1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
'\"
'\" Generated from file 'special\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
'\"
.TH "math::special" n 0\&.5\&.4 tcllib "Tcl Math Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
math::special \- Special mathematical functions
.SH SYNOPSIS
package require \fBTcl ?8\&.5 9?\fR
.sp
package require \fBmath::special ?0\&.5\&.3?\fR
.sp
\fB::math::special::eulerNumber\fR \fIindex\fR
.sp
\fB::math::special::bernoulliNumber\fR \fIindex\fR
.sp
\fB::math::special::Beta\fR \fIx\fR \fIy\fR
.sp
\fB::math::special::incBeta\fR \fIa\fR \fIb\fR \fIx\fR
.sp
\fB::math::special::regIncBeta\fR \fIa\fR \fIb\fR \fIx\fR
.sp
\fB::math::special::Gamma\fR \fIx\fR
.sp
\fB::math::special::digamma\fR \fIx\fR
.sp
\fB::math::special::erf\fR \fIx\fR
.sp
\fB::math::special::erfc\fR \fIx\fR
.sp
\fB::math::special::invnorm\fR \fIp\fR
.sp
\fB::math::special::J0\fR \fIx\fR
.sp
\fB::math::special::J1\fR \fIx\fR
.sp
\fB::math::special::Jn\fR \fIn\fR \fIx\fR
.sp
\fB::math::special::J1/2\fR \fIx\fR
.sp
\fB::math::special::J-1/2\fR \fIx\fR
.sp
\fB::math::special::I_n\fR \fIx\fR
.sp
\fB::math::special::cn\fR \fIu\fR \fIk\fR
.sp
\fB::math::special::dn\fR \fIu\fR \fIk\fR
.sp
\fB::math::special::sn\fR \fIu\fR \fIk\fR
.sp
\fB::math::special::elliptic_K\fR \fIk\fR
.sp
\fB::math::special::elliptic_E\fR \fIk\fR
.sp
\fB::math::special::exponential_Ei\fR \fIx\fR
.sp
\fB::math::special::exponential_En\fR \fIn\fR \fIx\fR
.sp
\fB::math::special::exponential_li\fR \fIx\fR
.sp
\fB::math::special::exponential_Ci\fR \fIx\fR
.sp
\fB::math::special::exponential_Si\fR \fIx\fR
.sp
\fB::math::special::exponential_Chi\fR \fIx\fR
.sp
\fB::math::special::exponential_Shi\fR \fIx\fR
.sp
\fB::math::special::fresnel_C\fR \fIx\fR
.sp
\fB::math::special::fresnel_S\fR \fIx\fR
.sp
\fB::math::special::sinc\fR \fIx\fR
.sp
\fB::math::special::legendre\fR \fIn\fR
.sp
\fB::math::special::chebyshev\fR \fIn\fR
.sp
\fB::math::special::laguerre\fR \fIalpha\fR \fIn\fR
.sp
\fB::math::special::hermite\fR \fIn\fR
.sp
.BE
.SH DESCRIPTION
.PP
This package implements several so-called special functions, like
the Gamma function, the Bessel functions and such\&.
.PP
Each function is implemented by a procedure that bears its name (well,
in close approximation):
.IP \(bu
J0 for the zeroth-order Bessel function of the first kind
.IP \(bu
J1 for the first-order Bessel function of the first kind
.IP \(bu
Jn for the nth-order Bessel function of the first kind
.IP \(bu
J1/2 for the half-order Bessel function of the first kind
.IP \(bu
J-1/2 for the minus-half-order Bessel function of the first kind
.IP \(bu
I_n for the modified Bessel function of the first kind of order n
.IP \(bu
Gamma for the Gamma function, erf and erfc for the error function and
the complementary error function
.IP \(bu
fresnel_C and fresnel_S for the Fresnel integrals
.IP \(bu
elliptic_K and elliptic_E (complete elliptic integrals)
.IP \(bu
exponent_Ei and other functions related to the so-called exponential
integrals
.IP \(bu
legendre, hermite: some of the classical orthogonal polynomials\&.
.PP
.SH OVERVIEW
In the following table several characteristics of the functions in this
package are summarized: the domain for the argument, the values for the
parameters and error bounds\&.
.CS
Family | Function | Domain x | Parameter | Error bound
-------------+-------------+-------------+-------------+--------------
Bessel | J0, J1, | all of R | n = integer | < 1\&.0e-8
| Jn | | | (|x|<20, n<20)
Bessel | J1/2, J-1/2,| x > 0 | n = integer | exact
Bessel | I_n | all of R | n = integer | < 1\&.0e-6
| | | |
Elliptic | cn | 0 <= x <= 1 | -- | < 1\&.0e-10
functions | dn | 0 <= x <= 1 | -- | < 1\&.0e-10
| sn | 0 <= x <= 1 | -- | < 1\&.0e-10
Elliptic | K | 0 <= x < 1 | -- | < 1\&.0e-6
integrals | E | 0 <= x < 1 | -- | < 1\&.0e-6
| | | |
Error | erf | | -- |
functions | erfc | | |
| | | |
Inverse | invnorm | 0 < x < 1 | -- | < 1\&.2e-9
normal | | | |
distribution | | | |
| | | |
Exponential | Ei | x != 0 | -- | < 1\&.0e-10 (relative)
integrals | En | x > 0 | -- | as Ei
| li | x > 0 | -- | as Ei
| Chi | x > 0 | -- | < 1\&.0e-8
| Shi | x > 0 | -- | < 1\&.0e-8
| Ci | x > 0 | -- | < 2\&.0e-4
| Si | x > 0 | -- | < 2\&.0e-4
| | | |
Fresnel | C | all of R | -- | < 2\&.0e-3
integrals | S | all of R | -- | < 2\&.0e-3
| | | |
general | Beta | (see Gamma) | -- | < 1\&.0e-9
| Gamma | x != 0,-1, | -- | < 1\&.0e-9
| | -2, \&.\&.\&. | |
| incBeta | | a, b > 0 | < 1\&.0e-9
| regIncBeta | | a, b > 0 | < 1\&.0e-9
| digamma | x != 0,-1 | | < 1\&.0e-9
| | -2, \&.\&.\&. | |
| | | |
| sinc | all of R | -- | exact
| | | |
orthogonal | Legendre | all of R | n = 0,1,\&.\&.\&. | exact
polynomials | Chebyshev | all of R | n = 0,1,\&.\&.\&. | exact
| Laguerre | all of R | n = 0,1,\&.\&.\&. | exact
| | | alpha el\&. R |
| Hermite | all of R | n = 0,1,\&.\&.\&. | exact
.CE
\fINote:\fR Some of the error bounds are estimated, as no
"formal" bounds were available with the implemented approximation
method, others hold for the auxiliary functions used for estimating
the primary functions\&.
.PP
The following well-known functions are currently missing from the package:
.IP \(bu
Bessel functions of the second kind (Y_n, K_n)
.IP \(bu
Bessel functions of arbitrary order (and hence the Airy functions)
.IP \(bu
Chebyshev polynomials of the second kind (U_n)
.IP \(bu
The incomplete gamma function
.PP
.SH PROCEDURES
The package defines the following public procedures:
.TP
\fB::math::special::eulerNumber\fR \fIindex\fR
Return the index'th Euler number (note: these are integer values)\&. As the
size of these numbers grows very fast, only a limited number are available\&.
.RS
.TP
int \fIindex\fR
Index of the number to be returned (should be between 0 and 54)
.RE
.sp
.TP
\fB::math::special::bernoulliNumber\fR \fIindex\fR
Return the index'th Bernoulli number\&. As the size of the numbers grows very fast,
only a limited number are available\&.
.RS
.TP
int \fIindex\fR
Index of the number to be returned (should be between 0 and 52)
.RE
.sp
.TP
\fB::math::special::Beta\fR \fIx\fR \fIy\fR
Compute the Beta function for arguments "x" and "y"
.RS
.TP
float \fIx\fR
First argument for the Beta function
.TP
float \fIy\fR
Second argument for the Beta function
.RE
.sp
.TP
\fB::math::special::incBeta\fR \fIa\fR \fIb\fR \fIx\fR
Compute the incomplete Beta function for argument "x" with parameters "a" and "b"
.RS
.TP
float \fIa\fR
First parameter for the incomplete Beta function, a > 0
.TP
float \fIb\fR
Second parameter for the incomplete Beta function, b > 0
.TP
float \fIx\fR
Argument for the incomplete Beta function
.RE
.sp
.TP
\fB::math::special::regIncBeta\fR \fIa\fR \fIb\fR \fIx\fR
Compute the regularized incomplete Beta function for argument "x" with parameters "a" and "b"
.RS
.TP
float \fIa\fR
First parameter for the incomplete Beta function, a > 0
.TP
float \fIb\fR
Second parameter for the incomplete Beta function, b > 0
.TP
float \fIx\fR
Argument for the regularized incomplete Beta function
.RE
.sp
.TP
\fB::math::special::Gamma\fR \fIx\fR
Compute the Gamma function for argument "x"
.RS
.TP
float \fIx\fR
Argument for the Gamma function
.RE
.sp
.TP
\fB::math::special::digamma\fR \fIx\fR
Compute the digamma function (psi) for argument "x"
.RS
.TP
float \fIx\fR
Argument for the digamma function
.RE
.sp
.TP
\fB::math::special::erf\fR \fIx\fR
Compute the error function for argument "x"
.RS
.TP
float \fIx\fR
Argument for the error function
.RE
.sp
.TP
\fB::math::special::erfc\fR \fIx\fR
Compute the complementary error function for argument "x"
.RS
.TP
float \fIx\fR
Argument for the complementary error function
.RE
.sp
.TP
\fB::math::special::invnorm\fR \fIp\fR
Compute the inverse of the normal distribution function for argument "p"
.RS
.TP
float \fIp\fR
Argument for the inverse normal distribution function
(p must be greater than 0 and lower than 1)
.RE
.sp
.TP
\fB::math::special::J0\fR \fIx\fR
Compute the zeroth-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::J1\fR \fIx\fR
Compute the first-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::Jn\fR \fIn\fR \fIx\fR
Compute the nth-order Bessel function of the first kind for the
argument "x"
.RS
.TP
integer \fIn\fR
Order of the Bessel function
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::J1/2\fR \fIx\fR
Compute the half-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::J-1/2\fR \fIx\fR
Compute the minus-half-order Bessel function of the first kind for the
argument "x"
.RS
.TP
float \fIx\fR
Argument for the Bessel function
.RE
.TP
\fB::math::special::I_n\fR \fIx\fR
Compute the modified Bessel function of the first kind of order n for
the argument "x"
.RS
.TP
int \fIx\fR
Positive integer order of the function
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::cn\fR \fIu\fR \fIk\fR
Compute the elliptic function \fIcn\fR for the argument "u" and
parameter "k"\&.
.RS
.TP
float \fIu\fR
Argument for the function
.TP
float \fIk\fR
Parameter
.RE
.TP
\fB::math::special::dn\fR \fIu\fR \fIk\fR
Compute the elliptic function \fIdn\fR for the argument "u" and
parameter "k"\&.
.RS
.TP
float \fIu\fR
Argument for the function
.TP
float \fIk\fR
Parameter
.RE
.TP
\fB::math::special::sn\fR \fIu\fR \fIk\fR
Compute the elliptic function \fIsn\fR for the argument "u" and
parameter "k"\&.
.RS
.TP
float \fIu\fR
Argument for the function
.TP
float \fIk\fR
Parameter
.RE
.TP
\fB::math::special::elliptic_K\fR \fIk\fR
Compute the complete elliptic integral of the first kind
for the argument "k"
.RS
.TP
float \fIk\fR
Argument for the function
.RE
.TP
\fB::math::special::elliptic_E\fR \fIk\fR
Compute the complete elliptic integral of the second kind
for the argument "k"
.RS
.TP
float \fIk\fR
Argument for the function
.RE
.TP
\fB::math::special::exponential_Ei\fR \fIx\fR
Compute the exponential integral of the second kind
for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x != 0)
.RE
.TP
\fB::math::special::exponential_En\fR \fIn\fR \fIx\fR
Compute the exponential integral of the first kind
for the argument "x" and order n
.RS
.TP
int \fIn\fR
Order of the integral (n >= 0)
.TP
float \fIx\fR
Argument for the function (x >= 0)
.RE
.TP
\fB::math::special::exponential_li\fR \fIx\fR
Compute the logarithmic integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Ci\fR \fIx\fR
Compute the cosine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Si\fR \fIx\fR
Compute the sine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Chi\fR \fIx\fR
Compute the hyperbolic cosine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::exponential_Shi\fR \fIx\fR
Compute the hyperbolic sine integral for the argument "x"
.RS
.TP
float \fIx\fR
Argument for the function (x > 0)
.RE
.TP
\fB::math::special::fresnel_C\fR \fIx\fR
Compute the Fresnel cosine integral for real argument x
.RS
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::fresnel_S\fR \fIx\fR
Compute the Fresnel sine integral for real argument x
.RS
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::sinc\fR \fIx\fR
Compute the sinc function for real argument x
.RS
.TP
float \fIx\fR
Argument for the function
.RE
.TP
\fB::math::special::legendre\fR \fIn\fR
Return the Legendre polynomial of degree n
(see \fBTHE ORTHOGONAL POLYNOMIALS\fR)
.RS
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.TP
\fB::math::special::chebyshev\fR \fIn\fR
Return the Chebyshev polynomial of degree n (of the first kind)
.RS
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.TP
\fB::math::special::laguerre\fR \fIalpha\fR \fIn\fR
Return the Laguerre polynomial of degree n with parameter alpha
.RS
.TP
float \fIalpha\fR
Parameter of the Laguerre polynomial
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.TP
\fB::math::special::hermite\fR \fIn\fR
Return the Hermite polynomial of degree n
.RS
.TP
int \fIn\fR
Degree of the polynomial
.RE
.sp
.PP
.SH "THE ORTHOGONAL POLYNOMIALS"
For dealing with the classical families of orthogonal polynomials, the
package relies on the \fImath::polynomials\fR package\&. To evaluate the
polynomial at some coordinate, use the \fIevalPolyn\fR command:
.CS
set leg2 [::math::special::legendre 2]
puts "Value at x=$x: [::math::polynomials::evalPolyn $leg2 $x]"
.CE
.PP
The return value from the \fIlegendre\fR and other commands is actually
the definition of the corresponding polynomial as used in that package\&.
.SH "REMARKS ON THE IMPLEMENTATION"
It should be noted, that the actual implementation of J0 and J1 depends
on straightforward Gaussian quadrature formulas\&. The (absolute) accuracy
of the results is of the order 1\&.0e-4 or better\&. The main reason to
implement them like that was that it was fast to do (the formulas are
simple) and the computations are fast too\&.
.PP
The implementation of J1/2 does not suffer from this: this function can
be expressed exactly in terms of elementary functions\&.
.PP
The functions J0 and J1 are the ones you will encounter most frequently
in practice\&.
.PP
The computation of I_n is based on Miller's algorithm for computing the
minimal function from recurrence relations\&.
.PP
The computation of the Gamma and Beta functions relies on the
combinatorics package, whereas that of the error functions relies on the
statistics package\&.
.PP
The computation of the complete elliptic integrals uses the AGM
algorithm\&.
.PP
Much information about these functions can be found in:
.PP
Abramowitz and Stegun: \fIHandbook of Mathematical Functions\fR
(Dover, ISBN 486-61272-4)
.SH "BUGS, IDEAS, FEEDBACK"
This document, and the package it describes, will undoubtedly contain
bugs and other problems\&.
Please report such in the category \fImath :: special\fR of the
\fITcllib Trackers\fR [http://core\&.tcl\&.tk/tcllib/reportlist]\&.
Please also report any ideas for enhancements you may have for either
package and/or documentation\&.
.PP
When proposing code changes, please provide \fIunified diffs\fR,
i\&.e the output of \fBdiff -u\fR\&.
.PP
Note further that \fIattachments\fR are strongly preferred over
inlined patches\&. Attachments can be made by going to the \fBEdit\fR
form of the ticket immediately after its creation, and then using the
left-most button in the secondary navigation bar\&.
.SH KEYWORDS
Bessel functions, error function, math, special functions
.SH CATEGORY
Mathematics
.SH COPYRIGHT
.nf
Copyright (c) 2004 Arjen Markus <arjenmarkus@users\&.sourceforge\&.net>
.fi
|