1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
'\"
'\" Generated from file 'romberg\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Kevin B\&. Kenny <kennykb@acm\&.org>\&. All rights reserved\&. Redistribution permitted under the terms of the Open Publication License <http://www\&.opencontent\&.org/openpub/>
'\"
.TH "math::calculus::romberg" n 0\&.6 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::calculus::romberg \- Romberg integration
.SH SYNOPSIS
package require \fBTcl 8\&.5 9\fR
.sp
package require \fBmath::calculus 0\&.6\fR
.sp
\fB::math::calculus::romberg\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_infinity\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_sqrtSingLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_sqrtSingUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_powerLawLower\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_powerLawUpper\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_expLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
\fB::math::calculus::romberg_expUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
.sp
.BE
.SH DESCRIPTION
.PP
The \fBromberg\fR procedures in the \fBmath::calculus\fR package
perform numerical integration of a function of one variable\&. They
are intended to be of "production quality" in that they are robust,
precise, and reasonably efficient in terms of the number of function
evaluations\&.
.SH PROCEDURES
The following procedures are available for Romberg integration:
.TP
\fB::math::calculus::romberg\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an analytic function over a given interval\&.
.TP
\fB::math::calculus::romberg_infinity\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an analytic function over a half-infinite interval\&.
.TP
\fB::math::calculus::romberg_sqrtSingLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of an inverse square root singularity at the
lower limit\&.
.TP
\fB::math::calculus::romberg_sqrtSingUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of an inverse square root singularity at the
upper limit\&.
.TP
\fB::math::calculus::romberg_powerLawLower\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of a power law singularity at the
lower limit\&.
.TP
\fB::math::calculus::romberg_powerLawUpper\fR \fIgamma\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates a function that is expected to be analytic over an interval
except for the presence of a power law singularity at the
upper limit\&.
.TP
\fB::math::calculus::romberg_expLower\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an exponentially growing function; the lower limit of the
region of integration may be arbitrarily large and negative\&.
.TP
\fB::math::calculus::romberg_expUpper\fR \fIf\fR \fIa\fR \fIb\fR ?\fI-option value\fR\&.\&.\&.?
Integrates an exponentially decaying function; the upper limit of the
region of integration may be arbitrarily large\&.
.PP
.SH PARAMETERS
.TP
\fIf\fR
Function to integrate\&. Must be expressed as a single Tcl command,
to which will be appended a single argument, specifically, the
abscissa at which the function is to be evaluated\&. The first word
of the command will be processed with \fBnamespace which\fR in the
caller's scope prior to any evaluation\&. Given this processing, the
command may local to the calling namespace rather than needing to be
global\&.
.TP
\fIa\fR
Lower limit of the region of integration\&.
.TP
\fIb\fR
Upper limit of the region of integration\&. For the
\fBromberg_sqrtSingLower\fR, \fBromberg_sqrtSingUpper\fR,
\fBromberg_powerLawLower\fR, \fBromberg_powerLawUpper\fR,
\fBromberg_expLower\fR, and \fBromberg_expUpper\fR procedures,
the lower limit must be strictly less than the upper\&. For
the other procedures, the limits may appear in either order\&.
.TP
\fIgamma\fR
Power to use for a power law singularity; see section
\fBIMPROPER INTEGRALS\fR for details\&.
.PP
.SH OPTIONS
.TP
\fB-abserror\fR \fIepsilon\fR
Requests that the integration machinery proceed at most until
the estimated absolute error of the integral is less than
\fIepsilon\fR\&. The error may be seriously over- or underestimated
if the function (or any of its derivatives) contains singularities;
see section \fBIMPROPER INTEGRALS\fR for details\&. Default
is 1\&.0e-08\&.
.TP
\fB-relerror\fR \fIepsilon\fR
Requests that the integration machinery proceed at most until
the estimated relative error of the integral is less than
\fIepsilon\fR\&. The error may be seriously over- or underestimated
if the function (or any of its derivatives) contains singularities;
see section \fBIMPROPER INTEGRALS\fR for details\&. Default is
1\&.0e-06\&.
.TP
\fB-maxiter\fR \fIm\fR
Requests that integration terminate after at most \fIn\fR triplings of
the number of evaluations performed\&. In other words, given \fIn\fR
for \fB-maxiter\fR, the integration machinery will make at most
3**\fIn\fR evaluations of the function\&. Default is 14, corresponding
to a limit approximately 4\&.8 million evaluations\&. (Well-behaved
functions will seldom require more than a few hundred evaluations\&.)
.TP
\fB-degree\fR \fId\fR
Requests that an extrapolating polynomial of degree \fId\fR be used
in Romberg integration; see section \fBDESCRIPTION\fR for
details\&. Default is 4\&. Can be at most \fIm\fR-1\&.
.PP
.SH DESCRIPTION
The \fBromberg\fR procedure performs Romberg integration using
the modified midpoint rule\&. Romberg integration is an iterative
process\&. At the first step, the function is evaluated at the
midpoint of the region of integration, and the value is multiplied by
the width of the interval for the coarsest possible estimate\&.
At the second step, the interval is divided into three parts,
and the function is evaluated at the midpoint of each part; the
sum of the values is multiplied by three\&. At the third step,
nine parts are used, at the fourth twenty-seven, and so on,
tripling the number of subdivisions at each step\&.
.PP
Once the interval has been divided at least \fId\fR times,
a polynomial is fitted to the integrals estimated in the last
\fId\fR+1 divisions\&. The integrals are considered to be a
function of the square of the width of the subintervals
(any good numerical analysis text will discuss this process
under "Romberg integration")\&. The polynomial is extrapolated
to a step size of zero, computing a value for the integral and
an estimate of the error\&.
.PP
This process will be well-behaved only if the function is analytic
over the region of integration; there may be removable singularities
at either end of the region provided that the limit of the function
(and of all its derivatives) exists as the ends are approached\&.
Thus, \fBromberg\fR may be used to integrate a function like
f(x)=sin(x)/x over an interval beginning or ending at zero\&.
.PP
Note that \fBromberg\fR will either fail to converge or else return
incorrect error estimates if the function, or any of its derivatives,
has a singularity anywhere in the region of integration (except for
the case mentioned above)\&. Care must be used, therefore, in
integrating a function like 1/(1-x**2) to avoid the places
where the derivative is singular\&.
.SH "IMPROPER INTEGRALS"
Romberg integration is also useful for integrating functions over
half-infinite intervals or functions that have singularities\&.
The trick is to make a change of variable to eliminate the
singularity, and to put the singularity at one end or the other
of the region of integration\&. The \fBmath::calculus\fR package
supplies a number of \fBromberg\fR procedures to deal with the
commoner cases\&.
.TP
\fBromberg_infinity\fR
Integrates a function over a half-infinite interval; either
\fIa\fR or \fIb\fR may be infinite\&. \fIa\fR and \fIb\fR must be
of the same sign; if you need to integrate across the axis,
say, from a negative value to positive infinity,
use \fBromberg\fR to integrate from the negative
value to a small positive value, and then \fBromberg_infinity\fR
to integrate from the positive value to positive infinity\&. The
\fBromberg_infinity\fR procedure works by making the change of
variable u=1/x, so that the integral from a to b of f(x) is
evaluated as the integral from 1/a to 1/b of f(1/u)/u**2\&.
.TP
\fBromberg_powerLawLower\fR and \fBromberg_powerLawUpper\fR
Integrate a function that has an integrable power law singularity
at either the lower or upper bound of the region of integration
(or has a derivative with a power law singularity there)\&.
These procedures take a first parameter, \fIgamma\fR, which gives
the power law\&. The function or its first derivative are presumed to diverge as
(x-\fIa\fR)**(-\fIgamma\fR) or (\fIb\fR-x)**(-\fIgamma\fR)\&. \fIgamma\fR
must be greater than zero and less than 1\&.
.sp
These procedures are useful not only in integrating functions
that go to infinity at one end of the region of integration, but
also functions whose derivatives do not exist at the end of
the region\&. For instance, integrating f(x)=pow(x,0\&.25) with the
origin as one end of the region will result in the \fBromberg\fR
procedure greatly underestimating the error in the integral\&.
The problem can be fixed by observing that the first derivative
of f(x), f'(x)=x**(-3/4)/4, goes to infinity at the origin\&. Integrating
using \fBromberg_powerLawLower\fR with \fIgamma\fR set to 0\&.75
gives much more orderly convergence\&.
.sp
These procedures operate by making the change of variable
u=(x-a)**(1-gamma) (\fBromberg_powerLawLower\fR) or
u=(b-x)**(1-gamma) (\fBromberg_powerLawUpper\fR)\&.
.sp
To summarize the meaning of gamma:
.RS
.IP \(bu
If f(x) ~ x**(-a) (0 < a < 1), use gamma = a
.IP \(bu
If f'(x) ~ x**(-b) (0 < b < 1), use gamma = b
.RE
.TP
\fBromberg_sqrtSingLower\fR and \fBromberg_sqrtSingUpper\fR
These procedures behave identically to \fBromberg_powerLawLower\fR and
\fBromberg_powerLawUpper\fR for the common case of \fIgamma\fR=0\&.5;
that is, they integrate a function with an inverse square root
singularity at one end of the interval\&. They have a simpler
implementation involving square roots rather than arbitrary powers\&.
.TP
\fBromberg_expLower\fR and \fBromberg_expUpper\fR
These procedures are for integrating a function that grows or
decreases exponentially over a half-infinite interval\&.
\fBromberg_expLower\fR handles exponentially growing functions, and
allows the lower limit of integration to be an arbitrarily large
negative number\&. \fBromberg_expUpper\fR handles exponentially
decaying functions and allows the upper limit of integration to
be an arbitrary large positive number\&. The functions make the
change of variable u=exp(-x) and u=exp(x) respectively\&.
.PP
.SH "OTHER CHANGES OF VARIABLE"
If you need an improper integral other than the ones listed here,
a change of variable can be written in very few lines of Tcl\&.
Because the Tcl coding that does it is somewhat arcane,
we offer a worked example here\&.
.PP
Let's say that the function that we want to integrate is
f(x)=exp(x)/sqrt(1-x*x) (not a very natural
function, but a good example), and we want to integrate
it over the interval (-1,1)\&. The denominator falls to zero
at both ends of the interval\&. We wish to make a change of variable
from x to u
so that dx/sqrt(1-x**2) maps to du\&. Choosing x=sin(u), we can
find that dx=cos(u)*du, and sqrt(1-x**2)=cos(u)\&. The integral
from a to b of f(x) is the integral from asin(a) to asin(b)
of f(sin(u))*cos(u)\&.
.PP
We can make a function \fBg\fR that accepts an arbitrary function
\fBf\fR and the parameter u, and computes this new integrand\&.
.CS
proc g { f u } {
set x [expr { sin($u) }]
set cmd $f; lappend cmd $x; set y [eval $cmd]
return [expr { $y / cos($u) }]
}
.CE
Now integrating \fBf\fR from \fIa\fR to \fIb\fR is the same
as integrating \fBg\fR from \fIasin(a)\fR to \fIasin(b)\fR\&.
It's a little tricky to get \fBf\fR consistently evaluated in
the caller's scope; the following procedure does it\&.
.CS
proc romberg_sine { f a b args } {
set f [lreplace $f 0 0 [uplevel 1 [list namespace which [lindex $f 0]]]]
set f [list g $f]
return [eval [linsert $args 0 romberg $f [expr { asin($a) }] [expr { asin($b) }]]]
}
.CE
This \fBromberg_sine\fR procedure will do any function with
sqrt(1-x*x) in the denominator\&. Our sample function is
f(x)=exp(x)/sqrt(1-x*x):
.CS
proc f { x } {
expr { exp($x) / sqrt( 1\&. - $x*$x ) }
}
.CE
Integrating it is a matter of applying \fBromberg_sine\fR
as we would any of the other \fBromberg\fR procedures:
.CS
foreach { value error } [romberg_sine f -1\&.0 1\&.0] break
puts [format "integral is %\&.6g +/- %\&.6g" $value $error]
integral is 3\&.97746 +/- 2\&.3557e-010
.CE
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: calculus\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH "SEE ALSO"
math::calculus, math::interpolate
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Kevin B\&. Kenny <kennykb@acm\&.org>\&. All rights reserved\&. Redistribution permitted under the terms of the Open Publication License <http://www\&.opencontent\&.org/openpub/>
.fi
|