1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
'\"
'\" Generated from file 'probopt\&.man' by tcllib/doctools with format 'nroff'
'\"
.TH "math::probopt" n 1\&.1 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::probopt \- Probabilistic optimisation methods
.SH SYNOPSIS
package require \fBTcl 8\&.6 9\fR
.sp
package require \fBTclOO\fR
.sp
package require \fBmath::probopt 1\&.1\fR
.sp
\fB::math::probopt::pso\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::sce\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::diffev\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::lipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::adaLipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
.BE
.SH DESCRIPTION
.PP
The purpose of the \fBmath::probopt\fR package is to provide various optimisation
algorithms that are based on probabilistic techniques\&. The results of these algorithms
may therefore vary from one run to the next\&. The algorithms are all well-known and
well described and proponents generally claim they are efficient and reliable\&.
.PP
As most of these algorithms have one or more tunable parameters or even variations,
the interface to each accepts options to set these parameters or the select
the variation\&. These take the form of key-value pairs, for instance, \fI-iterations 100\fR\&.
.PP
This manual does not offer any recommendations with regards to these algorithms, nor
does it provide much in the way of guidelines for the parameters\&. For this we refer to
online articles on the algorithms in question\&.
.PP
A few notes, however:
.IP \(bu
With the exception of LIPO, the algorithms are capable of dealing with irregular (non-smooth) and even discontinuous
functions\&.
.IP \(bu
The results depend on the random number seeding and are likely not to be very accurate, especially if the function
varies slowly in the vicinty of the optimum\&. They do give a good starting point for a deterministic algorithm\&.
.PP
.PP
The collection consists of the following algorithms:
.IP \(bu
PSO - particle swarm optimisation
.IP \(bu
SCE - shuffled complexes evolution
.IP \(bu
DE - differential evolution
.IP \(bu
LIPO - Lipschitz optimisation
.PP
The various procedures have a uniform interface:
.CS
set result [::math::probopt::algorithm function bounds args]
.CE
The arguments have the following meaning:
.IP \(bu
The argument \fIfunction\fR is the name of the procedure that evaluates the function\&.
Its interface is:
.CS
set value [function coords]
.CE
.IP
where \fIcoords\fR is a list of coordinates at which to evaluate the function\&. It is
supposed to return the function value\&.
.IP \(bu
The argument \fIbounds\fR is a list of pairs of minimum and maximum for each coordinate\&.
This list implicitly determines the dimension of the coordinate space in which the optimum
is to be sought, for instance for a function like \fIx**2 + (y-1)**4\fR, you may specify
the bounds as \fI{{-1 1} {-1 1}}\fR, that is, two pairs for the two coordinates\&.
.IP \(bu
The rest (\fIargs\fR) consists of zero or more key-value pairs to specify the options\&. Which
options are supported by which algorithm, is documented below\&.
.PP
The result of the various optimisation procedures is a dictionary containing at least the
following elements:
.IP \(bu
\fIoptimum-coordinates\fR is a list containing the coordinates of the optimum that was found\&.
.IP \(bu
\fIoptimum-value\fR is the function value at those coordinates\&.
.IP \(bu
\fIevaluations\fR is the number of function evaluations\&.
.IP \(bu
\fIbest-values\fR is a list of successive best values, obtained as
part of the iterations\&.
.PP
.SH "DETAILS ON THE ALGORITHMS"
The algorithms in the package are the following:
.TP
\fB::math::probopt::pso\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "particle swarm optimisation" algorithm uses the idea that the candidate
optimum points should swarm around the best point found so far, with
variations to allow for improvements\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-swarmsize number\fR: Number of particles to consider (default: 50)
.IP \(bu
\fI-vweight value\fR: Weight for the current "velocity" (0-1, default: 0\&.5)
.IP \(bu
\fI-pweight value\fR: Weight for the individual particle's best position (0-1, default: 0\&.3)
.IP \(bu
\fI-gweight value\fR: Weight for the "best" overall position as per particle (0-1, default: 0\&.3)
.IP \(bu
\fI-type local/global\fR: Type of optimisation
.IP \(bu
\fI-neighbours number\fR: Size of the neighbourhood (default: 5, used if "local")
.IP \(bu
\fI-iterations number\fR: Maximum number of iterations
.IP \(bu
\fI-tolerance value\fR: Absolute minimal improvement for minimum value
.RE
.TP
\fB::math::probopt::sce\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "shuffled complex evolution" algorithm is an extension of the Nelder-Mead algorithm that
uses multiple complexes and reorganises these complexes to find the "global" optimum\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-complexes number\fR: Number of particles to consider (default: 2)
.IP \(bu
\fI-mincomplexes number\fR: Minimum number of complexes (default: 2; not currently used)
.IP \(bu
\fI-newpoints number\fR: Number of new points to be generated (default: 1)
.IP \(bu
\fI-shuffle number\fR: Number of iterations after which to reshuffle the complexes (if set to 0, the default, a number will be calculated from the number of dimensions)
.IP \(bu
\fI-pointspercomplex number\fR: Number of points per complex (if set to 0, the default, a number will be calculated from the number of dimensions)
.IP \(bu
\fI-pointspersubcomplex number\fR: Number of points per subcomplex (used to select the best points in each complex; if set to 0, the default, a number will be calculated from the number of dimensions)
.IP \(bu
\fI-iterations number\fR: Maximum number of iterations (default: 100)
.IP \(bu
\fI-maxevaluations number\fR: Maximum number of function evaluations (when this number is reached the iteration is broken off\&. Default: 1000 million)
.IP \(bu
\fI-abstolerance value\fR: Absolute minimal improvement for minimum value (default: 0\&.0)
.IP \(bu
\fI-reltolerance value\fR: Relative minimal improvement for minimum value (default: 0\&.001)
.RE
.TP
\fB::math::probopt::diffev\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "differential evolution" algorithm uses a number of initial points that are then updated using randomly selected points\&. It is more or less akin
to genetic algorithms\&. It is controlled by two parameters, factor and lambda, where the first determines the update via random points and the second
the update with the best point found sofar\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-iterations number\fR: Maximum number of iterations (default: 100)
.IP \(bu
\fI-number number\fR: Number of point to work with (if set to 0, the default, it is calculated from the number of dimensions)
.IP \(bu
\fI-factor value\fR: Weight of randomly selected points in the updating (0-1, default: 0\&.6)
.IP \(bu
\fI-lambda value\fR: Weight of the best point found so far in the updating (0-1, default: 0\&.0)
.IP \(bu
\fI-crossover value\fR: Fraction of new points to be considered for replacing the old ones (0-1, default: 0\&.5)
.IP \(bu
\fI-maxevaluations number\fR: Maximum number of function evaluations (when this number is reached the iteration is broken off\&. Default: 1000 million)
.IP \(bu
\fI-abstolerance value\fR: Absolute minimal improvement for minimum value (default: 0\&.0)
.IP \(bu
\fI-reltolerance value\fR: Relative minimal improvement for minimum value (default: 0\&.001)
.RE
.TP
\fB::math::probopt::lipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "Lipschitz optimisation" algorithm uses the "Lipschitz" property of the given function to find a \fImaximum\fR in the given bounding box\&. There are
two variants, \fIlipoMax\fR assumes a fixed estimate for the Lipschitz parameter\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-iterations number\fR: Number of iterations (equals the actual number of function evaluations, default: 100)
.IP \(bu
\fI-lipschitz value\fR: Estimate of the Lipschitz parameter (default: 10\&.0)
.RE
.TP
\fB::math::probopt::adaLipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "adaptive Lipschitz optimisation" algorithm uses the "Lipschitz" property of the given function to find a \fImaximum\fR in the given bounding box\&. The adaptive
variant actually uses two phases to find a suitable estimate for the Lipschitz parameter\&. This is controlled by the "Bernoulli" parameter\&.
.sp
When you specify a large number of iterations, the algorithm may take a very long time to complete as it is trying to improve on the Lipschitz parameter and
the chances of hitting a better estimate diminish fast\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-iterations number\fR: Number of iterations (equals the actual number of function evaluations, default: 100)
.IP \(bu
\fI-bernoulli value\fR: Parameter for random decisions (exploration versus exploitation, default: 0\&.1)
.RE
.PP
.SH REFERENCES
The various algorithms have been described in on-line publications\&. Here are a few:
.IP \(bu
\fIPSO\fR: Maurice Clerc, Standard Particle Swarm Optimisation (2012)
\fIhttps://hal\&.archives-ouvertes\&.fr/file/index/docid/764996/filename/SPSO_descriptions\&.pdf\fR
.sp
Alternatively: \fIhttps://en\&.wikipedia\&.org/wiki/Particle_swarm_optimization\fR
.IP \(bu
\fISCE\fR: Qingyuan Duan, Soroosh Sorooshian, Vijai K\&. Gupta, Optimal use offo the SCE-UA global optimization method for calibrating watershed models
(1994), Journal of Hydrology 158, pp 265-284
.sp
\fIhttps://www\&.researchgate\&.net/publication/223408756_Optimal_Use_of_the_SCE-UA_Global_Optimization_Method_for_Calibrating_Watershed_Models\fR
.IP \(bu
\fIDE\fR: Rainer Storn and Kenneth Price, Differential Evolution - A simple and efficient adaptivescheme for globaloptimization over continuous spaces
(1996)
.sp
\fIhttp://www1\&.icsi\&.berkeley\&.edu/~storn/TR-95-012\&.pdf\fR
.IP \(bu
\fILIPO\fR: Cedric Malherbe and Nicolas Vayatis, Global optimization of Lipschitz functions,
(june 2017)
.sp
\fIhttps://arxiv\&.org/pdf/1703\&.02628\&.pdf\fR
.PP
.SH KEYWORDS
mathematics, optimisation, probabilistic calculations
.SH CATEGORY
Mathematics
|