File: math_geometry.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1273 lines) | stat: -rw-r--r-- 35,600 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
'\"
'\" Generated from file 'math_geometry\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2001 by Ideogramic ApS and other parties
'\" Copyright (c) 2010 by Andreas Kupries
'\" Copyright (c) 2010 by Kevin Kenny
'\" Copyright (c) 2018 by Arjen Markus
'\" Copyright (c) 2020 by Manfred Rosenberger
'\"
.TH "math::geometry" n 1\&.4\&.2 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::geometry \- Geometrical computations
.SH SYNOPSIS
package require \fBTcl ?8\&.5 9?\fR
.sp
package require \fBmath::geometry ?1\&.4\&.2?\fR
.sp
\fB::math::geometry::+\fR \fIpoint1\fR \fIpoint2\fR
.sp
\fB::math::geometry::-\fR \fIpoint1\fR \fIpoint2\fR
.sp
\fB::math::geometry::p\fR \fIx\fR \fIy\fR
.sp
\fB::math::geometry::distance\fR \fIpoint1\fR \fIpoint2\fR
.sp
\fB::math::geometry::length\fR \fIpoint\fR
.sp
\fB::math::geometry::s*\fR \fIfactor\fR \fIpoint\fR
.sp
\fB::math::geometry::direction\fR \fIangle\fR
.sp
\fB::math::geometry::h\fR \fIlength\fR
.sp
\fB::math::geometry::v\fR \fIlength\fR
.sp
\fB::math::geometry::between\fR \fIpoint1\fR \fIpoint2\fR \fIs\fR
.sp
\fB::math::geometry::octant\fR \fIpoint\fR
.sp
\fB::math::geometry::rect\fR \fInw\fR \fIse\fR
.sp
\fB::math::geometry::nwse\fR \fIrect\fR
.sp
\fB::math::geometry::angle\fR \fIline\fR
.sp
\fB::math::geometry::angleBetween\fR \fIvector1\fR \fIvector2\fR
.sp
\fB::math::geometry::inproduct\fR \fIvector1\fR \fIvector2\fR
.sp
\fB::math::geometry::areaParallellogram\fR \fIvector1\fR \fIvector2\fR
.sp
\fB::math::geometry::calculateDistanceToLine\fR \fIP\fR \fIline\fR
.sp
\fB::math::geometry::calculateDistanceToLineSegment\fR \fIP\fR \fIlinesegment\fR
.sp
\fB::math::geometry::calculateDistanceToPolyline\fR \fIP\fR \fIpolyline\fR
.sp
\fB::math::geometry::calculateDistanceToPolygon\fR \fIP\fR \fIpolygon\fR
.sp
\fB::math::geometry::findClosestPointOnLine\fR \fIP\fR \fIline\fR
.sp
\fB::math::geometry::findClosestPointOnLineSegment\fR \fIP\fR \fIlinesegment\fR
.sp
\fB::math::geometry::findClosestPointOnPolyline\fR \fIP\fR \fIpolyline\fR
.sp
\fB::math::geometry::lengthOfPolyline\fR \fIpolyline\fR
.sp
\fB::math::geometry::movePointInDirection\fR \fIP\fR \fIdirection\fR \fIdist\fR
.sp
\fB::math::geometry::lineSegmentsIntersect\fR \fIlinesegment1\fR \fIlinesegment2\fR
.sp
\fB::math::geometry::findLineSegmentIntersection\fR \fIlinesegment1\fR \fIlinesegment2\fR
.sp
\fB::math::geometry::findLineIntersection\fR \fIline1\fR \fIline2\fR
.sp
\fB::math::geometry::polylinesIntersect\fR \fIpolyline1\fR \fIpolyline2\fR
.sp
\fB::math::geometry::polylinesBoundingIntersect\fR \fIpolyline1\fR \fIpolyline2\fR \fIgranularity\fR
.sp
\fB::math::geometry::intervalsOverlap\fR \fIy1\fR \fIy2\fR \fIy3\fR \fIy4\fR \fIstrict\fR
.sp
\fB::math::geometry::rectanglesOverlap\fR \fIP1\fR \fIP2\fR \fIQ1\fR \fIQ2\fR \fIstrict\fR
.sp
\fB::math::geometry::bbox\fR \fIpolyline\fR
.sp
\fB::math::geometry::overlapBBox\fR \fIpolyline1\fR \fIpolyline2\fR ?strict?
.sp
\fB::math::geometry::pointInsideBBox\fR \fIbbox\fR \fIpoint\fR
.sp
\fB::math::geometry::cathetusPoint\fR \fIpa\fR \fIpb\fR \fIcathetusLength\fR ?location?
.sp
\fB::math::geometry::parallel\fR \fIline\fR \fIoffset\fR ?orient?
.sp
\fB::math::geometry::unitVector\fR \fIline\fR
.sp
\fB::math::geometry::pointInsidePolygon\fR \fIP\fR \fIpolyline\fR
.sp
\fB::math::geometry::pointInsidePolygonAlt\fR \fIP\fR \fIpolyline\fR
.sp
\fB::math::geometry::rectangleInsidePolygon\fR \fIP1\fR \fIP2\fR \fIpolyline\fR
.sp
\fB::math::geometry::areaPolygon\fR \fIpolygon\fR
.sp
\fB::math::geometry::translate\fR \fIvector\fR \fIpolyline\fR
.sp
\fB::math::geometry::rotate\fR \fIangle\fR \fIpolyline\fR
.sp
\fB::math::geometry::rotateAbout\fR \fIp\fR \fIangle\fR \fIpolyline\fR
.sp
\fB::math::geometry::reflect\fR \fIangle\fR \fIpolyline\fR
.sp
\fB::math::geometry::degToRad\fR \fIangle\fR
.sp
\fB::math::geometry::radToDeg\fR \fIangle\fR
.sp
\fB::math::geometry::circle\fR \fIcentre\fR \fIradius\fR
.sp
\fB::math::geometry::circleTwoPoints\fR \fIpoint1\fR \fIpoint2\fR
.sp
\fB::math::geometry::pointInsideCircle\fR \fIpoint\fR \fIcircle\fR
.sp
\fB::math::geometry::lineIntersectsCircle\fR \fIline\fR \fIcircle\fR
.sp
\fB::math::geometry::lineSegmentIntersectsCircle\fR \fIsegment\fR \fIcircle\fR
.sp
\fB::math::geometry::intersectionLineWithCircle\fR \fIline\fR \fIcircle\fR
.sp
\fB::math::geometry::intersectionCircleWithCircle\fR \fIcircle1\fR \fIcircle2\fR
.sp
\fB::math::geometry::tangentLinesToCircle\fR \fIpoint\fR \fIcircle\fR
.sp
\fB::math::geometry::intersectionPolylines\fR \fIpolyline1\fR \fIpolyline2\fR ?mode? ?granularity?
.sp
\fB::math::geometry::intersectionPolylineCircle\fR \fIpolyline\fR \fIcircle\fR ?mode? ?granularity?
.sp
\fB::math::geometry::polylineCutOrigin\fR \fIpolyline1\fR \fIpolyline2\fR ?granularity?
.sp
\fB::math::geometry::polylineCutEnd\fR \fIpolyline1\fR \fIpolyline2\fR ?granularity?
.sp
\fB::math::geometry::splitPolyline\fR \fIpolyline\fR \fInumberVertex\fR
.sp
\fB::math::geometry::enrichPolyline\fR \fIpolyline\fR \fIaccuracy\fR
.sp
\fB::math::geometry::cleanupPolyline\fR \fIpolyline\fR
.sp
.BE
.SH DESCRIPTION
.PP
The \fBmath::geometry\fR package is a collection of functions for
computations and manipulations on two-dimensional geometrical objects,
such as points, lines and polygons\&.
.PP
The geometrical objects are implemented as plain lists of coordinates\&.
For instance a line is defined by a list of four numbers, the x- and
y-coordinate of a first point and the x- and y-coordinates of a second
point on the line\&.
.PP
\fINote:\fR In version 1\&.4\&.0 an inconsistency was repaired - see \fIhttps://core\&.tcl-lang\&.org/tcllib/tktview?name=fb4812f82b\fR\&.
More in \fBCOORDINATE SYSTEM\fR
.PP
The various types of object are recognised by the number of coordinate
pairs and the context in which they are used: a list of four elements
can be regarded as an infinite line, a finite line segment but also
as a polyline of one segment and a point set of two points\&.
.PP
Currently the following types of objects are distinguished:
.IP \(bu
\fIpoint\fR - a list of two coordinates representing the x- and
y-coordinates respectively\&.
.IP \(bu
\fIline\fR - a list of four coordinates, interpreted as the x- and
y-coordinates of two distinct points on the line\&.
.IP \(bu
\fIline segment\fR - a list of four coordinates, interpreted as the
x- and y-coordinates of the first and the last points on the line
segment\&.
.IP \(bu
\fIpolyline\fR - a list of an even number of coordinates,
interpreted as the x- and y-coordinates of an ordered set of points\&.
.IP \(bu
\fIpolygon\fR - like a polyline, but the implicit assumption is that
the polyline is closed (if the first and last points do not coincide,
the missing segment is automatically added)\&.
.IP \(bu
\fIpoint set\fR - again a list of an even number of coordinates, but
the points are regarded without any ordering\&.
.IP \(bu
\fIcircle\fR - a list of three numbers, the first two are the coordinates of the
centre and the third is the radius\&.
.PP
.SH PROCEDURES
The package defines the following public procedures:
.TP
\fB::math::geometry::+\fR \fIpoint1\fR \fIpoint2\fR
Compute the sum of the two vectors given as points and return it\&.
The result is a vector as well\&.
.TP
\fB::math::geometry::-\fR \fIpoint1\fR \fIpoint2\fR
Compute the difference (point1 - point2) of the two vectors
given as points and return it\&. The result is a vector as well\&.
.TP
\fB::math::geometry::p\fR \fIx\fR \fIy\fR
Construct a point from its coordinates and return it as the
result of the command\&.
.TP
\fB::math::geometry::distance\fR \fIpoint1\fR \fIpoint2\fR
Compute the distance between the two points and return it as the
result of the command\&. This is in essence the same as
.CS


    math::geometry::length [math::geomtry::- point1 point2]

.CE
.TP
\fB::math::geometry::length\fR \fIpoint\fR
Compute the length of the vector and return it as the
result of the command\&.
.TP
\fB::math::geometry::s*\fR \fIfactor\fR \fIpoint\fR
Scale the vector by the factor and return it as the
result of the command\&. This is a vector as well\&.
.TP
\fB::math::geometry::direction\fR \fIangle\fR
Given the angle in degrees this command computes and returns
the unit vector pointing into this direction\&. The vector for
angle == 0 points to the right (east), and for angle == 90 up (north)\&.
.TP
\fB::math::geometry::h\fR \fIlength\fR
Returns a horizontal vector on the X-axis of the specified length\&.
Positive lengths point to the right (east)\&.
.TP
\fB::math::geometry::v\fR \fIlength\fR
Returns a vertical vector on the Y-axis of the specified length\&.
Positive lengths point down (south)\&.
.TP
\fB::math::geometry::between\fR \fIpoint1\fR \fIpoint2\fR \fIs\fR
Compute the point which is at relative distance \fIs\fR between the two
points and return it as the result of the command\&. A relative distance of
\fB0\fR returns \fIpoint1\fR, the distance \fB1\fR returns \fIpoint2\fR\&.
Distances < 0 or > 1 extrapolate along the line between the two point\&.
.TP
\fB::math::geometry::octant\fR \fIpoint\fR
Compute the octant of the circle the point is in and return it as the result
of the command\&. The possible results are
.RS
.IP [1]
east
.IP [2]
northeast
.IP [3]
north
.IP [4]
northwest
.IP [5]
west
.IP [6]
southwest
.IP [7]
south
.IP [8]
southeast
.RE
.IP
Each octant is the arc of the circle +/- 22\&.5 degrees from the cardinal direction
the octant is named for\&.
.TP
\fB::math::geometry::rect\fR \fInw\fR \fIse\fR
Construct a rectangle from its northwest and southeast corners and return
it as the result of the command\&.
.TP
\fB::math::geometry::nwse\fR \fIrect\fR
Extract the northwest and southeast corners of the rectangle and return
them as the result of the command (a 2-element list containing the
points, in the named order)\&.
.TP
\fB::math::geometry::angle\fR \fIline\fR
Calculate the angle from the positive x-axis to a given line
(in two dimensions only)\&.
.RS
.TP
list \fIline\fR
Coordinates of the line
.RE
.TP
\fB::math::geometry::angleBetween\fR \fIvector1\fR \fIvector2\fR
Calculate the angle between two vectors (in degrees)
.RS
.TP
list \fIvector1\fR
First vector
.TP
list \fIvector2\fR
Second vector
.RE
.TP
\fB::math::geometry::inproduct\fR \fIvector1\fR \fIvector2\fR
Calculate the inner product of two vectors
.RS
.TP
list \fIvector1\fR
First vector
.TP
list \fIvector2\fR
Second vector
.RE
.TP
\fB::math::geometry::areaParallellogram\fR \fIvector1\fR \fIvector2\fR
Calculate the area of the parallellogram with the two vectors as its sides
.RS
.TP
list \fIvector1\fR
First vector
.TP
list \fIvector2\fR
Second vector
.RE
.TP
\fB::math::geometry::calculateDistanceToLine\fR \fIP\fR \fIline\fR
Calculate the distance of point P to the (infinite) line and return the
result
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIline\fR
List of four numbers, the coordinates of two points
on the line
.RE
.TP
\fB::math::geometry::calculateDistanceToLineSegment\fR \fIP\fR \fIlinesegment\fR
Calculate the distance of point P to the (finite) line segment and
return the result\&.
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIlinesegment\fR
List of four numbers, the coordinates of the
first and last points of the line segment
.RE
.TP
\fB::math::geometry::calculateDistanceToPolyline\fR \fIP\fR \fIpolyline\fR
Calculate the distance of point P to the polyline and
return the result\&. Note that a polyline needs not to be closed\&.
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIpolyline\fR
List of numbers, the coordinates of the
vertices of the polyline
.RE
.TP
\fB::math::geometry::calculateDistanceToPolygon\fR \fIP\fR \fIpolygon\fR
Calculate the distance of point P to the polygon and
return the result\&. If the list of coordinates is not closed (first and last
points differ), it is automatically closed\&.
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIpolygon\fR
List of numbers, the coordinates of the
vertices of the polygon
.RE
.TP
\fB::math::geometry::findClosestPointOnLine\fR \fIP\fR \fIline\fR
Return the point on a line which is closest to a given point\&.
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIline\fR
List of four numbers, the coordinates of two points
on the line
.RE
.TP
\fB::math::geometry::findClosestPointOnLineSegment\fR \fIP\fR \fIlinesegment\fR
Return the point on a \fIline segment\fR which is closest to a given
point\&.
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIlinesegment\fR
List of four numbers, the first and last
points on the line segment
.RE
.TP
\fB::math::geometry::findClosestPointOnPolyline\fR \fIP\fR \fIpolyline\fR
Return the point on a \fIpolyline\fR which is closest to a given
point\&.
.RS
.TP
list \fIP\fR
List of two numbers, the coordinates of the point
.TP
list \fIpolyline\fR
List of numbers, the vertices of the polyline
.RE
.TP
\fB::math::geometry::lengthOfPolyline\fR \fIpolyline\fR
Return the length of the \fIpolyline\fR (note: it not regarded as a
polygon)
.RS
.TP
list \fIpolyline\fR
List of numbers, the vertices of the polyline
.RE
.TP
\fB::math::geometry::movePointInDirection\fR \fIP\fR \fIdirection\fR \fIdist\fR
Move a point over a given distance in a given direction and return the
new coordinates (in two dimensions only)\&.
.RS
.TP
list \fIP\fR
Coordinates of the point to be moved
.TP
double \fIdirection\fR
Direction (in degrees; 0 is to the right, 90
upwards)
.TP
list \fIdist\fR
Distance over which to move the point
.RE
.TP
\fB::math::geometry::lineSegmentsIntersect\fR \fIlinesegment1\fR \fIlinesegment2\fR
Check if two line segments intersect or coincide\&. Returns 1 if that is
the case, 0 otherwise (in two dimensions only)\&. If an endpoint of one segment lies on
the other segment (or is very close to the segment), they are considered to intersect
.RS
.TP
list \fIlinesegment1\fR
First line segment
.TP
list \fIlinesegment2\fR
Second line segment
.RE
.TP
\fB::math::geometry::findLineSegmentIntersection\fR \fIlinesegment1\fR \fIlinesegment2\fR
Find the intersection point of two line segments\&. Return the coordinates
or the keywords "coincident" or "none" if the line segments coincide or
have no points in common (in two dimensions only)\&.
.RS
.TP
list \fIlinesegment1\fR
First line segment
.TP
list \fIlinesegment2\fR
Second line segment
.RE
.TP
\fB::math::geometry::findLineIntersection\fR \fIline1\fR \fIline2\fR
Find the intersection point of two (infinite) lines\&. Return the coordinates
or the keywords "coincident" or "none" if the lines coincide or
have no points in common (in two dimensions only)\&.
.RS
.TP
list \fIline1\fR
First line
.TP
list \fIline2\fR
Second line
.RE
.IP
See section \fBReferences\fR for details on the algorithm and math behind it\&.
.TP
\fB::math::geometry::polylinesIntersect\fR \fIpolyline1\fR \fIpolyline2\fR
Check if two polylines intersect or not (in two dimensions only)\&.
.RS
.TP
list \fIpolyline1\fR
First polyline
.TP
list \fIpolyline2\fR
Second polyline
.RE
.TP
\fB::math::geometry::polylinesBoundingIntersect\fR \fIpolyline1\fR \fIpolyline2\fR \fIgranularity\fR
Check whether two polylines intersect, but reduce
the correctness of the result to the given granularity\&.
Use this for faster, but weaker, intersection checking\&.
.sp
How it works:
.sp
Each polyline is split into a number of smaller polylines,
consisting of granularity points each\&. If a pair of those smaller
lines' bounding boxes intersect, then this procedure returns 1,
otherwise it returns 0\&.
.RS
.TP
list \fIpolyline1\fR
First polyline
.TP
list \fIpolyline2\fR
Second polyline
.TP
int \fIgranularity\fR
Number of points in each part (<=1 means check
every edge)
.RE
.TP
\fB::math::geometry::intervalsOverlap\fR \fIy1\fR \fIy2\fR \fIy3\fR \fIy4\fR \fIstrict\fR
Check if two intervals overlap\&.
.RS
.TP
double \fIy1,y2\fR
Begin and end of first interval
.TP
double \fIy3,y4\fR
Begin and end of second interval
.TP
logical \fIstrict\fR
Check for strict or non-strict overlap
.RE
.TP
\fB::math::geometry::rectanglesOverlap\fR \fIP1\fR \fIP2\fR \fIQ1\fR \fIQ2\fR \fIstrict\fR
Check if two rectangles overlap\&.
.RS
.TP
list \fIP1\fR
upper-left corner of the first rectangle
.TP
list \fIP2\fR
lower-right corner of the first rectangle
.TP
list \fIQ1\fR
upper-left corner of the second rectangle
.TP
list \fIQ2\fR
lower-right corner of the second rectangle
.TP
list \fIstrict\fR
choosing strict or non-strict interpretation
.RE
.TP
\fB::math::geometry::bbox\fR \fIpolyline\fR
Calculate the bounding box of a polyline\&. Returns a list of four
coordinates: the upper-left and the lower-right corner of the box\&.
.RS
.TP
list \fIpolyline\fR
The polyline to be examined
.RE
.TP
\fB::math::geometry::overlapBBox\fR \fIpolyline1\fR \fIpolyline2\fR ?strict?
Check if the bounding boxes of two polylines overlap or not\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline1\fR
The first polyline
.TP
list \fIpolyline1\fR
The second polyline
.TP
int \fIstrict\fR
Whether strict overlap is to checked (1) or if the bounding boxes may touch (0, default)
.RE
.TP
\fB::math::geometry::pointInsideBBox\fR \fIbbox\fR \fIpoint\fR
.sp
Check if the point is inside or on the bounding box or not\&.
Arguments:
.RS
.TP
list \fIbbox\fR
The bounding box given as a list of x/y coordinates
.TP
list \fIpoint\fR
The point to be checked
.RE
.TP
\fB::math::geometry::cathetusPoint\fR \fIpa\fR \fIpb\fR \fIcathetusLength\fR ?location?
Return the third point of the rectangular triangle defined by the two given end points of the hypothenusa\&.
The triangle's side from point A (or B, if the location is given as "b") to the third point is the cathetus length\&.
If the cathetus' length is lower than the length of the hypothenusa, an empty list is returned\&.
.sp
Arguments:
.RS
.TP
list \fIpa\fR
The starting point on hypotenuse
.TP
list \fIpb\fR
The ending point on hypotenuse
.TP
float \fIcathetusLength\fR
The length of the cathetus of the triangle
.TP
string \fIlocation\fR
The location of the given cathetus,
"a" means given cathetus shares point pa (default)
"b" means given cathetus shares point pb
.RE
.TP
\fB::math::geometry::parallel\fR \fIline\fR \fIoffset\fR ?orient?
Return a line parallel to the given line, with a distance "offset"\&. The orientation is determined by the
two points defining the line\&.
.sp
Arguments:
.RS
.TP
list \fIline\fR
The given line
.TP
float \fIoffset\fR
The distance to the given line
.TP
string \fIorient\fR
Orientation of the new line with respect to the given line (defaults to "right")
.RE
.sp
.TP
\fB::math::geometry::unitVector\fR \fIline\fR
Return a unit vector from the given line or direction, if the \fIline\fR argument is
a single point (then a line through the origin is assumed)
Arguments:
.RS
.TP
list \fIline\fR
The line in question (or a single point, implying a line through the origin)
.RE
.TP
\fB::math::geometry::pointInsidePolygon\fR \fIP\fR \fIpolyline\fR
Determine if a point is completely inside a polygon\&. If the point
touches the polygon, then the point is not completely inside the
polygon\&.
.RS
.TP
list \fIP\fR
Coordinates of the point
.TP
list \fIpolyline\fR
The polyline to be examined
.RE
.TP
\fB::math::geometry::pointInsidePolygonAlt\fR \fIP\fR \fIpolyline\fR
Determine if a point is completely inside a polygon\&. If the point
touches the polygon, then the point is not completely inside the
polygon\&. \fINote:\fR this alternative procedure uses the so-called
winding number to determine this\&. It handles self-intersecting polygons
in a "natural" way\&.
.RS
.TP
list \fIP\fR
Coordinates of the point
.TP
list \fIpolyline\fR
The polyline to be examined
.RE
.TP
\fB::math::geometry::rectangleInsidePolygon\fR \fIP1\fR \fIP2\fR \fIpolyline\fR
Determine if a rectangle is completely inside a polygon\&. If polygon
touches the rectangle, then the rectangle is not complete inside the
polygon\&.
.RS
.TP
list \fIP1\fR
Upper-left corner of the rectangle
.TP
list \fIP2\fR
Lower-right corner of the rectangle
.sp
.TP
list \fIpolygon\fR
The polygon in question
.RE
.TP
\fB::math::geometry::areaPolygon\fR \fIpolygon\fR
Calculate the area of a polygon\&.
.RS
.TP
list \fIpolygon\fR
The polygon in question
.RE
.TP
\fB::math::geometry::translate\fR \fIvector\fR \fIpolyline\fR
Translate a polyline over a given vector
.RS
.TP
list \fIvector\fR
Translation vector
.TP
list \fIpolyline\fR
The polyline to be translated
.RE
.TP
\fB::math::geometry::rotate\fR \fIangle\fR \fIpolyline\fR
Rotate a polyline over a given angle (degrees) around the origin
.RS
.TP
list \fIangle\fR
Angle over which to rotate the polyline (degrees)
.TP
list \fIpolyline\fR
The polyline to be rotated
.RE
.TP
\fB::math::geometry::rotateAbout\fR \fIp\fR \fIangle\fR \fIpolyline\fR
Rotate a polyline around a given point p and return the new polyline\&.
.sp
Arguments:
.RS
.TP
list \fIp\fR
The point of rotation
.TP
float \fIangle\fR
The angle over which to rotate the polyline (degrees)
.TP
list \fIpolyline\fR
The polyline to be rotated
.RE
.TP
\fB::math::geometry::reflect\fR \fIangle\fR \fIpolyline\fR
Reflect a polyline in a line through the origin at a given angle (degrees) to the x-axis
.RS
.TP
list \fIangle\fR
Angle of the line of reflection (degrees)
.TP
list \fIpolyline\fR
The polyline to be reflected
.RE
.TP
\fB::math::geometry::degToRad\fR \fIangle\fR
Convert from degrees to radians
.RS
.TP
list \fIangle\fR
Angle in degrees
.RE
.TP
\fB::math::geometry::radToDeg\fR \fIangle\fR
Convert from radians to degrees
.RS
.TP
list \fIangle\fR
Angle in radians
.RE
.TP
\fB::math::geometry::circle\fR \fIcentre\fR \fIradius\fR
Convenience procedure to create a circle from a point and a radius\&.
.RS
.TP
list \fIcentre\fR
Coordinates of the circle centre
.TP
list \fIradius\fR
Radius of the circle
.RE
.TP
\fB::math::geometry::circleTwoPoints\fR \fIpoint1\fR \fIpoint2\fR
Convenience procedure to create a circle from two points on its circumference
The centre is the point between the two given points, the radius is half the
distance between them\&.
.RS
.TP
list \fIpoint1\fR
First point
.TP
list \fIpoint2\fR
Second point
.RE
.TP
\fB::math::geometry::pointInsideCircle\fR \fIpoint\fR \fIcircle\fR
Determine if the given point is inside the circle or on the circumference (1)
or outside (0)\&.
.RS
.TP
list \fIpoint\fR
Point to be checked
.TP
list \fIcircle\fR
Circle that may or may not contain the point
.RE
.TP
\fB::math::geometry::lineIntersectsCircle\fR \fIline\fR \fIcircle\fR
Determine if the given line intersects the circle or touches it (1)
or does not (0)\&.
.RS
.TP
list \fIline\fR
Line to be checked
.TP
list \fIcircle\fR
Circle that may or may not be intersected
.RE
.TP
\fB::math::geometry::lineSegmentIntersectsCircle\fR \fIsegment\fR \fIcircle\fR
Determine if the given line segment intersects the circle or touches it (1)
or does not (0)\&.
.RS
.TP
list \fIsegment\fR
Line segment to be checked
.TP
list \fIcircle\fR
Circle that may or may not be intersected
.RE
.TP
\fB::math::geometry::intersectionLineWithCircle\fR \fIline\fR \fIcircle\fR
Determine the points at which the given line intersects the circle\&. There can
be zero, one or two points\&. (If the line touches the circle or is close to it,
then one point is returned\&. An arbitrary margin of 1\&.0e-10 times the radius
is used to determine this situation\&.)
.RS
.TP
list \fIline\fR
Line to be checked
.TP
list \fIcircle\fR
Circle that may or may not be intersected
.RE
.TP
\fB::math::geometry::intersectionCircleWithCircle\fR \fIcircle1\fR \fIcircle2\fR
Determine the points at which the given two circles intersect\&. There can
be zero, one or two points\&. (If the two circles touch the circle or are very close,
then one point is returned\&. An arbitrary margin of 1\&.0e-10 times the mean of the radii of
the two circles is used to determine this situation\&.)
.RS
.TP
list \fIcircle1\fR
First circle
.TP
list \fIcircle2\fR
Second circle
.RE
.TP
\fB::math::geometry::tangentLinesToCircle\fR \fIpoint\fR \fIcircle\fR
Determine the tangent lines from the given point to the circle\&. There can
be zero, one or two lines\&. (If the point is on the cirucmference or very close to
the circle, then one line is returned\&. An arbitrary margin of 1\&.0e-10 times the
radius of the circle is used to determine this situation\&.)
.RS
.TP
list \fIpoint\fR
Point in question
.TP
list \fIcircle\fR
Circle to which the tangent lines are to be determined
.RE
.TP
\fB::math::geometry::intersectionPolylines\fR \fIpolyline1\fR \fIpolyline2\fR ?mode? ?granularity?
Return the first point or all points where the two polylines intersect\&. If the number of points in the polylines is large,
you can use the granularity to get an approximate answer faster\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline1\fR
The first polyline
.TP
list \fIpolyline2\fR
The second polyline
.TP
string \fImode\fR
Whether to return only the first (default) or to return all intersection points ("all")
.TP
int \fIgranularity\fR
The number of points that will be skipped plus 1 in the search for intersection points (1 or smaller means an exact answer is returned)
.RE
.TP
\fB::math::geometry::intersectionPolylineCircle\fR \fIpolyline\fR \fIcircle\fR ?mode? ?granularity?
Return the first point or all points where the polyline intersects the circle\&. If the number of points in the polyline is large,
you can use the granularity to get an approximate answer faster\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline\fR
The polyline that may intersect the circle
.TP
list \fIcircle\fR
The circle in question
.TP
string \fImode\fR
Whether to return only the first (default) or to return all intersection points ("all")
.TP
int \fIgranularity\fR
The number of points that will be skipped plus 1 in the search for intersection points (1 or smaller means an exact answer is returned)
.RE
.TP
\fB::math::geometry::polylineCutOrigin\fR \fIpolyline1\fR \fIpolyline2\fR ?granularity?
Return the part of the first polyline from the origin up to the first intersection with the second\&. If the number of points in the polyline is large,
you can use the granularity to get an approximate answer faster\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline1\fR
The first polyline (from which a part is to be returned)
.TP
list \fIpolyline2\fR
The second polyline
.TP
int \fIgranularity\fR
The number of points that will be skipped plus 1 in the search for intersection points (1 or smaller means an exact answer is returned)
.RE
.TP
\fB::math::geometry::polylineCutEnd\fR \fIpolyline1\fR \fIpolyline2\fR ?granularity?
Return the part of the first polyline from the last intersection point with the second to the end\&. If the number of points in the polyline is large,
you can use the granularity to get an approximate answer faster\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline1\fR
The first polyline (from which a part is to be returned)
.TP
list \fIpolyline2\fR
The second polyline
.TP
int \fIgranularity\fR
The number of points that will be skipped plus 1 in the search for intersection points (1 or smaller means an exact answer is returned)
.RE
.TP
\fB::math::geometry::splitPolyline\fR \fIpolyline\fR \fInumberVertex\fR
Split the poyline into a set of polylines where each separate polyline holds "numberVertex" vertices between the two end points\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline\fR
The polyline to be split up
.TP
int \fInumberVertex\fR
The number of "internal" vertices
.RE
.TP
\fB::math::geometry::enrichPolyline\fR \fIpolyline\fR \fIaccuracy\fR
Split up each segment of a polyline into a number of smaller segments and return the result\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline\fR
The polyline to be refined
.TP
int \fIaccuracy\fR
The number of subsegments to be created
.RE
.TP
\fB::math::geometry::cleanupPolyline\fR \fIpolyline\fR
Remove duplicate neighbouring vertices and return the result\&.
.sp
Arguments:
.RS
.TP
list \fIpolyline\fR
The polyline to be cleaned up
.RE
.PP
.SH "COORDINATE SYSTEM"
The coordinate system used by the package is the ordinary cartesian system, where the
positive x-axis is directed to the right and the positive y-axis is directed upwards\&.
Angles and directions are defined with respect to the positive x-axis in a counter-clockwise
direction, so that an angle of 90 degrees is the direction of the positive y-axis\&.
Note that the Tk canvas coordinates differ from this, as there the origin is located in the
upper left corner of the window\&. Up to and including version 1\&.3, the direction and octant
procedures of this package used this convention inconsistently\&.
.SH REFERENCES
.IP [1]
\fIPolygon Intersection\fR [http:/wiki\&.tcl\&.tk/12070]
.IP [2]
\fIhttp://en\&.wikipedia\&.org/wiki/Line-line_intersection\fR
.IP [3]
\fIhttp://local\&.wasp\&.uwa\&.edu\&.au/~pbourke/geometry/lineline2d/\fR
.PP
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: geometry\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
angle, distance, line, math, plane geometry, point
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2001 by Ideogramic ApS and other parties
Copyright (c) 2010 by Andreas Kupries
Copyright (c) 2010 by Kevin Kenny
Copyright (c) 2018 by Arjen Markus
Copyright (c) 2020 by Manfred Rosenberger

.fi