| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 
 | # -*- tcl -*-
#Vertices Cover, 2 approximation algorithm - Tests
#
#Algorithm searches for the minimum set of vertices such that each edge of the graph
#is incident to at least one vertex of the set.
#
#------------------------------------------------------------------------------------
#Tests concerning returning right values by algorithm
#Test 1.0 - case when graph is complete - the same degrees and even number of nodes
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.0 { VerticesCover, complete K4 } {
    SETUP_UNDIRECTED_K4
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} {node1 node2 node3 node4}
#Test 1.1 - case with big degree differences at nodes
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.1 { VerticesCover, graph simulation } {
    SETUP_VC_1
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} [tmE {node1 node3} {node2 node3}]
#Test 1.2 - another test case testing the improvement given by degree conditions
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.2 { VerticesCover, graph simulation } {
    SETUP_VC_2
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} {node2 node3 node4 node5}
#Test 1.3 - case when graph is a cycle - degrees are the same for all nodes
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.3 { VerticesCover, cycle C5 } {
    SETUP_C5
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} [tmE {node2 node3 node4 node5} {node1 node3 node4 node5}]
# should custom match code verifying that result is a cover.
#Test 1.4 - case when given graph is a K4, but with doubled arcs (directed)
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.4 { VerticesCover, directed K4 } {
    SETUP_K4
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} {node1 node2 node3 node4}
#Test 1.5 - graph from Test 1.1, but with doubled arcs (directed)
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.5 { VerticesCover, directed, complete } {
    SETUP_VC_1_2
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} [tmE {node1 node3} {node2 node3}]
#Test 1.6 - graph from Test 1.1, but with some doubled arcs (directed)
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-1.6 { VerticesCover, directed, uncomplete } {
    SETUP_VC_1_3
    set result [lsort -dict [struct::graph::op::VerticesCover mygraph]]
    mygraph destroy
    set result
} [tmE {node1 node3} {node2 node3}]
# -------------------------------------------------------------------------
# Wrong # args: Missing, Too many
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-2.0 { VerticesCover, wrong args, missing } {
    catch {struct::graph::op::VerticesCover} msg
    set msg
} [tcltest::wrongNumArgs struct::graph::op::VerticesCover {G} 0]
test graphop-t${treeimpl}-g${impl}-s${setimpl}-st${stkimpl}-q${queimpl}-VerticesCover-2.1 { VerticesCover, wrong args, too many} {
    catch {struct::graph::op::VerticesCover G y x} msg
    set msg
} [tcltest::tooManyArgs struct::graph::op::VerticesCover {G}]
# -------------------------------------------------------------------------
# Logical arguments checks and failure
 |