File: probopt.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (502 lines) | stat: -rw-r--r-- 16,312 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
'\"
'\" Generated from file 'probopt\&.man' by tcllib/doctools with format 'nroff'
'\"
.TH "math::probopt" n 1\&.1 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::probopt \- Probabilistic optimisation methods
.SH SYNOPSIS
package require \fBTcl 8\&.6 9\fR
.sp
package require \fBTclOO\fR
.sp
package require \fBmath::probopt 1\&.1\fR
.sp
\fB::math::probopt::pso\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::sce\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::diffev\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::lipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
\fB::math::probopt::adaLipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
.sp
.BE
.SH DESCRIPTION
.PP
The purpose of the \fBmath::probopt\fR package is to provide various optimisation
algorithms that are based on probabilistic techniques\&. The results of these algorithms
may therefore vary from one run to the next\&. The algorithms are all well-known and
well described and proponents generally claim they are efficient and reliable\&.
.PP
As most of these algorithms have one or more tunable parameters or even variations,
the interface to each accepts options to set these parameters or the select
the variation\&. These take the form of key-value pairs, for instance, \fI-iterations 100\fR\&.
.PP
This manual does not offer any recommendations with regards to these algorithms, nor
does it provide much in the way of guidelines for the parameters\&. For this we refer to
online articles on the algorithms in question\&.
.PP
A few notes, however:
.IP \(bu
With the exception of LIPO, the algorithms are capable of dealing with irregular (non-smooth) and even discontinuous
functions\&.
.IP \(bu
The results depend on the random number seeding and are likely not to be very accurate, especially if the function
varies slowly in the vicinty of the optimum\&. They do give a good starting point for a deterministic algorithm\&.
.PP
.PP
The collection consists of the following algorithms:
.IP \(bu
PSO - particle swarm optimisation
.IP \(bu
SCE - shuffled complexes evolution
.IP \(bu
DE - differential evolution
.IP \(bu
LIPO - Lipschitz optimisation
.PP
The various procedures have a uniform interface:
.CS


   set result [::math::probopt::algorithm function bounds args]

.CE
The arguments have the following meaning:
.IP \(bu
The argument \fIfunction\fR is the name of the procedure that evaluates the function\&.
Its interface is:
.CS


    set value [function coords]

.CE
.IP
where \fIcoords\fR is a list of coordinates at which to evaluate the function\&. It is
supposed to return the function value\&.
.IP \(bu
The argument \fIbounds\fR is a list of pairs of minimum and maximum for each coordinate\&.
This list implicitly determines the dimension of the coordinate space in which the optimum
is to be sought, for instance for a function like \fIx**2 + (y-1)**4\fR, you may specify
the bounds as \fI{{-1 1} {-1 1}}\fR, that is, two pairs for the two coordinates\&.
.IP \(bu
The rest (\fIargs\fR) consists of zero or more key-value pairs to specify the options\&. Which
options are supported by which algorithm, is documented below\&.
.PP
The result of the various optimisation procedures is a dictionary containing at least the
following elements:
.IP \(bu
\fIoptimum-coordinates\fR is a list containing the coordinates of the optimum that was found\&.
.IP \(bu
\fIoptimum-value\fR is the function value at those coordinates\&.
.IP \(bu
\fIevaluations\fR is the number of function evaluations\&.
.IP \(bu
\fIbest-values\fR is a list of successive best values, obtained as
part of the iterations\&.
.PP
.SH "DETAILS ON THE ALGORITHMS"
The algorithms in the package are the following:
.TP
\fB::math::probopt::pso\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "particle swarm optimisation" algorithm uses the idea that the candidate
optimum points should swarm around the best point found so far, with
variations to allow for improvements\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-swarmsize number\fR: Number of particles to consider (default: 50)
.IP \(bu
\fI-vweight    value\fR: Weight for the current "velocity" (0-1, default: 0\&.5)
.IP \(bu
\fI-pweight    value\fR: Weight for the individual particle's best position (0-1, default: 0\&.3)
.IP \(bu
\fI-gweight    value\fR: Weight for the "best" overall position as per particle (0-1, default: 0\&.3)
.IP \(bu
\fI-type       local/global\fR: Type of optimisation
.IP \(bu
\fI-neighbours number\fR: Size of the neighbourhood (default: 5, used if "local")
.IP \(bu
\fI-iterations number\fR: Maximum number of iterations
.IP \(bu
\fI-tolerance  value\fR: Absolute minimal improvement for minimum value
.RE
.TP
\fB::math::probopt::sce\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "shuffled complex evolution" algorithm is an extension of the Nelder-Mead algorithm that
uses multiple complexes and reorganises these complexes to find the "global" optimum\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-complexes           number\fR: Number of particles to consider (default: 2)
.IP \(bu
\fI-mincomplexes        number\fR: Minimum number of complexes (default: 2; not currently used)
.IP \(bu
\fI-newpoints           number\fR: Number of new points to be generated (default: 1)
.IP \(bu
\fI-shuffle             number\fR: Number of iterations after which to reshuffle the complexes (if set to 0, the default, a number will be calculated from the number of dimensions)
.IP \(bu
\fI-pointspercomplex    number\fR: Number of points per complex (if set to 0, the default, a number will be calculated from the number of dimensions)
.IP \(bu
\fI-pointspersubcomplex number\fR: Number of points per subcomplex (used to select the best points in each complex; if set to 0, the default, a number will be calculated from the number of dimensions)
.IP \(bu
\fI-iterations          number\fR: Maximum number of iterations (default: 100)
.IP \(bu
\fI-maxevaluations      number\fR: Maximum number of function evaluations (when this number is reached the iteration is broken off\&. Default: 1000 million)
.IP \(bu
\fI-abstolerance        value\fR: Absolute minimal improvement for minimum value (default: 0\&.0)
.IP \(bu
\fI-reltolerance        value\fR: Relative minimal improvement for minimum value (default: 0\&.001)
.RE
.TP
\fB::math::probopt::diffev\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "differential evolution" algorithm uses a number of initial points that are then updated using randomly selected points\&. It is more or less akin
to genetic algorithms\&. It is controlled by two parameters, factor and lambda, where the first determines the update via random points and the second
the update with the best point found sofar\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-iterations          number\fR: Maximum number of iterations (default: 100)
.IP \(bu
\fI-number              number\fR: Number of point to work with (if set to 0, the default, it is calculated from the number of dimensions)
.IP \(bu
\fI-factor              value\fR: Weight of randomly selected points in the updating (0-1, default: 0\&.6)
.IP \(bu
\fI-lambda              value\fR: Weight of the best point found so far in the updating (0-1, default: 0\&.0)
.IP \(bu
\fI-crossover           value\fR: Fraction of new points to be considered for replacing the old ones (0-1, default: 0\&.5)
.IP \(bu
\fI-maxevaluations      number\fR: Maximum number of function evaluations (when this number is reached the iteration is broken off\&. Default: 1000 million)
.IP \(bu
\fI-abstolerance        value\fR: Absolute minimal improvement for minimum value (default: 0\&.0)
.IP \(bu
\fI-reltolerance        value\fR: Relative minimal improvement for minimum value (default: 0\&.001)
.RE
.TP
\fB::math::probopt::lipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "Lipschitz optimisation" algorithm uses the "Lipschitz" property of the given function to find a \fImaximum\fR in the given bounding box\&. There are
two variants, \fIlipoMax\fR assumes a fixed estimate for the Lipschitz parameter\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-iterations          number\fR: Number of iterations (equals the actual number of function evaluations, default: 100)
.IP \(bu
\fI-lipschitz           value\fR: Estimate of the Lipschitz parameter (default: 10\&.0)
.RE
.TP
\fB::math::probopt::adaLipoMax\fR \fIfunction\fR \fIbounds\fR \fIargs\fR
The "adaptive Lipschitz optimisation" algorithm uses the "Lipschitz" property of the given function to find a \fImaximum\fR in the given bounding box\&. The adaptive
variant actually uses two phases to find a suitable estimate for the Lipschitz parameter\&. This is controlled by the "Bernoulli" parameter\&.
.sp
When you specify a large number of iterations, the algorithm may take a very long time to complete as it is trying to improve on the Lipschitz parameter and
the chances of hitting a better estimate diminish fast\&.
.sp
It recognises the following options:
.RS
.IP \(bu
\fI-iterations          number\fR: Number of iterations (equals the actual number of function evaluations, default: 100)
.IP \(bu
\fI-bernoulli           value\fR: Parameter for random decisions (exploration versus exploitation, default: 0\&.1)
.RE
.PP
.SH REFERENCES
The various algorithms have been described in on-line publications\&. Here are a few:
.IP \(bu
\fIPSO\fR: Maurice Clerc, Standard Particle Swarm Optimisation (2012)
\fIhttps://hal\&.archives-ouvertes\&.fr/file/index/docid/764996/filename/SPSO_descriptions\&.pdf\fR
.sp
Alternatively: \fIhttps://en\&.wikipedia\&.org/wiki/Particle_swarm_optimization\fR
.IP \(bu
\fISCE\fR: Qingyuan Duan, Soroosh Sorooshian, Vijai K\&. Gupta, Optimal use offo the SCE-UA global optimization method for calibrating watershed models
(1994), Journal of Hydrology 158, pp 265-284
.sp
\fIhttps://www\&.researchgate\&.net/publication/223408756_Optimal_Use_of_the_SCE-UA_Global_Optimization_Method_for_Calibrating_Watershed_Models\fR
.IP \(bu
\fIDE\fR: Rainer Storn and Kenneth Price, Differential Evolution - A simple and efficient adaptivescheme for globaloptimization over continuous spaces
(1996)
.sp
\fIhttp://www1\&.icsi\&.berkeley\&.edu/~storn/TR-95-012\&.pdf\fR
.IP \(bu
\fILIPO\fR: Cedric Malherbe and Nicolas Vayatis, Global optimization of Lipschitz functions,
(june 2017)
.sp
\fIhttps://arxiv\&.org/pdf/1703\&.02628\&.pdf\fR
.PP
.SH KEYWORDS
mathematics, optimisation, probabilistic calculations
.SH CATEGORY
Mathematics