File: special.n

package info (click to toggle)
tcllib 2.0%2Bdfsg-4
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 83,572 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (868 lines) | stat: -rw-r--r-- 22,243 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
'\"
'\" Generated from file 'special\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
'\"
.TH "math::special" n 0\&.5\&.4 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\"	Start paragraph describing an argument to a library procedure.
.\"	type is type of argument (int, etc.), in/out is either "in", "out",
.\"	or "in/out" to describe whether procedure reads or modifies arg,
.\"	and indent is equivalent to second arg of .IP (shouldn't ever be
.\"	needed;  use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\"	Give maximum sizes of arguments for setting tab stops.  Type and
.\"	name are examples of largest possible arguments that will be passed
.\"	to .AP later.  If args are omitted, default tab stops are used.
.\"
.\" .BS
.\"	Start box enclosure.  From here until next .BE, everything will be
.\"	enclosed in one large box.
.\"
.\" .BE
.\"	End of box enclosure.
.\"
.\" .CS
.\"	Begin code excerpt.
.\"
.\" .CE
.\"	End code excerpt.
.\"
.\" .VS ?version? ?br?
.\"	Begin vertical sidebar, for use in marking newly-changed parts
.\"	of man pages.  The first argument is ignored and used for recording
.\"	the version when the .VS was added, so that the sidebars can be
.\"	found and removed when they reach a certain age.  If another argument
.\"	is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\"	End of vertical sidebar.
.\"
.\" .DS
.\"	Begin an indented unfilled display.
.\"
.\" .DE
.\"	End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\"	Start of list of standard options for a Tk widget. The manpage
.\"	argument defines where to look up the standard options; if
.\"	omitted, defaults to "options". The options follow on successive
.\"	lines, in three columns separated by tabs.
.\"
.\" .SE
.\"	End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\"	Start of description of a specific option.  cmdName gives the
.\"	option's name as specified in the class command, dbName gives
.\"	the option's name in the option database, and dbClass gives
.\"	the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\"	Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\"	Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\"	Print an open parenthesis, arg1 in quotes, then arg2 normally
.\"	(for trailing punctuation) and then a closing parenthesis.
.\"
.\"	# Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\"	# Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
.   ie !"\\$2"" .TP \\n()Cu
.   el          .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1	\\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\"	# define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\"	# BS - start boxed text
.\"	# ^y = starting y location
.\"	# ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\"	# BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\"	Draw four-sided box normally, but don't draw top of
.\"	box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\"	# VS - start vertical sidebar
.\"	# ^Y = starting y location
.\"	# ^v = 1 (for troff;  for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\"	# VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\"	# Special macro to handle page bottom:  finish off current
.\"	# box/sidebar if in box/sidebar mode, then invoked standard
.\"	# page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\"	Draw three-sided box if this is the box's first page,
.\"	draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\"	# DS - begin display
.de DS
.RS
.nf
.sp
..
.\"	# DE - end display
.de DE
.fi
.RE
.sp
..
.\"	# SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\"	# SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\"	# OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name:	\\fB\\$1\\fR
Database Name:	\\fB\\$2\\fR
Database Class:	\\fB\\$3\\fR
.fi
.IP
..
.\"	# CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\"	# CE - end code excerpt
.de CE
.fi
.RE
..
.\"	# UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\"	# QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\"	# PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\"	# QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\"	# MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::special \- Special mathematical functions
.SH SYNOPSIS
package require \fBTcl ?8\&.5 9?\fR
.sp
package require \fBmath::special ?0\&.5\&.3?\fR
.sp
\fB::math::special::eulerNumber\fR \fIindex\fR
.sp
\fB::math::special::bernoulliNumber\fR \fIindex\fR
.sp
\fB::math::special::Beta\fR \fIx\fR \fIy\fR
.sp
\fB::math::special::incBeta\fR \fIa\fR \fIb\fR \fIx\fR
.sp
\fB::math::special::regIncBeta\fR \fIa\fR \fIb\fR \fIx\fR
.sp
\fB::math::special::Gamma\fR \fIx\fR
.sp
\fB::math::special::digamma\fR \fIx\fR
.sp
\fB::math::special::erf\fR \fIx\fR
.sp
\fB::math::special::erfc\fR \fIx\fR
.sp
\fB::math::special::invnorm\fR \fIp\fR
.sp
\fB::math::special::J0\fR \fIx\fR
.sp
\fB::math::special::J1\fR \fIx\fR
.sp
\fB::math::special::Jn\fR \fIn\fR \fIx\fR
.sp
\fB::math::special::J1/2\fR \fIx\fR
.sp
\fB::math::special::J-1/2\fR \fIx\fR
.sp
\fB::math::special::I_n\fR \fIx\fR
.sp
\fB::math::special::cn\fR \fIu\fR \fIk\fR
.sp
\fB::math::special::dn\fR \fIu\fR \fIk\fR
.sp
\fB::math::special::sn\fR \fIu\fR \fIk\fR
.sp
\fB::math::special::elliptic_K\fR \fIk\fR
.sp
\fB::math::special::elliptic_E\fR \fIk\fR
.sp
\fB::math::special::exponential_Ei\fR \fIx\fR
.sp
\fB::math::special::exponential_En\fR \fIn\fR \fIx\fR
.sp
\fB::math::special::exponential_li\fR \fIx\fR
.sp
\fB::math::special::exponential_Ci\fR \fIx\fR
.sp
\fB::math::special::exponential_Si\fR \fIx\fR
.sp
\fB::math::special::exponential_Chi\fR \fIx\fR
.sp
\fB::math::special::exponential_Shi\fR \fIx\fR
.sp
\fB::math::special::fresnel_C\fR \fIx\fR
.sp
\fB::math::special::fresnel_S\fR \fIx\fR
.sp
\fB::math::special::sinc\fR \fIx\fR
.sp
\fB::math::special::legendre\fR \fIn\fR
.sp
\fB::math::special::chebyshev\fR \fIn\fR
.sp
\fB::math::special::laguerre\fR \fIalpha\fR \fIn\fR
.sp
\fB::math::special::hermite\fR \fIn\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several so-called special functions, like
the Gamma function, the Bessel functions and such\&.
.PP
Each function is implemented by a procedure that bears its name (well,
in close approximation):
.IP \(bu
J0 for the zeroth-order Bessel function of the first kind
.IP \(bu
J1 for the first-order Bessel function of the first kind
.IP \(bu
Jn for the nth-order Bessel function of the first kind
.IP \(bu
J1/2 for the half-order Bessel function of the first kind
.IP \(bu
J-1/2 for the minus-half-order Bessel function of the first kind
.IP \(bu
I_n for the modified Bessel function of the first kind of order n
.IP \(bu
Gamma for the Gamma function, erf and erfc for the error function and
the complementary error function
.IP \(bu
fresnel_C and fresnel_S for the Fresnel integrals
.IP \(bu
elliptic_K and elliptic_E (complete elliptic integrals)
.IP \(bu
exponent_Ei and other functions related to the so-called exponential
integrals
.IP \(bu
legendre, hermite: some of the classical orthogonal polynomials\&.
.PP
.SH OVERVIEW
In the following table several characteristics of the functions in this
package are summarized: the domain for the argument, the values for the
parameters and error bounds\&.
.CS


Family       | Function    | Domain x    | Parameter   | Error bound
-------------+-------------+-------------+-------------+--------------
Bessel       | J0, J1,     | all of R    | n = integer |   < 1\&.0e-8
             | Jn          |             |             |  (|x|<20, n<20)
Bessel       | J1/2, J-1/2,|  x > 0      | n = integer |   exact
Bessel       | I_n         | all of R    | n = integer |   < 1\&.0e-6
             |             |             |             |
Elliptic     | cn          | 0 <= x <= 1 |     --      |   < 1\&.0e-10
functions    | dn          | 0 <= x <= 1 |     --      |   < 1\&.0e-10
             | sn          | 0 <= x <= 1 |     --      |   < 1\&.0e-10
Elliptic     | K           | 0 <= x < 1  |     --      |   < 1\&.0e-6
integrals    | E           | 0 <= x < 1  |     --      |   < 1\&.0e-6
             |             |             |             |
Error        | erf         |             |     --      |
functions    | erfc        |             |             |
             |             |             |             |
Inverse      | invnorm     | 0 < x < 1   |     --      |   < 1\&.2e-9
normal       |             |             |             |
distribution |             |             |             |
             |             |             |             |
Exponential  | Ei          |  x != 0     |     --      |   < 1\&.0e-10 (relative)
integrals    | En          |  x >  0     |     --      |   as Ei
             | li          |  x > 0      |     --      |   as Ei
             | Chi         |  x > 0      |     --      |   < 1\&.0e-8
             | Shi         |  x > 0      |     --      |   < 1\&.0e-8
             | Ci          |  x > 0      |     --      |   < 2\&.0e-4
             | Si          |  x > 0      |     --      |   < 2\&.0e-4
             |             |             |             |
Fresnel      | C           |  all of R   |     --      |   < 2\&.0e-3
integrals    | S           |  all of R   |     --      |   < 2\&.0e-3
             |             |             |             |
general      | Beta        | (see Gamma) |     --      |   < 1\&.0e-9
             | Gamma       |  x != 0,-1, |     --      |   < 1\&.0e-9
             |             |  -2, \&.\&.\&.    |             |
             | incBeta     |             |  a, b > 0   |   < 1\&.0e-9
             | regIncBeta  |             |  a, b > 0   |   < 1\&.0e-9
             | digamma     |  x != 0,-1  |             |   < 1\&.0e-9
             |             |  -2, \&.\&.\&.    |             |
             |             |             |             |
             | sinc        |  all of R   |     --      |   exact
             |             |             |             |
orthogonal   | Legendre    |  all of R   | n = 0,1,\&.\&.\&. |   exact
polynomials  | Chebyshev   |  all of R   | n = 0,1,\&.\&.\&. |   exact
             | Laguerre    |  all of R   | n = 0,1,\&.\&.\&. |   exact
             |             |             | alpha el\&. R |
             | Hermite     |  all of R   | n = 0,1,\&.\&.\&. |   exact

.CE
\fINote:\fR Some of the error bounds are estimated, as no
"formal" bounds were available with the implemented approximation
method, others hold for the auxiliary functions used for estimating
the primary functions\&.
.PP
The following well-known functions are currently missing from the package:
.IP \(bu
Bessel functions of the second kind (Y_n, K_n)
.IP \(bu
Bessel functions of arbitrary order (and hence the Airy functions)
.IP \(bu
Chebyshev polynomials of the second kind (U_n)
.IP \(bu
The incomplete gamma function
.PP
.SH PROCEDURES
The package defines the following public procedures:
.TP
\fB::math::special::eulerNumber\fR \fIindex\fR
Return the index'th Euler number (note: these are integer values)\&. As the
size of these numbers grows very fast, only a limited number are available\&.
.RS
.TP
int \fIindex\fR
Index of the number to be returned (should be between 0 and 54)
.RE
.sp
.TP
\fB::math::special::bernoulliNumber\fR \fIindex\fR
Return the index'th Bernoulli number\&. As the size of the numbers grows very fast,
only a limited number are available\&.
.RS
.TP
int \fIindex\fR
Index of the number to be returned (should be between 0 and 52)
.RE
.sp
.TP
\fB::math::special::Beta\fR \fIx\fR \fIy\fR
Compute the Beta function for arguments "x" and "y"
.RS
.TP
float \fIx\fR
First argument for the Beta function
.TP
float \fIy\fR
Second argument for the Beta function
.RE
.sp
.TP
\fB::math::special::incBeta\fR \fIa\fR \fIb\fR \fIx\fR
Compute the incomplete Beta function for argument "x" with parameters "a" and "b"
.RS
.TP
float \fIa\fR
First parameter for the incomplete Beta function, a > 0
.TP
float \fIb\fR
Second parameter for the incomplete Beta function, b > 0
.TP
float \fIx\fR
Argument for the incomplete Beta function
.RE
.sp
.TP
\fB::math::special::regIncBeta\fR \fIa\fR \fIb\fR \fIx\fR
Compute the regularized incomplete Beta function for argument "x" with parameters "a" and "b"
.RS
.TP
float \fIa\fR
First parameter for the incomplete Beta function, a > 0
.TP
float \fIb\fR
Second parameter for the incomplete Beta function, b > 0
.TP
float \fIx\fR
Argument for the regularized incomplete Beta function
.RE
.sp
.TP
\fB::math::special::Gamma\fR \fIx\fR
Compute the Gamma function for argument "x"
.RS
.TP
float \fIx\fR
Argument for the Gamma function
.RE
.sp
.TP
\fB::math::special::digamma\fR \fIx\fR
Compute the digamma function (psi) for argument "x"
.RS
.TP
float \fIx\fR
Argument for the digamma function
.RE
.sp
.TP
\fB::math::special::erf\fR \fIx\fR
Compute the error function for argument "x"
.RS
.TP
float \fIx\fR
Argument for the error function
.RE
.sp
.TP
\fB::math::special::erfc\fR \fIx\fR
Compute the complementary error function for argument "x"
.RS
.TP
float \fIx\fR
Argument for the complementary error function
.RE
.sp
.TP
\fB::math::special::invnorm\fR \fIp\fR
Compute the inverse of the normal distribution function for argument "p"
.RS
.TP
float \fIp\fR
Argument for the inverse normal distribution function
(p must be greater than 0 and lower than 1)
.RE
.sp
.TP
\fB::math::special::J0\fR \fIx\fR
Compute the zeroth-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::J1\fR \fIx\fR
Compute the first-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::Jn\fR \fIn\fR \fIx\fR
Compute the nth-order Bessel function of the first kind for the
argument "x"
.RS
.TP
integer \fIn\fR
Order of the Bessel function
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::J1/2\fR \fIx\fR
Compute the half-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::J-1/2\fR \fIx\fR
Compute the minus-half-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::I_n\fR \fIx\fR
Compute the modified Bessel function of the first kind of order n for
the argument "x"
.RS
.TP
int \fIx\fR
Positive integer order of the function
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::cn\fR \fIu\fR \fIk\fR
Compute the elliptic function \fIcn\fR for the argument "u" and
parameter "k"\&.
.RS
.TP
float \fIu\fR
Argument for the function
.TP
float \fIk\fR
Parameter
.RE
.TP
\fB::math::special::dn\fR \fIu\fR \fIk\fR
Compute the elliptic function \fIdn\fR for the argument "u" and
parameter "k"\&.
.RS
.TP
float \fIu\fR
Argument for the function
.TP
float \fIk\fR
Parameter
.RE
.TP
\fB::math::special::sn\fR \fIu\fR \fIk\fR
Compute the elliptic function \fIsn\fR for the argument "u" and
parameter "k"\&.
.RS
.TP
float \fIu\fR
Argument for the function
.TP
float \fIk\fR
Parameter
.RE
.TP
\fB::math::special::elliptic_K\fR \fIk\fR
Compute the complete elliptic integral of the first kind
for the argument "k"
.RS
.TP
float \fIk\fR
Argument for the function
.RE
.TP
\fB::math::special::elliptic_E\fR \fIk\fR
Compute the complete elliptic integral of the second kind
for the argument "k"
.RS
.TP
float \fIk\fR
Argument for the function
.RE
.TP
\fB::math::special::exponential_Ei\fR \fIx\fR
Compute the exponential integral of the second kind
for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x != 0)
.RE
.TP
\fB::math::special::exponential_En\fR \fIn\fR \fIx\fR
Compute the exponential integral of the first kind
for the argument "x" and order n
.RS
.TP
int \fIn\fR
Order of the integral (n >= 0)
.TP
float \fIx\fR
Argument for the function (x >= 0)
.RE
.TP
\fB::math::special::exponential_li\fR \fIx\fR
Compute the logarithmic integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Ci\fR \fIx\fR
Compute the cosine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Si\fR \fIx\fR
Compute the sine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Chi\fR \fIx\fR
Compute the hyperbolic cosine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Shi\fR \fIx\fR
Compute the hyperbolic sine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::fresnel_C\fR \fIx\fR
Compute the Fresnel cosine integral for real argument x
.RS
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::fresnel_S\fR \fIx\fR
Compute the Fresnel sine integral for real argument x
.RS
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::sinc\fR \fIx\fR
Compute the sinc function for real argument x
.RS
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::legendre\fR \fIn\fR
Return the Legendre polynomial of degree n
(see \fBTHE ORTHOGONAL POLYNOMIALS\fR)
.RS
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.TP
\fB::math::special::chebyshev\fR \fIn\fR
Return the Chebyshev polynomial of degree n (of the first kind)
.RS
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.TP
\fB::math::special::laguerre\fR \fIalpha\fR \fIn\fR
Return the Laguerre polynomial of degree n with parameter alpha
.RS
.TP
float \fIalpha\fR
Parameter of the Laguerre polynomial
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.TP
\fB::math::special::hermite\fR \fIn\fR
Return the Hermite polynomial of degree n
.RS
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.PP
.SH "THE ORTHOGONAL POLYNOMIALS"
For dealing with the classical families of orthogonal polynomials, the
package relies on the \fImath::polynomials\fR package\&. To evaluate the
polynomial at some coordinate, use the \fIevalPolyn\fR command:
.CS


   set leg2 [::math::special::legendre 2]
   puts "Value at x=$x: [::math::polynomials::evalPolyn $leg2 $x]"

.CE
.PP
The return value from the \fIlegendre\fR and other commands is actually
the definition of the corresponding polynomial as used in that package\&.
.SH "REMARKS ON THE IMPLEMENTATION"
It should be noted, that the actual implementation of J0 and J1 depends
on straightforward Gaussian quadrature formulas\&. The (absolute) accuracy
of the results is of the order 1\&.0e-4 or better\&. The main reason to
implement them like that was that it was fast to do (the formulas are
simple) and the computations are fast too\&.
.PP
The implementation of J1/2 does not suffer from this: this function can
be expressed exactly in terms of elementary functions\&.
.PP
The functions J0 and J1 are the ones you will encounter most frequently
in practice\&.
.PP
The computation of I_n is based on Miller's algorithm for computing the
minimal function from recurrence relations\&.
.PP
The computation of the Gamma and Beta functions relies on the
combinatorics package, whereas that of the error functions relies on the
statistics package\&.
.PP
The computation of the complete elliptic integrals uses the AGM
algorithm\&.
.PP
Much information about these functions can be found in:
.PP
Abramowitz and Stegun: \fIHandbook of Mathematical Functions\fR
(Dover, ISBN 486-61272-4)
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: special\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
Bessel functions, error function, math, special functions
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>

.fi