File: romberg.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (591 lines) | stat: -rw-r--r-- 20,129 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
'\"
'\" Generated from file 'romberg\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Kevin B\&. Kenny <kennykb@acm\&.org>\&. All rights reserved\&. Redistribution permitted under the terms of the Open Publication License <http://www\&.opencontent\&.org/openpub/>
'\"
.TH "math::calculus::romberg" n 0\&.6 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::calculus::romberg \- Romberg integration
.SH SYNOPSIS
package require \fBTcl 8\&.5 9\fR
.sp
package require \fBmath::calculus 0\&.6\fR
.sp
\fB::math::calculus::romberg\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_infinity\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_sqrtSingLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_sqrtSingUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_powerLawLower\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_powerLawUpper\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_expLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_expUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
.BE
.SH DESCRIPTION
.PP
The \fBromberg\fR procedures in the \fBmath::calculus\fR package
perform numerical integration of a function of one variable\&.  They
are intended to be of "production quality" in that they are robust,
precise, and reasonably efficient in terms of the number of function
evaluations\&.
.SH PROCEDURES
The following procedures are available for Romberg integration:
.TP
\fB::math::calculus::romberg\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an analytic function over a given interval\&.
.TP
\fB::math::calculus::romberg_infinity\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an analytic function over a half-infinite interval\&.
.TP
\fB::math::calculus::romberg_sqrtSingLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of an inverse square root singularity at the
lower limit\&.
.TP
\fB::math::calculus::romberg_sqrtSingUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of an inverse square root singularity at the
upper limit\&.
.TP
\fB::math::calculus::romberg_powerLawLower\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of a power law singularity at the
lower limit\&.
.TP
\fB::math::calculus::romberg_powerLawUpper\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of a power law singularity at the
upper limit\&.
.TP
\fB::math::calculus::romberg_expLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an exponentially growing function; the lower limit of the
region of integration may be arbitrarily large and negative\&.
.TP
\fB::math::calculus::romberg_expUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an exponentially decaying function; the upper limit of the
region of integration may be arbitrarily large\&.
.PP
.SH PARAMETERS
.TP
\fIf\fR
Function to integrate\&.  Must be expressed as a single Tcl command,
to which will be appended a single argument, specifically, the
abscissa at which the function is to be evaluated\&. The first word
of the command will be processed with \fBnamespace which\fR in the
caller's scope prior to any evaluation\&. Given this processing, the
command may local to the calling namespace rather than needing to be
global\&.
.TP
\fIa\fR
Lower limit of the region of integration\&.
.TP
\fIb\fR
Upper limit of the region of integration\&.  For the
\fBromberg_sqrtSingLower\fR, \fBromberg_sqrtSingUpper\fR,
\fBromberg_powerLawLower\fR, \fBromberg_powerLawUpper\fR,
\fBromberg_expLower\fR, and \fBromberg_expUpper\fR procedures,
the lower limit must be strictly less than the upper\&.  For
the other procedures, the limits may appear in either order\&.
.TP
\fIgamma\fR
Power to use for a power law singularity; see section
\fBIMPROPER INTEGRALS\fR for details\&.
.PP
.SH OPTIONS
.TP
\fB-abserror\fR \fIepsilon\fR
Requests that the integration machinery proceed at most until
the estimated absolute error of the integral is less than
\fIepsilon\fR\&. The error may be seriously over- or underestimated
if the function (or any of its derivatives) contains singularities;
see section \fBIMPROPER INTEGRALS\fR for details\&. Default
is 1\&.0e-08\&.
.TP
\fB-relerror\fR \fIepsilon\fR
Requests that the integration machinery proceed at most until
the estimated relative error of the integral is less than
\fIepsilon\fR\&. The error may be seriously over- or underestimated
if the function (or any of its derivatives) contains singularities;
see section \fBIMPROPER INTEGRALS\fR for details\&.  Default is
1\&.0e-06\&.
.TP
\fB-maxiter\fR \fIm\fR
Requests that integration terminate after at most \fIn\fR triplings of
the number of evaluations performed\&.  In other words, given \fIn\fR
for \fB-maxiter\fR, the integration machinery will make at most
3**\fIn\fR evaluations of the function\&.  Default is 14, corresponding
to a limit approximately 4\&.8 million evaluations\&. (Well-behaved
functions will seldom require more than a few hundred evaluations\&.)
.TP
\fB-degree\fR \fId\fR
Requests that an extrapolating polynomial of degree \fId\fR be used
in Romberg integration; see section \fBDESCRIPTION\fR for
details\&. Default is 4\&.  Can be at most \fIm\fR-1\&.
.PP
.SH DESCRIPTION
The \fBromberg\fR procedure performs Romberg integration using
the modified midpoint rule\&. Romberg integration is an iterative
process\&.  At the first step, the function is evaluated at the
midpoint of the region of integration, and the value is multiplied by
the width of the interval for the coarsest possible estimate\&.
At the second step, the interval is divided into three parts,
and the function is evaluated at the midpoint of each part; the
sum of the values is multiplied by three\&.  At the third step,
nine parts are used, at the fourth twenty-seven, and so on,
tripling the number of subdivisions at each step\&.
.PP
Once the interval has been divided at least \fId\fR times,
a polynomial is fitted to the integrals estimated in the last
\fId\fR+1 divisions\&.  The integrals are considered to be a
function of the square of the width of the subintervals
(any good numerical analysis text will discuss this process
under "Romberg integration")\&.  The polynomial is extrapolated
to a step size of zero, computing a value for the integral and
an estimate of the error\&.
.PP
This process will be well-behaved only if the function is analytic
over the region of integration; there may be removable singularities
at either end of the region provided that the limit of the function
(and of all its derivatives) exists as the ends are approached\&.
Thus, \fBromberg\fR may be used to integrate a function like
f(x)=sin(x)/x over an interval beginning or ending at zero\&.
.PP
Note that \fBromberg\fR will either fail to converge or else return
incorrect error estimates if the function, or any of its derivatives,
has a singularity anywhere in the region of integration (except for
the case mentioned above)\&.  Care must be used, therefore, in
integrating a function like 1/(1-x**2) to avoid the places
where the derivative is singular\&.
.SH "IMPROPER INTEGRALS"
Romberg integration is also useful for integrating functions over
half-infinite intervals or functions that have singularities\&.
The trick is to make a change of variable to eliminate the
singularity, and to put the singularity at one end or the other
of the region of integration\&.  The \fBmath::calculus\fR package
supplies a number of \fBromberg\fR procedures to deal with the
commoner cases\&.
.TP
\fBromberg_infinity\fR
Integrates a function over a half-infinite interval; either
\fIa\fR or \fIb\fR may be infinite\&.  \fIa\fR and \fIb\fR must be
of the same sign; if you need to integrate across the axis,
say, from a negative value to positive infinity,
use \fBromberg\fR to integrate from the negative
value to a small positive value, and then \fBromberg_infinity\fR
to integrate from the positive value to positive infinity\&.  The
\fBromberg_infinity\fR procedure works by making the change of
variable u=1/x, so that the integral from a to b of f(x) is
evaluated as the integral from 1/a to 1/b of f(1/u)/u**2\&.
.TP
\fBromberg_powerLawLower\fR and \fBromberg_powerLawUpper\fR
Integrate a function that has an integrable power law singularity
at either the lower or upper bound of the region of integration
(or has a derivative with a power law singularity there)\&.
These procedures take a first parameter, \fIgamma\fR, which gives
the power law\&.  The function or its first derivative are presumed to diverge as
(x-\fIa\fR)**(-\fIgamma\fR) or (\fIb\fR-x)**(-\fIgamma\fR)\&.  \fIgamma\fR
must be greater than zero and less than 1\&.
.sp
These procedures are useful not only in integrating functions
that go to infinity at one end of the region of integration, but
also functions whose derivatives do not exist at the end of
the region\&.  For instance, integrating f(x)=pow(x,0\&.25) with the
origin as one end of the region will result in the \fBromberg\fR
procedure greatly underestimating the error in the integral\&.
The problem can be fixed by observing that the first derivative
of f(x), f'(x)=x**(-3/4)/4, goes to infinity at the origin\&.  Integrating
using \fBromberg_powerLawLower\fR with \fIgamma\fR set to 0\&.75
gives much more orderly convergence\&.
.sp
These procedures operate by making the change of variable
u=(x-a)**(1-gamma) (\fBromberg_powerLawLower\fR) or
u=(b-x)**(1-gamma) (\fBromberg_powerLawUpper\fR)\&.
.sp
To summarize the meaning of gamma:
.RS
.IP \(bu
If f(x) ~ x**(-a) (0 < a < 1), use gamma = a
.IP \(bu
If f'(x) ~ x**(-b) (0 < b < 1), use gamma = b
.RE
.TP
\fBromberg_sqrtSingLower\fR and \fBromberg_sqrtSingUpper\fR
These procedures behave identically to \fBromberg_powerLawLower\fR and
\fBromberg_powerLawUpper\fR for the common case of \fIgamma\fR=0\&.5;
that is, they integrate a function with an inverse square root
singularity at one end of the interval\&.  They have a simpler
implementation involving square roots rather than arbitrary powers\&.
.TP
\fBromberg_expLower\fR and \fBromberg_expUpper\fR
These procedures are for integrating a function that grows or
decreases exponentially over a half-infinite interval\&.
\fBromberg_expLower\fR handles exponentially growing functions, and
allows the lower limit of integration to be an arbitrarily large
negative number\&.  \fBromberg_expUpper\fR handles exponentially
decaying functions and allows the upper limit of integration to
be an arbitrary large positive number\&.  The functions make the
change of variable u=exp(-x) and u=exp(x) respectively\&.
.PP
.SH "OTHER CHANGES OF VARIABLE"
If you need an improper integral other than the ones listed here,
a change of variable can be written in very few lines of Tcl\&.
Because the Tcl coding that does it is somewhat arcane,
we offer a worked example here\&.
.PP
Let's say that the function that we want to integrate is
f(x)=exp(x)/sqrt(1-x*x) (not a very natural
function, but a good example), and we want to integrate
it over the interval (-1,1)\&.  The denominator falls to zero
at both ends of the interval\&. We wish to make a change of variable
from x to u
so that dx/sqrt(1-x**2) maps to du\&.  Choosing x=sin(u), we can
find that dx=cos(u)*du, and sqrt(1-x**2)=cos(u)\&.  The integral
from a to b of f(x) is the integral from asin(a) to asin(b)
of f(sin(u))*cos(u)\&.
.PP
We can make a function \fBg\fR that accepts an arbitrary function
\fBf\fR and the parameter u, and computes this new integrand\&.
.CS


proc g { f u } {
    set x [expr { sin($u) }]
    set cmd $f; lappend cmd $x; set y [eval $cmd]
    return [expr { $y / cos($u) }]
}

.CE
Now integrating \fBf\fR from \fIa\fR to \fIb\fR is the same
as integrating \fBg\fR from \fIasin(a)\fR to \fIasin(b)\fR\&.
It's a little tricky to get \fBf\fR consistently evaluated in
the caller's scope; the following procedure does it\&.
.CS


proc romberg_sine { f a b args } {
    set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
    set f [list g $f]
    return [eval [linsert $args 0 romberg $f [expr { asin($a) }] [expr { asin($b) }]]]
}

.CE
This \fBromberg_sine\fR procedure will do any function with
sqrt(1-x*x) in the denominator\&. Our sample function is
f(x)=exp(x)/sqrt(1-x*x):
.CS


proc f { x } {
    expr { exp($x) / sqrt( 1\&. - $x*$x ) }
}

.CE
Integrating it is a matter of applying \fBromberg_sine\fR
as we would any of the other \fBromberg\fR procedures:
.CS


foreach { value error } [romberg_sine f -1\&.0 1\&.0] break
puts [format "integral is %\&.6g +/- %\&.6g" $value $error]

integral is 3\&.97746 +/- 2\&.3557e-010

.CE
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: calculus\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH "SEE ALSO"
math::calculus, math::interpolate
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Kevin B\&. Kenny <kennykb@acm\&.org>\&. All rights reserved\&. Redistribution permitted under the terms of the Open Publication License <http://www\&.opencontent\&.org/openpub/>

.fi