File: optimize.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (628 lines) | stat: -rw-r--r-- 21,037 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
'\"
'\" Generated from file 'optimize\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
'\" Copyright (c) 2004,2005 Kevn B\&. Kenny <kennykb@users\&.sourceforge\&.net>
'\"
.TH "math::optimize" n 1\&.0 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::optimize \- Optimisation routines
.SH SYNOPSIS
package require \fBTcl 8\&.5 9\fR
.sp
package require \fBmath::optimize ?1\&.0?\fR
.sp
\fB::math::optimize::minimum\fR \fIbegin\fR \fIend\fR \fIfunc\fR \fImaxerr\fR
.sp
\fB::math::optimize::maximum\fR \fIbegin\fR \fIend\fR \fIfunc\fR \fImaxerr\fR
.sp
\fB::math::optimize::min_bound_1d\fR \fIfunc\fR \fIbegin\fR \fIend\fR ?\fB-relerror\fR \fIreltol\fR? ?\fB-abserror\fR \fIabstol\fR? ?\fB-maxiter\fR \fImaxiter\fR? ?\fB-trace\fR \fItraceflag\fR?
.sp
\fB::math::optimize::min_unbound_1d\fR \fIfunc\fR \fIbegin\fR \fIend\fR ?\fB-relerror\fR \fIreltol\fR? ?\fB-abserror\fR \fIabstol\fR? ?\fB-maxiter\fR \fImaxiter\fR? ?\fB-trace\fR \fItraceflag\fR?
.sp
\fB::math::optimize::solveLinearProgram\fR \fIobjective\fR \fIconstraints\fR
.sp
\fB::math::optimize::linearProgramMaximum\fR \fIobjective\fR \fIresult\fR
.sp
\fB::math::optimize::nelderMead\fR \fIobjective\fR \fIxVector\fR ?\fB-scale\fR \fIxScaleVector\fR? ?\fB-ftol\fR \fIepsilon\fR? ?\fB-maxiter\fR \fIcount\fR? ??-trace? \fIflag\fR?
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several optimisation algorithms:
.IP \(bu
Minimize or maximize a function over a given interval
.IP \(bu
Solve a linear program (maximize a linear function subject to linear
constraints)
.IP \(bu
Minimize a function of several variables given an initial guess for the
location of the minimum\&.
.PP
.PP
The package is fully implemented in Tcl\&. No particular attention has
been paid to the accuracy of the calculations\&. Instead, the
algorithms have been used in a straightforward manner\&.
.PP
This document describes the procedures and explains their usage\&.
.SH PROCEDURES
.PP
This package defines the following public procedures:
.TP
\fB::math::optimize::minimum\fR \fIbegin\fR \fIend\fR \fIfunc\fR \fImaxerr\fR
Minimize the given (continuous) function by examining the values in the
given interval\&. The procedure determines the values at both ends and in the
centre of the interval and then constructs a new interval of 1/2 length
that includes the minimum\&. No guarantee is made that the \fIglobal\fR
minimum is found\&.
.sp
The procedure returns the "x" value for which the function is minimal\&.
.sp
\fIThis procedure has been deprecated - use min_bound_1d instead\fR
.sp
\fIbegin\fR - Start of the interval
.sp
\fIend\fR - End of the interval
.sp
\fIfunc\fR - Name of the function to be minimized (a procedure taking
one argument)\&.
.sp
\fImaxerr\fR - Maximum relative error (defaults to 1\&.0e-4)
.TP
\fB::math::optimize::maximum\fR \fIbegin\fR \fIend\fR \fIfunc\fR \fImaxerr\fR
Maximize the given (continuous) function by examining the values in the
given interval\&. The procedure determines the values at both ends and in the
centre of the interval and then constructs a new interval of 1/2 length
that includes the maximum\&. No guarantee is made that the \fIglobal\fR
maximum is found\&.
.sp
The procedure returns the "x" value for which the function is maximal\&.
.sp
\fIThis procedure has been deprecated - use max_bound_1d instead\fR
.sp
\fIbegin\fR - Start of the interval
.sp
\fIend\fR - End of the interval
.sp
\fIfunc\fR - Name of the function to be maximized (a procedure taking
one argument)\&.
.sp
\fImaxerr\fR - Maximum relative error (defaults to 1\&.0e-4)
.TP
\fB::math::optimize::min_bound_1d\fR \fIfunc\fR \fIbegin\fR \fIend\fR ?\fB-relerror\fR \fIreltol\fR? ?\fB-abserror\fR \fIabstol\fR? ?\fB-maxiter\fR \fImaxiter\fR? ?\fB-trace\fR \fItraceflag\fR?
Miminizes a function of one variable in the given interval\&.  The procedure
uses Brent's method of parabolic interpolation, protected by golden-section
subdivisions if the interpolation is not converging\&.  No guarantee is made
that a \fIglobal\fR minimum is found\&.  The function to evaluate, \fIfunc\fR,
must be a single Tcl command; it will be evaluated with an abscissa appended
as the last argument\&.
.sp
\fIx1\fR and \fIx2\fR are the two bounds of
the interval in which the minimum is to be found\&.  They need not be in
increasing order\&.
.sp
\fIreltol\fR, if specified, is the desired upper bound
on the relative error of the result; default is 1\&.0e-7\&.  The given value
should never be smaller than the square root of the machine's floating point
precision, or else convergence is not guaranteed\&.  \fIabstol\fR, if specified,
is the desired upper bound on the absolute error of the result; default
is 1\&.0e-10\&.  Caution must be used with small values of \fIabstol\fR to
avoid overflow/underflow conditions; if the minimum is expected to lie
about a small but non-zero abscissa, you consider either shifting the
function or changing its length scale\&.
.sp
\fImaxiter\fR may be used to constrain the number of function evaluations
to be performed; default is 100\&.  If the command evaluates the function
more than \fImaxiter\fR times, it returns an error to the caller\&.
.sp
\fItraceFlag\fR is a Boolean value\&. If true, it causes the command to
print a message on the standard output giving the abscissa and ordinate
at each function evaluation, together with an indication of what type
of interpolation was chosen\&.  Default is 0 (no trace)\&.
.TP
\fB::math::optimize::min_unbound_1d\fR \fIfunc\fR \fIbegin\fR \fIend\fR ?\fB-relerror\fR \fIreltol\fR? ?\fB-abserror\fR \fIabstol\fR? ?\fB-maxiter\fR \fImaxiter\fR? ?\fB-trace\fR \fItraceflag\fR?
Miminizes a function of one variable over the entire real number line\&.
The procedure uses parabolic extrapolation combined with golden-section
dilatation to search for a region where a minimum exists, followed by
Brent's method of parabolic interpolation, protected by golden-section
subdivisions if the interpolation is not converging\&.  No guarantee is made
that a \fIglobal\fR minimum is found\&.  The function to evaluate, \fIfunc\fR,
must be a single Tcl command; it will be evaluated with an abscissa appended
as the last argument\&.
.sp
\fIx1\fR and \fIx2\fR are two initial guesses at where the minimum
may lie\&.  \fIx1\fR is the starting point for the minimization, and
the difference between \fIx2\fR and \fIx1\fR is used as a hint at the
characteristic length scale of the problem\&.
.sp
\fIreltol\fR, if specified, is the desired upper bound
on the relative error of the result; default is 1\&.0e-7\&.  The given value
should never be smaller than the square root of the machine's floating point
precision, or else convergence is not guaranteed\&.  \fIabstol\fR, if specified,
is the desired upper bound on the absolute error of the result; default
is 1\&.0e-10\&.  Caution must be used with small values of \fIabstol\fR to
avoid overflow/underflow conditions; if the minimum is expected to lie
about a small but non-zero abscissa, you consider either shifting the
function or changing its length scale\&.
.sp
\fImaxiter\fR may be used to constrain the number of function evaluations
to be performed; default is 100\&.  If the command evaluates the function
more than \fImaxiter\fR times, it returns an error to the caller\&.
.sp
\fItraceFlag\fR is a Boolean value\&. If true, it causes the command to
print a message on the standard output giving the abscissa and ordinate
at each function evaluation, together with an indication of what type
of interpolation was chosen\&.  Default is 0 (no trace)\&.
.TP
\fB::math::optimize::solveLinearProgram\fR \fIobjective\fR \fIconstraints\fR
Solve a \fIlinear program\fR in standard form using a straightforward
implementation of the Simplex algorithm\&. (In the explanation below: The
linear program has N constraints and M variables)\&.
.sp
The procedure returns a list of M values, the values for which the
objective function is maximal or a single keyword if the linear program
is not feasible or unbounded (either "unfeasible" or "unbounded")
.sp
\fIobjective\fR - The M coefficients of the objective function
.sp
\fIconstraints\fR - Matrix of coefficients plus maximum values that
implement the linear constraints\&. It is expected to be a list of N lists
of M+1 numbers each, M coefficients and the maximum value\&.
.TP
\fB::math::optimize::linearProgramMaximum\fR \fIobjective\fR \fIresult\fR
Convenience function to return the maximum for the solution found by the
solveLinearProgram procedure\&.
.sp
\fIobjective\fR - The M coefficients of the objective function
.sp
\fIresult\fR - The result as returned by solveLinearProgram
.TP
\fB::math::optimize::nelderMead\fR \fIobjective\fR \fIxVector\fR ?\fB-scale\fR \fIxScaleVector\fR? ?\fB-ftol\fR \fIepsilon\fR? ?\fB-maxiter\fR \fIcount\fR? ??-trace? \fIflag\fR?
Minimizes, in unconstrained fashion, a function of several variable over all
of space\&.  The function to evaluate, \fIobjective\fR, must be a single Tcl
command\&. To it will be appended as many elements as appear in the initial guess at
the location of the minimum, passed in as a Tcl list, \fIxVector\fR\&.
.sp
\fIxScaleVector\fR is an initial guess at the problem scale; the first
function evaluations will be made by varying the co-ordinates in \fIxVector\fR
by the amounts in \fIxScaleVector\fR\&.  If \fIxScaleVector\fR is not supplied,
the co-ordinates will be varied by a factor of 1\&.0001 (if the co-ordinate
is non-zero) or by a constant 0\&.0001 (if the co-ordinate is zero)\&.
.sp
\fIepsilon\fR is the desired relative error in the value of the function
evaluated at the minimum\&. The default is 1\&.0e-7, which usually gives three
significant digits of accuracy in the values of the x's\&.
.sp
pp
\fIcount\fR is a limit on the number of trips through the main loop of
the optimizer\&.  The number of function evaluations may be several times
this number\&.  If the optimizer fails to find a minimum to within \fIftol\fR
in \fImaxiter\fR iterations, it returns its current best guess and an
error status\&. Default is to allow 500 iterations\&.
.sp
\fIflag\fR is a flag that, if true, causes a line to be written to the
standard output for each evaluation of the objective function, giving
the arguments presented to the function and the value returned\&. Default is
false\&.
.sp
The \fBnelderMead\fR procedure returns a list of alternating keywords and
values suitable for use with \fBarray set\fR\&. The meaning of the keywords is:
.sp
\fIx\fR is the approximate location of the minimum\&.
.sp
\fIy\fR is the value of the function at \fIx\fR\&.
.sp
\fIyvec\fR is a vector of the best N+1 function values achieved, where
N is the dimension of \fIx\fR
.sp
\fIvertices\fR is a list of vectors giving the function arguments
corresponding to the values in \fIyvec\fR\&.
.sp
\fInIter\fR is the number of iterations required to achieve convergence or
fail\&.
.sp
\fIstatus\fR is 'ok' if the operation succeeded, or 'too-many-iterations'
if the maximum iteration count was exceeded\&.
.sp
\fBnelderMead\fR minimizes the given function using the downhill
simplex method of Nelder and Mead\&.  This method is quite slow - much
faster methods for minimization are known - but has the advantage of being
extremely robust in the face of problems where the minimum lies in
a valley of complex topology\&.
.sp
\fBnelderMead\fR can occasionally find itself "stuck" at a point where
it can make no further progress; it is recommended that the caller
run it at least a second time, passing as the initial guess the
result found by the previous call\&.  The second run is usually very
fast\&.
.sp
\fBnelderMead\fR can be used in some cases for constrained optimization\&.
To do this, add a large value to the objective function if the parameters
are outside the feasible region\&.  To work effectively in this mode,
\fBnelderMead\fR requires that the initial guess be feasible and
usually requires that the feasible region be convex\&.
.PP
.SH NOTES
.PP
Several of the above procedures take the \fInames\fR of procedures as
arguments\&. To avoid problems with the \fIvisibility\fR of these
procedures, the fully-qualified name of these procedures is determined
inside the optimize routines\&. For the user this has only one
consequence: the named procedure must be visible in the calling
procedure\&. For instance:
.CS


    namespace eval ::mySpace {
       namespace export calcfunc
       proc calcfunc { x } { return $x }
    }
    #
    # Use a fully-qualified name
    #
    namespace eval ::myCalc {
       puts [min_bound_1d ::myCalc::calcfunc $begin $end]
    }
    #
    # Import the name
    #
    namespace eval ::myCalc {
       namespace import ::mySpace::calcfunc
       puts [min_bound_1d calcfunc $begin $end]
    }

.CE
The simple procedures \fIminimum\fR and \fImaximum\fR have been
deprecated: the alternatives are much more flexible, robust and
require less function evaluations\&.
.SH EXAMPLES
.PP
Let us take a few simple examples:
.PP
Determine the maximum of f(x) = x^3 exp(-3x), on the interval (0,10):
.CS


proc efunc { x } { expr {$x*$x*$x * exp(-3\&.0*$x)} }
puts "Maximum at: [::math::optimize::max_bound_1d efunc 0\&.0 10\&.0]"

.CE
.PP
The maximum allowed error determines the number of steps taken (with
each step in the iteration the interval is reduced with a factor 1/2)\&.
Hence, a maximum error of 0\&.0001 is achieved in approximately 14 steps\&.
.PP
An example of a \fIlinear program\fR is:
.PP
Optimise the expression 3x+2y, where:
.CS


   x >= 0 and y >= 0 (implicit constraints, part of the
                     definition of linear programs)

   x + y   <= 1      (constraints specific to the problem)
   2x + 5y <= 10

.CE
.PP
This problem can be solved as follows:
.CS



   set solution [::math::optimize::solveLinearProgram  { 3\&.0   2\&.0 }  { { 1\&.0   1\&.0   1\&.0 }
        { 2\&.0   5\&.0  10\&.0 } } ]

.CE
.PP
Note, that a constraint like:
.CS


   x + y >= 1

.CE
can be turned into standard form using:
.CS


   -x  -y <= -1

.CE
.PP
The theory of linear programming is the subject of many a text book and
the Simplex algorithm that is implemented here is the best-known
method to solve this type of problems, but it is not the only one\&.
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: optimize\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
linear program, math, maximum, minimum, optimization
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
Copyright (c) 2004,2005 Kevn B\&. Kenny <kennykb@users\&.sourceforge\&.net>

.fi