect\fR ?uplo?
.sp
\fB::math::linearalgebra::solveGaussBand\fR \fImatrix\fR \fIbvect\fR
.sp
\fB::math::linearalgebra::solveTriangularBand\fR \fImatrix\fR \fIbvect\fR
.sp
\fB::math::linearalgebra::determineSVD\fR \fIA\fR \fIeps\fR
.sp
\fB::math::linearalgebra::eigenvectorsSVD\fR \fIA\fR \fIeps\fR
.sp
\fB::math::linearalgebra::leastSquaresSVD\fR \fIA\fR \fIy\fR \fIqmin\fR \fIeps\fR
.sp
\fB::math::linearalgebra::choleski\fR \fImatrix\fR
.sp
\fB::math::linearalgebra::orthonormalizeColumns\fR \fImatrix\fR
.sp
\fB::math::linearalgebra::orthonormalizeRows\fR \fImatrix\fR
.sp
\fB::math::linearalgebra::dger\fR \fImatrix\fR \fIalpha\fR \fIx\fR \fIy\fR ?scope?
.sp
\fB::math::linearalgebra::dgetrf\fR \fImatrix\fR
.sp
\fB::math::linearalgebra::det\fR \fImatrix\fR
.sp
\fB::math::linearalgebra::largesteigen\fR \fImatrix\fR \fItolerance\fR \fImaxiter\fR
.sp
\fB::math::linearalgebra::to_LA\fR \fImv\fR
.sp
\fB::math::linearalgebra::from_LA\fR \fImv\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package offers both low-level procedures and high-level algorithms
to deal with linear algebra problems:
.IP \(bu
robust solution of linear equations or least squares problems
.IP \(bu
determining eigenvectors and eigenvalues of symmetric matrices
.IP \(bu
various decompositions of general matrices or matrices of a specific
form
.IP \(bu
(limited) support for matrices in band storage, a common type of sparse
matrices
.PP
It arose as a re-implementation of Hume's LA package and the desire to
offer low-level procedures as found in the well-known BLAS library\&.
Matrices are implemented as lists of lists rather linear lists with
reserved elements, as in the original LA package, as it was found that
such an implementation is actually faster\&.
.PP
It is advisable, however, to use the procedures that are offered, such
as \fIsetrow\fR and \fIgetrow\fR, rather than rely on this
representation explicitly: that way it is to switch to a possibly even
faster compiled implementation that supports the same API\&.
.PP
\fINote:\fR When using this package in combination with Tk, there may
be a naming conflict, as both this package and Tk define a command
\fIscale\fR\&. See the \fBNAMING CONFLICT\fR section below\&.
.SH PROCEDURES
The package defines the following public procedures (several exist as
specialised procedures, see below):
.PP
\fIConstructing matrices and vectors\fR
.TP
\fB::math::linearalgebra::mkVector\fR \fIndim\fR \fIvalue\fR
Create a vector with ndim elements, each with the value \fIvalue\fR\&.
.RS
.TP
integer \fIndim\fR
Dimension of the vector (number of components)
.TP
double \fIvalue\fR
Uniform value to be used (default: 0\&.0)
.RE
.sp
.TP
\fB::math::linearalgebra::mkUnitVector\fR \fIndim\fR \fIndir\fR
Create a unit vector in \fIndim\fR-dimensional space, along the
\fIndir\fR-th direction\&.
.RS
.TP
integer \fIndim\fR
Dimension of the vector (number of components)
.TP
integer \fIndir\fR
Direction (0, \&.\&.\&., ndim-1)
.RE
.sp
.TP
\fB::math::linearalgebra::mkMatrix\fR \fInrows\fR \fIncols\fR \fIvalue\fR
Create a matrix with \fInrows\fR rows and \fIncols\fR columns\&. All
elements have the value \fIvalue\fR\&.
.RS
.TP
integer \fInrows\fR
Number of rows
.TP
integer \fIncols\fR
Number of columns
.TP
double \fIvalue\fR
Uniform value to be used (default: 0\&.0)
.RE
.sp
.TP
\fB::math::linearalgebra::getrow\fR \fImatrix\fR \fIrow\fR ?imin? ?imax?
Returns a single row of a matrix as a list
.RS
.TP
list \fImatrix\fR
Matrix in question
.TP
integer \fIrow\fR
Index of the row to return
.TP
integer \fIimin\fR
Minimum index of the column (default: 0)
.TP
integer \fIimax\fR
Maximum index of the column (default: ncols-1)
.RE
.sp
.TP
\fB::math::linearalgebra::setrow\fR \fImatrix\fR \fIrow\fR \fInewvalues\fR ?imin? ?imax?
Set a single row of a matrix to new values (this list must have the same
number of elements as the number of \fIcolumns\fR in the matrix)
.RS
.TP
list \fImatrix\fR
\fIname\fR of the matrix in question
.TP
integer \fIrow\fR
Index of the row to update
.TP
list \fInewvalues\fR
List of new values for the row
.TP
integer \fIimin\fR
Minimum index of the column (default: 0)
.TP
integer \fIimax\fR
Maximum index of the column (default: ncols-1)
.RE
.sp
.TP
\fB::math::linearalgebra::getcol\fR \fImatrix\fR \fIcol\fR ?imin? ?imax?
Returns a single column of a matrix as a list
.RS
.TP
list \fImatrix\fR
Matrix in question
.TP
integer \fIcol\fR
Index of the column to return
.TP
integer \fIimin\fR
Minimum index of the row (default: 0)
.TP
integer \fIimax\fR
Maximum index of the row (default: nrows-1)
.RE
.sp
.TP
\fB::math::linearalgebra::setcol\fR \fImatrix\fR \fIcol\fR \fInewvalues\fR ?imin? ?imax?
Set a single column of a matrix to new values (this list must have
the same number of elements as the number of \fIrows\fR in the matrix)
.RS
.TP
list \fImatrix\fR
\fIname\fR of the matrix in question
.TP
integer \fIcol\fR
Index of the column to update
.TP
list \fInewvalues\fR
List of new values for the column
.TP
integer \fIimin\fR
Minimum index of the row (default: 0)
.TP
integer \fIimax\fR
Maximum index of the row (default: nrows-1)
.RE
.sp
.TP
\fB::math::linearalgebra::getelem\fR \fImatrix\fR \fIrow\fR \fIcol\fR
Returns a single element of a matrix/vector
.RS
.TP
list \fImatrix\fR
Matrix or vector in question
.TP
integer \fIrow\fR
Row of the element
.TP
integer \fIcol\fR
Column of the element (not present for vectors)
.RE
.sp
.TP
\fB::math::linearalgebra::setelem\fR \fImatrix\fR \fIrow\fR ?col? \fInewvalue\fR
Set a single element of a matrix (or vector) to a new value
.RS
.TP
list \fImatrix\fR
\fIname\fR of the matrix in question
.TP
integer \fIrow\fR
Row of the element
.TP
integer \fIcol\fR
Column of the element (not present for vectors)
.RE
.sp
.TP
\fB::math::linearalgebra::swaprows\fR \fImatrix\fR \fIirow1\fR \fIirow2\fR ?imin? ?imax?
Swap two rows in a matrix completely or only a selected part
.RS
.TP
list \fImatrix\fR
\fIname\fR of the matrix in question
.TP
integer \fIirow1\fR
Index of first row
.TP
integer \fIirow2\fR
Index of second row
.TP
integer \fIimin\fR
Minimum column index (default: 0)
.TP
integer \fIimin\fR
Maximum column index (default: ncols-1)
.RE
.sp
.TP
\fB::math::linearalgebra::swapcols\fR \fImatrix\fR \fIicol1\fR \fIicol2\fR ?imin? ?imax?
Swap two columns in a matrix completely or only a selected part
.RS
.TP
list \fImatrix\fR
\fIname\fR of the matrix in question
.TP
integer \fIirow1\fR
Index of first column
.TP
integer \fIirow2\fR
Index of second column
.TP
integer \fIimin\fR
Minimum row index (default: 0)
.TP
integer \fIimin\fR
Maximum row index (default: nrows-1)
.RE
.PP
.PP
\fIQuerying matrices and vectors\fR
.TP
\fB::math::linearalgebra::show\fR \fIobj\fR ?format? ?rowsep? ?colsep?
Return a string representing the vector or matrix, for easy printing\&.
(There is currently no way to print fixed sets of columns)
.RS
.TP
list \fIobj\fR
Matrix or vector in question
.TP
string \fIformat\fR
Format for printing the numbers (default: %6\&.4f)
.TP
string \fIrowsep\fR
String to use for separating rows (default: newline)
.TP
string \fIcolsep\fR
String to use for separating columns (default: space)
.RE
.sp
.TP
\fB::math::linearalgebra::dim\fR \fIobj\fR
Returns the number of dimensions for the object (either 0 for a scalar,
1 for a vector and 2 for a matrix)
.RS
.TP
any \fIobj\fR
Scalar, vector, or matrix
.RE
.sp
.TP
\fB::math::linearalgebra::shape\fR \fIobj\fR
Returns the number of elements in each dimension for the object (either
an empty list for a scalar, a single number for a vector and a list of
the number of rows and columns for a matrix)
.RS
.TP
any \fIobj\fR
Scalar, vector, or matrix
.RE
.sp
.TP
\fB::math::linearalgebra::conforming\fR \fItype\fR \fIobj1\fR \fIobj2\fR
Checks if two objects (vector or matrix) have conforming shapes, that is
if they can be applied in an operation like addition or matrix
multiplication\&.
.RS
.TP
string \fItype\fR
Type of check:
.RS
.IP \(bu
"shape" - the two objects have the same shape (for all element-wise
operations)
.IP \(bu
"rows" - the two objects have the same number of rows (for use as A and
b in a system of linear equations \fIAx = b\fR
.IP \(bu
"matmul" - the first object has the same number of columns as the number
of rows of the second object\&. Useful for matrix-matrix or matrix-vector
multiplication\&.
.RE
.TP
list \fIobj1\fR
First vector or matrix (left operand)
.TP
list \fIobj2\fR
Second vector or matrix (right operand)
.RE
.sp
.TP
\fB::math::linearalgebra::symmetric\fR \fImatrix\fR ?eps?
Checks if the given (square) matrix is symmetric\&. The argument eps
is the tolerance\&.
.RS
.TP
list \fImatrix\fR
Matrix to be inspected
.TP
float \fIeps\fR
Tolerance for determining approximate equality
(defaults to 1\&.0e-8)
.RE
.PP
.PP
\fIBasic operations\fR
.TP
\fB::math::linearalgebra::norm\fR \fIvector\fR \fItype\fR
Returns the norm of the given vector\&. The type argument can be: 1,
2, inf or max, respectively the sum of absolute values, the ordinary
Euclidean norm or the max norm\&.
.RS
.TP
list \fIvector\fR
Vector, list of coefficients
.TP
string \fItype\fR
Type of norm (default: 2, the Euclidean norm)
.RE
.TP
\fB::math::linearalgebra::norm_one\fR \fIvector\fR
Returns the L1 norm of the given vector, the sum of absolute values
.RS
.TP
list \fIvector\fR
Vector, list of coefficients
.RE
.TP
\fB::math::linearalgebra::norm_two\fR \fIvector\fR
Returns the L2 norm of the given vector, the ordinary Euclidean norm
.RS
.TP
list \fIvector\fR
Vector, list of coefficients
.RE
.TP
\fB::math::linearalgebra::norm_max\fR \fIvector\fR ?index?
Returns the Linf norm of the given vector, the maximum absolute
coefficient
.RS
.TP
list \fIvector\fR
Vector, list of coefficients
.TP
integer \fIindex\fR
(optional) if non zero, returns a list made of the maximum
value and the index where that maximum was found\&.
if zero, returns the maximum value\&.
.RE
.sp
.TP
\fB::math::linearalgebra::normMatrix\fR \fImatrix\fR \fItype\fR
Returns the norm of the given matrix\&. The type argument can be: 1,
2, inf or max, respectively the sum of absolute values, the ordinary
Euclidean norm or the max norm\&.
.RS
.TP
list \fImatrix\fR
Matrix, list of row vectors
.TP
string \fItype\fR
Type of norm (default: 2, the Euclidean norm)
.RE
.sp
.TP
\fB::math::linearalgebra::dotproduct\fR \fIvect1\fR \fIvect2\fR
Determine the inproduct or dot product of two vectors\&. These must have
the same shape (number of dimensions)
.RS
.TP
list \fIvect1\fR
First vector, list of coefficients
.TP
list \fIvect2\fR
Second vector, list of coefficients
.RE
.sp
.TP
\fB::math::linearalgebra::unitLengthVector\fR \fIvector\fR
Return a vector in the same direction with length 1\&.
.RS
.TP
list \fIvector\fR
Vector to be normalized
.RE
.sp
.TP
\fB::math::linearalgebra::normalizeStat\fR \fImv\fR
Normalize the matrix or vector in a statistical sense: the mean of the
elements of the columns of the result is zero and the standard deviation
is 1\&.
.RS
.TP
list \fImv\fR
Vector or matrix to be normalized in the above sense
.RE
.sp
.TP
\fB::math::linearalgebra::axpy\fR \fIscale\fR \fImv1\fR \fImv2\fR
Return a vector or matrix that results from a "daxpy" operation, that
is: compute a*x+y (a a scalar and x and y both vectors or matrices of
the same shape) and return the result\&.
.sp
Specialised variants are: axpy_vect and axpy_mat (slightly faster,
but no check on the arguments)
.RS
.TP
double \fIscale\fR
The scale factor for the first vector/matrix (a)
.TP
list \fImv1\fR
First vector or matrix (x)
.TP
list \fImv2\fR
Second vector or matrix (y)
.RE
.sp
.TP
\fB::math::linearalgebra::add\fR \fImv1\fR \fImv2\fR
Return a vector or matrix that is the sum of the two arguments (x+y)
.sp
Specialised variants are: add_vect and add_mat (slightly faster,
but no check on the arguments)
.RS
.TP
list \fImv1\fR
First vector or matrix (x)
.TP
list \fImv2\fR
Second vector or matrix (y)
.RE
.sp
.TP
\fB::math::linearalgebra::sub\fR \fImv1\fR \fImv2\fR
Return a vector or matrix that is the difference of the two arguments
(x-y)
.sp
Specialised variants are: sub_vect and sub_mat (slightly faster,
but no check on the arguments)
.RS
.TP
list \fImv1\fR
First vector or matrix (x)
.TP
list \fImv2\fR
Second vector or matrix (y)
.RE
.sp
.TP
\fB::math::linearalgebra::scale\fR \fIscale\fR \fImv\fR
Scale a vector or matrix and return the result, that is: compute a*x\&.
.sp
Specialised variants are: scale_vect and scale_mat (slightly faster,
but no check on the arguments)
.RS
.TP
double \fIscale\fR
The scale factor for the vector/matrix (a)
.TP
list \fImv\fR
Vector or matrix (x)
.RE
.sp
.TP
\fB::math::linearalgebra::rotate\fR \fIc\fR \fIs\fR \fIvect1\fR \fIvect2\fR
Apply a planar rotation to two vectors and return the result as a list
of two vectors: c*x-s*y and s*x+c*y\&. In algorithms you can often easily
determine the cosine and sine of the angle, so it is more efficient to
pass that information directly\&.
.RS
.TP
double \fIc\fR
The cosine of the angle
.TP
double \fIs\fR
The sine of the angle
.TP
list \fIvect1\fR
First vector (x)
.TP
list \fIvect2\fR
Seocnd vector (x)
.RE
.sp
.TP
\fB::math::linearalgebra::transpose\fR \fImatrix\fR
Transpose a matrix
.RS
.TP
list \fImatrix\fR
Matrix to be transposed
.RE
.sp
.TP
\fB::math::linearalgebra::matmul\fR \fImv1\fR \fImv2\fR
Multiply a vector/matrix with another vector/matrix\&. The result is
a matrix, if both x and y are matrices or both are vectors, in
which case the "outer product" is computed\&. If one is a vector and the
other is a matrix, then the result is a vector\&.
.RS
.TP
list \fImv1\fR
First vector/matrix (x)
.TP
list \fImv2\fR
Second vector/matrix (y)
.RE
.sp
.TP
\fB::math::linearalgebra::angle\fR \fIvect1\fR \fIvect2\fR
Compute the angle between two vectors (in radians)
.RS
.TP
list \fIvect1\fR
First vector
.TP
list \fIvect2\fR
Second vector
.RE
.sp
.TP
\fB::math::linearalgebra::crossproduct\fR \fIvect1\fR \fIvect2\fR
Compute the cross product of two (three-dimensional) vectors
.RS
.TP
list \fIvect1\fR
First vector
.TP
list \fIvect2\fR
Second vector
.RE
.sp
.TP
\fB::math::linearalgebra::matmul\fR \fImv1\fR \fImv2\fR
Multiply a vector/matrix with another vector/matrix\&. The result is
a matrix, if both x and y are matrices or both are vectors, in
which case the "outer product" is computed\&. If one is a vector and the
other is a matrix, then the result is a vector\&.
.RS
.TP
list \fImv1\fR
First vector/matrix (x)
.TP
list \fImv2\fR
Second vector/matrix (y)
.RE
.PP
.PP
\fICommon matrices and test matrices\fR
.TP
\fB::math::linearalgebra::mkIdentity\fR \fIsize\fR
Create an identity matrix of dimension \fIsize\fR\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkDiagonal\fR \fIdiag\fR
Create a diagonal matrix whose diagonal elements are the elements of the
vector \fIdiag\fR\&.
.RS
.TP
list \fIdiag\fR
Vector whose elements are used for the diagonal
.RE
.sp
.TP
\fB::math::linearalgebra::mkRandom\fR \fIsize\fR
Create a square matrix whose elements are uniformly distributed random
numbers between 0 and 1 of dimension \fIsize\fR\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkTriangular\fR \fIsize\fR ?uplo? ?value?
Create a triangular matrix with non-zero elements in the upper or lower
part, depending on argument \fIuplo\fR\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.TP
string \fIuplo\fR
Fill the upper (U) or lower part (L)
.TP
double \fIvalue\fR
Value to fill the matrix with
.RE
.sp
.TP
\fB::math::linearalgebra::mkHilbert\fR \fIsize\fR
Create a Hilbert matrix of dimension \fIsize\fR\&.
Hilbert matrices are very ill-conditioned with respect to
eigenvalue/eigenvector problems\&. Therefore they
are good candidates for testing the accuracy
of algorithms and implementations\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkDingdong\fR \fIsize\fR
Create a "dingdong" matrix of dimension \fIsize\fR\&.
Dingdong matrices are imprecisely represented,
but have the property of being very stable in
such algorithms as Gauss elimination\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkOnes\fR \fIsize\fR
Create a square matrix of dimension \fIsize\fR whose entries are all 1\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkMoler\fR \fIsize\fR
Create a Moler matrix of size \fIsize\fR\&. (Moler matrices have
a very simple Choleski decomposition\&. It has one small eigenvalue
and it can easily upset elimination methods for systems of linear
equations\&.)
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkFrank\fR \fIsize\fR
Create a Frank matrix of size \fIsize\fR\&. (Frank matrices are
fairly well-behaved matrices)
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkBorder\fR \fIsize\fR
Create a bordered matrix of size \fIsize\fR\&. (Bordered matrices have
a very low rank and can upset certain specialised algorithms\&.)
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkWilkinsonW+\fR \fIsize\fR
Create a Wilkinson W+ of size \fIsize\fR\&. This kind of matrix
has pairs of eigenvalues that are very close together\&. Usually
the order (size) is odd\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.sp
.TP
\fB::math::linearalgebra::mkWilkinsonW-\fR \fIsize\fR
Create a Wilkinson W- of size \fIsize\fR\&. This kind of matrix
has pairs of eigenvalues with opposite signs, when the order (size)
is odd\&.
.RS
.TP
integer \fIsize\fR
Dimension of the matrix
.RE
.PP
.PP
\fICommon algorithms\fR
.TP
\fB::math::linearalgebra::solveGauss\fR \fImatrix\fR \fIbvect\fR
Solve a system of linear equations (Ax=b) using Gauss elimination\&.
Returns the solution (x) as a vector or matrix of the same shape as
bvect\&.
.RS
.TP
list \fImatrix\fR
Square matrix (matrix A)
.TP
list \fIbvect\fR
Vector or matrix whose columns are the individual
b-vectors
.RE
.TP
\fB::math::linearalgebra::solvePGauss\fR \fImatrix\fR \fIbvect\fR
Solve a system of linear equations (Ax=b) using Gauss elimination with
partial pivoting\&. Returns the solution (x) as a vector or matrix of the
same shape as bvect\&.
.RS
.TP
list \fImatrix\fR
Square matrix (matrix A)
.TP
list \fIbvect\fR
Vector or matrix whose columns are the individual
b-vectors
.RE
.sp
.TP
\fB::math::linearalgebra::solveTriangular\fR \fImatrix\fR \fIbvect\fR ?uplo?
Solve a system of linear equations (Ax=b) by backward substitution\&. The
matrix is supposed to be upper-triangular\&.
.RS
.TP
list \fImatrix\fR
Lower or upper-triangular matrix (matrix A)
.TP
list \fIbvect\fR
Vector or matrix whose columns are the individual
b-vectors
.TP
string \fIuplo\fR
Indicates whether the matrix is lower-triangular
(L) or upper-triangular (U)\&. Defaults to "U"\&.
.RE
.TP
\fB::math::linearalgebra::solveGaussBand\fR \fImatrix\fR \fIbvect\fR
Solve a system of linear equations (Ax=b) using Gauss elimination,
where the matrix is stored as a band matrix (\fIcf\&.\fR \fBSTORAGE\fR)\&.
Returns the solution (x) as a vector or matrix of the same shape as
bvect\&.
.RS
.TP
list \fImatrix\fR
Square matrix (matrix A; in band form)
.TP
list \fIbvect\fR
Vector or matrix whose columns are the individual
b-vectors
.RE
.sp
.TP
\fB::math::linearalgebra::solveTriangularBand\fR \fImatrix\fR \fIbvect\fR
Solve a system of linear equations (Ax=b) by backward substitution\&. The
matrix is supposed to be upper-triangular and stored in band form\&.
.RS
.TP
list \fImatrix\fR
Upper-triangular matrix (matrix A)
.TP
list \fIbvect\fR
Vector or matrix whose columns are the individual
b-vectors
.RE
.sp
.TP
\fB::math::linearalgebra::determineSVD\fR \fIA\fR \fIeps\fR
Determines the Singular Value Decomposition of a matrix: A = U S Vtrans\&.
Returns a list with the matrix U, the vector of singular values S and
the matrix V\&.
.RS
.TP
list \fIA\fR
Matrix to be decomposed
.TP
float \fIeps\fR
Tolerance (defaults to 2\&.3e-16)
.RE
.sp
.TP
\fB::math::linearalgebra::eigenvectorsSVD\fR \fIA\fR \fIeps\fR
Determines the eigenvectors and eigenvalues of a real
\fIsymmetric\fR matrix, using SVD\&. Returns a list with the matrix of
normalized eigenvectors and their eigenvalues\&.
.RS
.TP
list \fIA\fR
Matrix whose eigenvalues must be determined
.TP
float \fIeps\fR
Tolerance (defaults to 2\&.3e-16)
.RE
.sp
.TP
\fB::math::linearalgebra::leastSquaresSVD\fR \fIA\fR \fIy\fR \fIqmin\fR \fIeps\fR
Determines the solution to a least-sqaures problem Ax ~ y via singular
value decomposition\&. The result is the vector x\&.
.sp
Note that if you add a column of 1s to the matrix, then this column will
represent a constant like in: y = a*x1 + b*x2 + c\&. To force the
intercept to be zero, simply leave it out\&.
.RS
.TP
list \fIA\fR
Matrix of independent variables
.TP
list \fIy\fR
List of observed values
.TP
float \fIqmin\fR
Minimum singular value to be considered (defaults to 0\&.0)
.TP
float \fIeps\fR
Tolerance (defaults to 2\&.3e-16)
.RE
.sp
.TP
\fB::math::linearalgebra::choleski\fR \fImatrix\fR
Determine the Choleski decomposition of a symmetric positive
semidefinite matrix (this condition is not checked!)\&. The result
is the lower-triangular matrix L such that L Lt = matrix\&.
.RS
.TP
list \fImatrix\fR
Matrix to be decomposed
.RE
.sp
.TP
\fB::math::linearalgebra::orthonormalizeColumns\fR \fImatrix\fR
Use the modified Gram-Schmidt method to orthogonalize and normalize
the \fIcolumns\fR of the given matrix and return the result\&.
.RS
.TP
list \fImatrix\fR
Matrix whose columns must be orthonormalized
.RE
.sp
.TP
\fB::math::linearalgebra::orthonormalizeRows\fR \fImatrix\fR
Use the modified Gram-Schmidt method to orthogonalize and normalize
the \fIrows\fR of the given matrix and return the result\&.
.RS
.TP
list \fImatrix\fR
Matrix whose rows must be orthonormalized
.RE
.sp
.TP
\fB::math::linearalgebra::dger\fR \fImatrix\fR \fIalpha\fR \fIx\fR \fIy\fR ?scope?
Perform the rank 1 operation A + alpha*x*y' inline (that is: the matrix A is adjusted)\&.
For convenience the new matrix is also returned as the result\&.
.RS
.TP
list \fImatrix\fR
Matrix whose rows must be adjusted
.TP
double \fIalpha\fR
Scale factor
.TP
list \fIx\fR
A column vector
.TP
list \fIy\fR
A column vector
.TP
list \fIscope\fR
If not provided, the operation is performed on all rows/columns of A
if provided, it is expected to be the list {imin imax jmin jmax}
where:
.RS
.IP \(bu
\fIimin\fR Minimum row index
.IP \(bu
\fIimax\fR Maximum row index
.IP \(bu
\fIjmin\fR Minimum column index
.IP \(bu
\fIjmax\fR Maximum column index
.RE
.RE
.sp
.TP
\fB::math::linearalgebra::dgetrf\fR \fImatrix\fR
Computes an LU factorization of a general matrix, using partial,
pivoting with row interchanges\&. Returns the permutation vector\&.
.sp
The factorization has the form
.CS


   P * A = L * U

.CE
.IP
where P is a permutation matrix, L is lower triangular with unit
diagonal elements, and U is upper triangular\&.
Returns the permutation vector, as a list of length n-1\&.
The last entry of the permutation is not stored, since it is
implicitely known, with value n (the last row is not swapped
with any other row)\&.
At index #i of the permutation is stored the index of the row #j
which is swapped with row #i at step #i\&. That means that each
index of the permutation gives the permutation at each step, not the
cumulated permutation matrix, which is the product of permutations\&.
.RS
.TP
list \fImatrix\fR
On entry, the matrix to be factored\&.
On exit, the factors L and U from the factorization
P*A = L*U; the unit diagonal elements of L are not stored\&.
.RE
.sp
.TP
\fB::math::linearalgebra::det\fR \fImatrix\fR
Returns the determinant of the given matrix, based on PA=LU
decomposition, i\&.e\&. Gauss partial pivotal\&.
.RS
.TP
list \fImatrix\fR
Square matrix (matrix A)
.TP
list \fIipiv\fR
The pivots (optionnal)\&.
If the pivots are not provided, a PA=LU decomposition
is performed\&.
If the pivots are provided, we assume that it
contains the pivots and that the matrix A contains the
L and U factors, as provided by dgterf\&.
b-vectors
.RE
.sp
.TP
\fB::math::linearalgebra::largesteigen\fR \fImatrix\fR \fItolerance\fR \fImaxiter\fR
Returns a list made of the largest eigenvalue (in magnitude)
and associated eigenvector\&.
Uses iterative Power Method as provided as algorithm #7\&.3\&.3 of Golub & Van Loan\&.
This algorithm is used here for a dense matrix (but is usually
used for sparse matrices)\&.
.RS
.TP
list \fImatrix\fR
Square matrix (matrix A)
.TP
double \fItolerance\fR
The relative tolerance of the eigenvalue (default:1\&.e-8)\&.
.TP
integer \fImaxiter\fR
The maximum number of iterations (default:10)\&.
.RE
.PP
.PP
\fICompability with the LA package\fR
Two procedures are provided for compatibility with Hume's LA package:
.TP
\fB::math::linearalgebra::to_LA\fR \fImv\fR
Transforms a vector or matrix into the format used by the original LA
package\&.
.RS
.TP
list \fImv\fR
Matrix or vector
.RE
.TP
\fB::math::linearalgebra::from_LA\fR \fImv\fR
Transforms a vector or matrix from the format used by the original LA
package into the format used by the present implementation\&.
.RS
.TP
list \fImv\fR
Matrix or vector as used by the LA package
.RE
.PP
.PP
.SH STORAGE
While most procedures assume that the matrices are given in full form,
the procedures \fIsolveGaussBand\fR and \fIsolveTriangularBand\fR
assume that the matrices are stored as \fIband matrices\fR\&. This
common type of "sparse" matrices is related to ordinary matrices as
follows:
.IP \(bu
"A" is a full-size matrix with N rows and M columns\&.
.IP \(bu
"B" is a band matrix, with m upper and lower diagonals and n rows\&.
.IP \(bu
"B" can be stored in an ordinary matrix of (2m+1) columns (one for
each off-diagonal and the main diagonal) and n rows\&.
.IP \(bu
Element i,j (i = -m,\&.\&.\&.,m; j =1,\&.\&.\&.,n) of "B" corresponds to element
k,j of "A" where k = M+i-1 and M is at least (!) n, the number of rows
in "B"\&.
.IP \(bu
To set element (i,j) of matrix "B" use:
.CS


    setelem B $j [expr {$N+$i-1}] $value

.CE
.PP
(There is no convenience procedure for this yet)
.SH "REMARKS ON THE IMPLEMENTATION"
There is a difference between the original LA package by Hume and the
current implementation\&. Whereas the LA package uses a linear list, the
current package uses lists of lists to represent matrices\&. It turns out
that with this representation, the algorithms are faster and easier to
implement\&.
.PP
The LA package was used as a model and in fact the implementation of,
for instance, the SVD algorithm was taken from that package\&. The set of
procedures was expanded using ideas from the well-known BLAS library and
some algorithms were updated from the second edition of J\&.C\&. Nash's
book, Compact Numerical Methods for Computers, (Adam Hilger, 1990) that
inspired the LA package\&.
.PP
Two procedures are provided to make the transition between the two
implementations easier: \fIto_LA\fR and \fIfrom_LA\fR\&. They are
described above\&.
.SH TODO
Odds and ends: the following algorithms have not been implemented yet:
.IP \(bu
determineQR
.IP \(bu
certainlyPositive, diagonallyDominant
.PP
.SH "NAMING CONFLICT"
If you load this package in a Tk-enabled shell like wish, then the
command
.CS

namespace import ::math::linearalgebra
.CE
results in an error
message about "scale"\&. This is due to the fact that Tk defines all
its commands in the global namespace\&. The solution is to import
the linear algebra commands in a namespace that is not the global one:
.CS


package require math::linearalgebra
namespace eval compute {
    namespace import ::math::linearalgebra::*
    \&.\&.\&. use the linear algebra version of scale \&.\&.\&.
}

.CE
To use Tk's scale command in that same namespace you can rename it:
.CS


namespace eval compute {
    rename ::scale scaleTk
    scaleTk \&.scale \&.\&.\&.
}

.CE
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: linearalgebra\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
least squares, linear algebra, linear equations, math, matrices, matrix, vectors
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004-2008 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
Copyright (c) 2004 Ed Hume <http://www\&.hume\&.com/contact\&.us\&.htm>
Copyright (c) 2008 Michael Buadin <relaxkmike@users\&.sourceforge\&.net>

.fi